blob: 4f10c7152ac34b94e6c29f45334e44b5046783f7 [file] [log] [blame]
/* Copyright 2015 Google Inc. All Rights Reserved.
Distributed under MIT license.
See file LICENSE for detail or copy at https://opensource.org/licenses/MIT
*/
namespace Org.Brotli.Dec
{
/// <summary>Utilities for building Huffman decoding tables.</summary>
internal sealed class Huffman
{
/// <summary>
/// Maximum possible Huffman table size for an alphabet size of 704, max code length 15 and root
/// table bits 8.
/// </summary>
internal const int HuffmanMaxTableSize = 1080;
private const int MaxLength = 15;
/// <summary>Returns reverse(reverse(key, len) + 1, len).</summary>
/// <remarks>
/// Returns reverse(reverse(key, len) + 1, len).
/// <p> reverse(key, len) is the bit-wise reversal of the len least significant bits of key.
/// </remarks>
private static int GetNextKey(int key, int len)
{
int step = 1 << (len - 1);
while ((key & step) != 0)
{
step >>= 1;
}
return (key & (step - 1)) + step;
}
/// <summary>
/// Stores
/// <paramref name="item"/>
/// in
/// <c>table[0], table[step], table[2 * step] .., table[end]</c>
/// .
/// <p> Assumes that end is an integer multiple of step.
/// </summary>
private static void ReplicateValue(int[] table, int offset, int step, int end, int item)
{
do
{
end -= step;
table[offset + end] = item;
}
while (end > 0);
}
/// <param name="count">histogram of bit lengths for the remaining symbols,</param>
/// <param name="len">code length of the next processed symbol.</param>
/// <returns>table width of the next 2nd level table.</returns>
private static int NextTableBitSize(int[] count, int len, int rootBits)
{
int left = 1 << (len - rootBits);
while (len < MaxLength)
{
left -= count[len];
if (left <= 0)
{
break;
}
len++;
left <<= 1;
}
return len - rootBits;
}
/// <summary>Builds Huffman lookup table assuming code lengths are in symbol order.</summary>
internal static void BuildHuffmanTable(int[] rootTable, int tableOffset, int rootBits, int[] codeLengths, int codeLengthsSize)
{
int key;
// Reversed prefix code.
int[] sorted = new int[codeLengthsSize];
// Symbols sorted by code length.
// TODO: fill with zeroes?
int[] count = new int[MaxLength + 1];
// Number of codes of each length.
int[] offset = new int[MaxLength + 1];
// Offsets in sorted table for each length.
int symbol;
// Build histogram of code lengths.
for (symbol = 0; symbol < codeLengthsSize; symbol++)
{
count[codeLengths[symbol]]++;
}
// Generate offsets into sorted symbol table by code length.
offset[1] = 0;
for (int len = 1; len < MaxLength; len++)
{
offset[len + 1] = offset[len] + count[len];
}
// Sort symbols by length, by symbol order within each length.
for (symbol = 0; symbol < codeLengthsSize; symbol++)
{
if (codeLengths[symbol] != 0)
{
sorted[offset[codeLengths[symbol]]++] = symbol;
}
}
int tableBits = rootBits;
int tableSize = 1 << tableBits;
int totalSize = tableSize;
// Special case code with only one value.
if (offset[MaxLength] == 1)
{
for (key = 0; key < totalSize; key++)
{
rootTable[tableOffset + key] = sorted[0];
}
return;
}
// Fill in root table.
key = 0;
symbol = 0;
for (int len = 1, step = 2; len <= rootBits; len++, step <<= 1)
{
for (; count[len] > 0; count[len]--)
{
ReplicateValue(rootTable, tableOffset + key, step, tableSize, len << 16 | sorted[symbol++]);
key = GetNextKey(key, len);
}
}
// Fill in 2nd level tables and add pointers to root table.
int mask = totalSize - 1;
int low = -1;
int currentOffset = tableOffset;
for (int len = rootBits + 1, step = 2; len <= MaxLength; len++, step <<= 1)
{
for (; count[len] > 0; count[len]--)
{
if ((key & mask) != low)
{
currentOffset += tableSize;
tableBits = NextTableBitSize(count, len, rootBits);
tableSize = 1 << tableBits;
totalSize += tableSize;
low = key & mask;
rootTable[tableOffset + low] = (tableBits + rootBits) << 16 | (currentOffset - tableOffset - low);
}
ReplicateValue(rootTable, currentOffset + (key >> rootBits), step, tableSize, (len - rootBits) << 16 | sorted[symbol++]);
key = GetNextKey(key, len);
}
}
}
}
}