blob: cabb99ed9ce9e304e7d8603f2012324f6e49ecd4 [file] [log] [blame]
// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc. All rights reserved.
// http://code.google.com/p/protobuf/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Author: jschorr@google.com (Joseph Schorr)
// Based on original Protocol Buffers design by
// Sanjay Ghemawat, Jeff Dean, and others.
#include <float.h>
#include <math.h>
#include <stdio.h>
#include <stack>
#include <limits>
#include <vector>
#include <google/protobuf/text_format.h>
#include <google/protobuf/descriptor.h>
#include <google/protobuf/io/coded_stream.h>
#include <google/protobuf/io/zero_copy_stream.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <google/protobuf/unknown_field_set.h>
#include <google/protobuf/descriptor.pb.h>
#include <google/protobuf/io/tokenizer.h>
#include <google/protobuf/stubs/strutil.h>
#include <google/protobuf/stubs/map-util.h>
#include <google/protobuf/stubs/stl_util.h>
namespace google {
namespace protobuf {
string Message::DebugString() const {
string debug_string;
TextFormat::PrintToString(*this, &debug_string);
return debug_string;
}
string Message::ShortDebugString() const {
string debug_string;
TextFormat::Printer printer;
printer.SetSingleLineMode(true);
printer.PrintToString(*this, &debug_string);
// Single line mode currently might have an extra space at the end.
if (debug_string.size() > 0 &&
debug_string[debug_string.size() - 1] == ' ') {
debug_string.resize(debug_string.size() - 1);
}
return debug_string;
}
string Message::Utf8DebugString() const {
string debug_string;
TextFormat::Printer printer;
printer.SetUseUtf8StringEscaping(true);
printer.PrintToString(*this, &debug_string);
return debug_string;
}
void Message::PrintDebugString() const {
printf("%s", DebugString().c_str());
}
// ===========================================================================
// Implementation of the parse information tree class.
TextFormat::ParseInfoTree::ParseInfoTree() { }
TextFormat::ParseInfoTree::~ParseInfoTree() {
// Remove any nested information trees, as they are owned by this tree.
for (NestedMap::iterator it = nested_.begin(); it != nested_.end(); ++it) {
STLDeleteElements(&(it->second));
}
}
void TextFormat::ParseInfoTree::RecordLocation(
const FieldDescriptor* field,
TextFormat::ParseLocation location) {
locations_[field].push_back(location);
}
TextFormat::ParseInfoTree* TextFormat::ParseInfoTree::CreateNested(
const FieldDescriptor* field) {
// Owned by us in the map.
TextFormat::ParseInfoTree* instance = new TextFormat::ParseInfoTree();
vector<TextFormat::ParseInfoTree*>* trees = &nested_[field];
GOOGLE_CHECK(trees);
trees->push_back(instance);
return instance;
}
void CheckFieldIndex(const FieldDescriptor* field, int index) {
if (field == NULL) { return; }
if (field->is_repeated() && index == -1) {
GOOGLE_LOG(DFATAL) << "Index must be in range of repeated field values. "
<< "Field: " << field->name();
} else if (!field->is_repeated() && index != -1) {
GOOGLE_LOG(DFATAL) << "Index must be -1 for singular fields."
<< "Field: " << field->name();
}
}
TextFormat::ParseLocation TextFormat::ParseInfoTree::GetLocation(
const FieldDescriptor* field, int index) const {
CheckFieldIndex(field, index);
if (index == -1) { index = 0; }
const vector<TextFormat::ParseLocation>* locations =
FindOrNull(locations_, field);
if (locations == NULL || index >= locations->size()) {
return TextFormat::ParseLocation();
}
return (*locations)[index];
}
TextFormat::ParseInfoTree* TextFormat::ParseInfoTree::GetTreeForNested(
const FieldDescriptor* field, int index) const {
CheckFieldIndex(field, index);
if (index == -1) { index = 0; }
const vector<TextFormat::ParseInfoTree*>* trees = FindOrNull(nested_, field);
if (trees == NULL || index >= trees->size()) {
return NULL;
}
return (*trees)[index];
}
// ===========================================================================
// Internal class for parsing an ASCII representation of a Protocol Message.
// This class makes use of the Protocol Message compiler's tokenizer found
// in //google/protobuf/io/tokenizer.h. Note that class's Parse
// method is *not* thread-safe and should only be used in a single thread at
// a time.
// Makes code slightly more readable. The meaning of "DO(foo)" is
// "Execute foo and fail if it fails.", where failure is indicated by
// returning false. Borrowed from parser.cc (Thanks Kenton!).
#define DO(STATEMENT) if (STATEMENT) {} else return false
class TextFormat::Parser::ParserImpl {
public:
// Determines if repeated values for a non-repeated field are
// permitted, e.g., the string "foo: 1 foo: 2" for a
// required/optional field named "foo".
enum SingularOverwritePolicy {
ALLOW_SINGULAR_OVERWRITES = 0, // the last value is retained
FORBID_SINGULAR_OVERWRITES = 1, // an error is issued
};
ParserImpl(const Descriptor* root_message_type,
io::ZeroCopyInputStream* input_stream,
io::ErrorCollector* error_collector,
TextFormat::Finder* finder,
ParseInfoTree* parse_info_tree,
SingularOverwritePolicy singular_overwrite_policy,
bool allow_unknown_field)
: error_collector_(error_collector),
finder_(finder),
parse_info_tree_(parse_info_tree),
tokenizer_error_collector_(this),
tokenizer_(input_stream, &tokenizer_error_collector_),
root_message_type_(root_message_type),
singular_overwrite_policy_(singular_overwrite_policy),
allow_unknown_field_(allow_unknown_field),
had_errors_(false) {
// For backwards-compatibility with proto1, we need to allow the 'f' suffix
// for floats.
tokenizer_.set_allow_f_after_float(true);
// '#' starts a comment.
tokenizer_.set_comment_style(io::Tokenizer::SH_COMMENT_STYLE);
// Consume the starting token.
tokenizer_.Next();
}
~ParserImpl() { }
// Parses the ASCII representation specified in input and saves the
// information into the output pointer (a Message). Returns
// false if an error occurs (an error will also be logged to
// GOOGLE_LOG(ERROR)).
bool Parse(Message* output) {
// Consume fields until we cannot do so anymore.
while(true) {
if (LookingAtType(io::Tokenizer::TYPE_END)) {
return !had_errors_;
}
DO(ConsumeField(output));
}
}
bool ParseField(const FieldDescriptor* field, Message* output) {
bool suc;
if (field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE) {
suc = ConsumeFieldMessage(output, output->GetReflection(), field);
} else {
suc = ConsumeFieldValue(output, output->GetReflection(), field);
}
return suc && LookingAtType(io::Tokenizer::TYPE_END);
}
void ReportError(int line, int col, const string& message) {
had_errors_ = true;
if (error_collector_ == NULL) {
if (line >= 0) {
GOOGLE_LOG(ERROR) << "Error parsing text-format "
<< root_message_type_->full_name()
<< ": " << (line + 1) << ":"
<< (col + 1) << ": " << message;
} else {
GOOGLE_LOG(ERROR) << "Error parsing text-format "
<< root_message_type_->full_name()
<< ": " << message;
}
} else {
error_collector_->AddError(line, col, message);
}
}
void ReportWarning(int line, int col, const string& message) {
if (error_collector_ == NULL) {
if (line >= 0) {
GOOGLE_LOG(WARNING) << "Warning parsing text-format "
<< root_message_type_->full_name()
<< ": " << (line + 1) << ":"
<< (col + 1) << ": " << message;
} else {
GOOGLE_LOG(WARNING) << "Warning parsing text-format "
<< root_message_type_->full_name()
<< ": " << message;
}
} else {
error_collector_->AddWarning(line, col, message);
}
}
private:
GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(ParserImpl);
// Reports an error with the given message with information indicating
// the position (as derived from the current token).
void ReportError(const string& message) {
ReportError(tokenizer_.current().line, tokenizer_.current().column,
message);
}
// Reports a warning with the given message with information indicating
// the position (as derived from the current token).
void ReportWarning(const string& message) {
ReportWarning(tokenizer_.current().line, tokenizer_.current().column,
message);
}
// Consumes the specified message with the given starting delimeter.
// This method checks to see that the end delimeter at the conclusion of
// the consumption matches the starting delimeter passed in here.
bool ConsumeMessage(Message* message, const string delimeter) {
while (!LookingAt(">") && !LookingAt("}")) {
DO(ConsumeField(message));
}
// Confirm that we have a valid ending delimeter.
DO(Consume(delimeter));
return true;
}
// Consumes the current field (as returned by the tokenizer) on the
// passed in message.
bool ConsumeField(Message* message) {
const Reflection* reflection = message->GetReflection();
const Descriptor* descriptor = message->GetDescriptor();
string field_name;
const FieldDescriptor* field = NULL;
int start_line = tokenizer_.current().line;
int start_column = tokenizer_.current().column;
if (TryConsume("[")) {
// Extension.
DO(ConsumeIdentifier(&field_name));
while (TryConsume(".")) {
string part;
DO(ConsumeIdentifier(&part));
field_name += ".";
field_name += part;
}
DO(Consume("]"));
field = (finder_ != NULL
? finder_->FindExtension(message, field_name)
: reflection->FindKnownExtensionByName(field_name));
if (field == NULL) {
if (!allow_unknown_field_) {
ReportError("Extension \"" + field_name + "\" is not defined or "
"is not an extension of \"" +
descriptor->full_name() + "\".");
return false;
} else {
ReportWarning("Extension \"" + field_name + "\" is not defined or "
"is not an extension of \"" +
descriptor->full_name() + "\".");
}
}
} else {
DO(ConsumeIdentifier(&field_name));
field = descriptor->FindFieldByName(field_name);
// Group names are expected to be capitalized as they appear in the
// .proto file, which actually matches their type names, not their field
// names.
if (field == NULL) {
string lower_field_name = field_name;
LowerString(&lower_field_name);
field = descriptor->FindFieldByName(lower_field_name);
// If the case-insensitive match worked but the field is NOT a group,
if (field != NULL && field->type() != FieldDescriptor::TYPE_GROUP) {
field = NULL;
}
}
// Again, special-case group names as described above.
if (field != NULL && field->type() == FieldDescriptor::TYPE_GROUP
&& field->message_type()->name() != field_name) {
field = NULL;
}
if (field == NULL) {
if (!allow_unknown_field_) {
ReportError("Message type \"" + descriptor->full_name() +
"\" has no field named \"" + field_name + "\".");
return false;
} else {
ReportWarning("Message type \"" + descriptor->full_name() +
"\" has no field named \"" + field_name + "\".");
}
}
}
// Skips unknown field.
if (field == NULL) {
GOOGLE_CHECK(allow_unknown_field_);
// Try to guess the type of this field.
// If this field is not a message, there should be a ":" between the
// field name and the field value and also the field value should not
// start with "{" or "<" which indicates the begining of a message body.
// If there is no ":" or there is a "{" or "<" after ":", this field has
// to be a message or the input is ill-formed.
if (TryConsume(":") && !LookingAt("{") && !LookingAt("<")) {
return SkipFieldValue();
} else {
return SkipFieldMessage();
}
}
// Fail if the field is not repeated and it has already been specified.
if ((singular_overwrite_policy_ == FORBID_SINGULAR_OVERWRITES) &&
!field->is_repeated() && reflection->HasField(*message, field)) {
ReportError("Non-repeated field \"" + field_name +
"\" is specified multiple times.");
return false;
}
// Perform special handling for embedded message types.
if (field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE) {
// ':' is optional here.
TryConsume(":");
DO(ConsumeFieldMessage(message, reflection, field));
} else {
DO(Consume(":"));
if (field->is_repeated() && TryConsume("[")) {
// Short repeated format, e.g. "foo: [1, 2, 3]"
while (true) {
DO(ConsumeFieldValue(message, reflection, field));
if (TryConsume("]")) {
break;
}
DO(Consume(","));
}
} else {
DO(ConsumeFieldValue(message, reflection, field));
}
}
// For historical reasons, fields may optionally be separated by commas or
// semicolons.
TryConsume(";") || TryConsume(",");
if (field->options().deprecated()) {
ReportWarning("text format contains deprecated field \""
+ field_name + "\"");
}
// If a parse info tree exists, add the location for the parsed
// field.
if (parse_info_tree_ != NULL) {
RecordLocation(parse_info_tree_, field,
ParseLocation(start_line, start_column));
}
return true;
}
// Skips the next field including the field's name and value.
bool SkipField() {
string field_name;
if (TryConsume("[")) {
// Extension name.
DO(ConsumeIdentifier(&field_name));
while (TryConsume(".")) {
string part;
DO(ConsumeIdentifier(&part));
field_name += ".";
field_name += part;
}
DO(Consume("]"));
} else {
DO(ConsumeIdentifier(&field_name));
}
// Try to guess the type of this field.
// If this field is not a message, there should be a ":" between the
// field name and the field value and also the field value should not
// start with "{" or "<" which indicates the begining of a message body.
// If there is no ":" or there is a "{" or "<" after ":", this field has
// to be a message or the input is ill-formed.
if (TryConsume(":") && !LookingAt("{") && !LookingAt("<")) {
DO(SkipFieldValue());
} else {
DO(SkipFieldMessage());
}
// For historical reasons, fields may optionally be separated by commas or
// semicolons.
TryConsume(";") || TryConsume(",");
return true;
}
bool ConsumeFieldMessage(Message* message,
const Reflection* reflection,
const FieldDescriptor* field) {
// If the parse information tree is not NULL, create a nested one
// for the nested message.
ParseInfoTree* parent = parse_info_tree_;
if (parent != NULL) {
parse_info_tree_ = CreateNested(parent, field);
}
string delimeter;
if (TryConsume("<")) {
delimeter = ">";
} else {
DO(Consume("{"));
delimeter = "}";
}
if (field->is_repeated()) {
DO(ConsumeMessage(reflection->AddMessage(message, field), delimeter));
} else {
DO(ConsumeMessage(reflection->MutableMessage(message, field),
delimeter));
}
// Reset the parse information tree.
parse_info_tree_ = parent;
return true;
}
// Skips the whole body of a message including the begining delimeter and
// the ending delimeter.
bool SkipFieldMessage() {
string delimeter;
if (TryConsume("<")) {
delimeter = ">";
} else {
DO(Consume("{"));
delimeter = "}";
}
while (!LookingAt(">") && !LookingAt("}")) {
DO(SkipField());
}
DO(Consume(delimeter));
return true;
}
bool ConsumeFieldValue(Message* message,
const Reflection* reflection,
const FieldDescriptor* field) {
// Define an easy to use macro for setting fields. This macro checks
// to see if the field is repeated (in which case we need to use the Add
// methods or not (in which case we need to use the Set methods).
#define SET_FIELD(CPPTYPE, VALUE) \
if (field->is_repeated()) { \
reflection->Add##CPPTYPE(message, field, VALUE); \
} else { \
reflection->Set##CPPTYPE(message, field, VALUE); \
} \
switch(field->cpp_type()) {
case FieldDescriptor::CPPTYPE_INT32: {
int64 value;
DO(ConsumeSignedInteger(&value, kint32max));
SET_FIELD(Int32, static_cast<int32>(value));
break;
}
case FieldDescriptor::CPPTYPE_UINT32: {
uint64 value;
DO(ConsumeUnsignedInteger(&value, kuint32max));
SET_FIELD(UInt32, static_cast<uint32>(value));
break;
}
case FieldDescriptor::CPPTYPE_INT64: {
int64 value;
DO(ConsumeSignedInteger(&value, kint64max));
SET_FIELD(Int64, value);
break;
}
case FieldDescriptor::CPPTYPE_UINT64: {
uint64 value;
DO(ConsumeUnsignedInteger(&value, kuint64max));
SET_FIELD(UInt64, value);
break;
}
case FieldDescriptor::CPPTYPE_FLOAT: {
double value;
DO(ConsumeDouble(&value));
SET_FIELD(Float, static_cast<float>(value));
break;
}
case FieldDescriptor::CPPTYPE_DOUBLE: {
double value;
DO(ConsumeDouble(&value));
SET_FIELD(Double, value);
break;
}
case FieldDescriptor::CPPTYPE_STRING: {
string value;
DO(ConsumeString(&value));
SET_FIELD(String, value);
break;
}
case FieldDescriptor::CPPTYPE_BOOL: {
if (LookingAtType(io::Tokenizer::TYPE_INTEGER)) {
uint64 value;
DO(ConsumeUnsignedInteger(&value, 1));
SET_FIELD(Bool, value);
} else {
string value;
DO(ConsumeIdentifier(&value));
if (value == "true" || value == "t") {
SET_FIELD(Bool, true);
} else if (value == "false" || value == "f") {
SET_FIELD(Bool, false);
} else {
ReportError("Invalid value for boolean field \"" + field->name()
+ "\". Value: \"" + value + "\".");
return false;
}
}
break;
}
case FieldDescriptor::CPPTYPE_ENUM: {
string value;
const EnumDescriptor* enum_type = field->enum_type();
const EnumValueDescriptor* enum_value = NULL;
if (LookingAtType(io::Tokenizer::TYPE_IDENTIFIER)) {
DO(ConsumeIdentifier(&value));
// Find the enumeration value.
enum_value = enum_type->FindValueByName(value);
} else if (LookingAt("-") ||
LookingAtType(io::Tokenizer::TYPE_INTEGER)) {
int64 int_value;
DO(ConsumeSignedInteger(&int_value, kint32max));
value = SimpleItoa(int_value); // for error reporting
enum_value = enum_type->FindValueByNumber(int_value);
} else {
ReportError("Expected integer or identifier.");
return false;
}
if (enum_value == NULL) {
ReportError("Unknown enumeration value of \"" + value + "\" for "
"field \"" + field->name() + "\".");
return false;
}
SET_FIELD(Enum, enum_value);
break;
}
case FieldDescriptor::CPPTYPE_MESSAGE: {
// We should never get here. Put here instead of a default
// so that if new types are added, we get a nice compiler warning.
GOOGLE_LOG(FATAL) << "Reached an unintended state: CPPTYPE_MESSAGE";
break;
}
}
#undef SET_FIELD
return true;
}
bool SkipFieldValue() {
if (LookingAtType(io::Tokenizer::TYPE_STRING)) {
while (LookingAtType(io::Tokenizer::TYPE_STRING)) {
tokenizer_.Next();
}
return true;
}
// Possible field values other than string:
// 12345 => TYPE_INTEGER
// -12345 => TYPE_SYMBOL + TYPE_INTEGER
// 1.2345 => TYPE_FLOAT
// -1.2345 => TYPE_SYMBOL + TYPE_FLOAT
// inf => TYPE_IDENTIFIER
// -inf => TYPE_SYMBOL + TYPE_IDENTIFIER
// TYPE_INTEGER => TYPE_IDENTIFIER
// Divides them into two group, one with TYPE_SYMBOL
// and the other without:
// Group one:
// 12345 => TYPE_INTEGER
// 1.2345 => TYPE_FLOAT
// inf => TYPE_IDENTIFIER
// TYPE_INTEGER => TYPE_IDENTIFIER
// Group two:
// -12345 => TYPE_SYMBOL + TYPE_INTEGER
// -1.2345 => TYPE_SYMBOL + TYPE_FLOAT
// -inf => TYPE_SYMBOL + TYPE_IDENTIFIER
// As we can see, the field value consists of an optional '-' and one of
// TYPE_INTEGER, TYPE_FLOAT and TYPE_IDENTIFIER.
bool has_minus = TryConsume("-");
if (!LookingAtType(io::Tokenizer::TYPE_INTEGER) &&
!LookingAtType(io::Tokenizer::TYPE_FLOAT) &&
!LookingAtType(io::Tokenizer::TYPE_IDENTIFIER)) {
return false;
}
// Combination of '-' and TYPE_IDENTIFIER may result in an invalid field
// value while other combinations all generate valid values.
// We check if the value of this combination is valid here.
// TYPE_IDENTIFIER after a '-' should be one of the float values listed
// below:
// inf, inff, infinity, nan
if (has_minus && LookingAtType(io::Tokenizer::TYPE_IDENTIFIER)) {
string text = tokenizer_.current().text;
LowerString(&text);
if (text != "inf" &&
text != "infinity" &&
text != "nan") {
ReportError("Invalid float number: " + text);
return false;
}
}
tokenizer_.Next();
return true;
}
// Returns true if the current token's text is equal to that specified.
bool LookingAt(const string& text) {
return tokenizer_.current().text == text;
}
// Returns true if the current token's type is equal to that specified.
bool LookingAtType(io::Tokenizer::TokenType token_type) {
return tokenizer_.current().type == token_type;
}
// Consumes an identifier and saves its value in the identifier parameter.
// Returns false if the token is not of type IDENTFIER.
bool ConsumeIdentifier(string* identifier) {
if (!LookingAtType(io::Tokenizer::TYPE_IDENTIFIER)) {
ReportError("Expected identifier.");
return false;
}
*identifier = tokenizer_.current().text;
tokenizer_.Next();
return true;
}
// Consumes a string and saves its value in the text parameter.
// Returns false if the token is not of type STRING.
bool ConsumeString(string* text) {
if (!LookingAtType(io::Tokenizer::TYPE_STRING)) {
ReportError("Expected string.");
return false;
}
text->clear();
while (LookingAtType(io::Tokenizer::TYPE_STRING)) {
io::Tokenizer::ParseStringAppend(tokenizer_.current().text, text);
tokenizer_.Next();
}
return true;
}
// Consumes a uint64 and saves its value in the value parameter.
// Returns false if the token is not of type INTEGER.
bool ConsumeUnsignedInteger(uint64* value, uint64 max_value) {
if (!LookingAtType(io::Tokenizer::TYPE_INTEGER)) {
ReportError("Expected integer.");
return false;
}
if (!io::Tokenizer::ParseInteger(tokenizer_.current().text,
max_value, value)) {
ReportError("Integer out of range.");
return false;
}
tokenizer_.Next();
return true;
}
// Consumes an int64 and saves its value in the value parameter.
// Note that since the tokenizer does not support negative numbers,
// we actually may consume an additional token (for the minus sign) in this
// method. Returns false if the token is not an integer
// (signed or otherwise).
bool ConsumeSignedInteger(int64* value, uint64 max_value) {
bool negative = false;
if (TryConsume("-")) {
negative = true;
// Two's complement always allows one more negative integer than
// positive.
++max_value;
}
uint64 unsigned_value;
DO(ConsumeUnsignedInteger(&unsigned_value, max_value));
*value = static_cast<int64>(unsigned_value);
if (negative) {
*value = -*value;
}
return true;
}
// Consumes a double and saves its value in the value parameter.
// Note that since the tokenizer does not support negative numbers,
// we actually may consume an additional token (for the minus sign) in this
// method. Returns false if the token is not a double
// (signed or otherwise).
bool ConsumeDouble(double* value) {
bool negative = false;
if (TryConsume("-")) {
negative = true;
}
// A double can actually be an integer, according to the tokenizer.
// Therefore, we must check both cases here.
if (LookingAtType(io::Tokenizer::TYPE_INTEGER)) {
// We have found an integer value for the double.
uint64 integer_value;
DO(ConsumeUnsignedInteger(&integer_value, kuint64max));
*value = static_cast<double>(integer_value);
} else if (LookingAtType(io::Tokenizer::TYPE_FLOAT)) {
// We have found a float value for the double.
*value = io::Tokenizer::ParseFloat(tokenizer_.current().text);
// Mark the current token as consumed.
tokenizer_.Next();
} else if (LookingAtType(io::Tokenizer::TYPE_IDENTIFIER)) {
string text = tokenizer_.current().text;
LowerString(&text);
if (text == "inf" ||
text == "infinity") {
*value = std::numeric_limits<double>::infinity();
tokenizer_.Next();
} else if (text == "nan") {
*value = std::numeric_limits<double>::quiet_NaN();
tokenizer_.Next();
} else {
ReportError("Expected double.");
return false;
}
} else {
ReportError("Expected double.");
return false;
}
if (negative) {
*value = -*value;
}
return true;
}
// Consumes a token and confirms that it matches that specified in the
// value parameter. Returns false if the token found does not match that
// which was specified.
bool Consume(const string& value) {
const string& current_value = tokenizer_.current().text;
if (current_value != value) {
ReportError("Expected \"" + value + "\", found \"" + current_value
+ "\".");
return false;
}
tokenizer_.Next();
return true;
}
// Attempts to consume the supplied value. Returns false if a the
// token found does not match the value specified.
bool TryConsume(const string& value) {
if (tokenizer_.current().text == value) {
tokenizer_.Next();
return true;
} else {
return false;
}
}
// An internal instance of the Tokenizer's error collector, used to
// collect any base-level parse errors and feed them to the ParserImpl.
class ParserErrorCollector : public io::ErrorCollector {
public:
explicit ParserErrorCollector(TextFormat::Parser::ParserImpl* parser) :
parser_(parser) { }
virtual ~ParserErrorCollector() { };
virtual void AddError(int line, int column, const string& message) {
parser_->ReportError(line, column, message);
}
virtual void AddWarning(int line, int column, const string& message) {
parser_->ReportWarning(line, column, message);
}
private:
GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(ParserErrorCollector);
TextFormat::Parser::ParserImpl* parser_;
};
io::ErrorCollector* error_collector_;
TextFormat::Finder* finder_;
ParseInfoTree* parse_info_tree_;
ParserErrorCollector tokenizer_error_collector_;
io::Tokenizer tokenizer_;
const Descriptor* root_message_type_;
SingularOverwritePolicy singular_overwrite_policy_;
bool allow_unknown_field_;
bool had_errors_;
};
#undef DO
// ===========================================================================
// Internal class for writing text to the io::ZeroCopyOutputStream. Adapted
// from the Printer found in //google/protobuf/io/printer.h
class TextFormat::Printer::TextGenerator {
public:
explicit TextGenerator(io::ZeroCopyOutputStream* output,
int initial_indent_level)
: output_(output),
buffer_(NULL),
buffer_size_(0),
at_start_of_line_(true),
failed_(false),
indent_(""),
initial_indent_level_(initial_indent_level) {
indent_.resize(initial_indent_level_ * 2, ' ');
}
~TextGenerator() {
// Only BackUp() if we're sure we've successfully called Next() at least
// once.
if (!failed_ && buffer_size_ > 0) {
output_->BackUp(buffer_size_);
}
}
// Indent text by two spaces. After calling Indent(), two spaces will be
// inserted at the beginning of each line of text. Indent() may be called
// multiple times to produce deeper indents.
void Indent() {
indent_ += " ";
}
// Reduces the current indent level by two spaces, or crashes if the indent
// level is zero.
void Outdent() {
if (indent_.empty() ||
indent_.size() < initial_indent_level_ * 2) {
GOOGLE_LOG(DFATAL) << " Outdent() without matching Indent().";
return;
}
indent_.resize(indent_.size() - 2);
}
// Print text to the output stream.
void Print(const string& str) {
Print(str.data(), str.size());
}
// Print text to the output stream.
void Print(const char* text) {
Print(text, strlen(text));
}
// Print text to the output stream.
void Print(const char* text, int size) {
int pos = 0; // The number of bytes we've written so far.
for (int i = 0; i < size; i++) {
if (text[i] == '\n') {
// Saw newline. If there is more text, we may need to insert an indent
// here. So, write what we have so far, including the '\n'.
Write(text + pos, i - pos + 1);
pos = i + 1;
// Setting this true will cause the next Write() to insert an indent
// first.
at_start_of_line_ = true;
}
}
// Write the rest.
Write(text + pos, size - pos);
}
// True if any write to the underlying stream failed. (We don't just
// crash in this case because this is an I/O failure, not a programming
// error.)
bool failed() const { return failed_; }
private:
GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(TextGenerator);
void Write(const char* data, int size) {
if (failed_) return;
if (size == 0) return;
if (at_start_of_line_) {
// Insert an indent.
at_start_of_line_ = false;
Write(indent_.data(), indent_.size());
if (failed_) return;
}
while (size > buffer_size_) {
// Data exceeds space in the buffer. Copy what we can and request a
// new buffer.
memcpy(buffer_, data, buffer_size_);
data += buffer_size_;
size -= buffer_size_;
void* void_buffer;
failed_ = !output_->Next(&void_buffer, &buffer_size_);
if (failed_) return;
buffer_ = reinterpret_cast<char*>(void_buffer);
}
// Buffer is big enough to receive the data; copy it.
memcpy(buffer_, data, size);
buffer_ += size;
buffer_size_ -= size;
}
io::ZeroCopyOutputStream* const output_;
char* buffer_;
int buffer_size_;
bool at_start_of_line_;
bool failed_;
string indent_;
int initial_indent_level_;
};
// ===========================================================================
TextFormat::Finder::~Finder() {
}
TextFormat::Parser::Parser()
: error_collector_(NULL),
finder_(NULL),
parse_info_tree_(NULL),
allow_partial_(false),
allow_unknown_field_(false) {
}
TextFormat::Parser::~Parser() {}
bool TextFormat::Parser::Parse(io::ZeroCopyInputStream* input,
Message* output) {
output->Clear();
ParserImpl parser(output->GetDescriptor(), input, error_collector_,
finder_, parse_info_tree_,
ParserImpl::FORBID_SINGULAR_OVERWRITES,
allow_unknown_field_);
return MergeUsingImpl(input, output, &parser);
}
bool TextFormat::Parser::ParseFromString(const string& input,
Message* output) {
io::ArrayInputStream input_stream(input.data(), input.size());
return Parse(&input_stream, output);
}
bool TextFormat::Parser::Merge(io::ZeroCopyInputStream* input,
Message* output) {
ParserImpl parser(output->GetDescriptor(), input, error_collector_,
finder_, parse_info_tree_,
ParserImpl::ALLOW_SINGULAR_OVERWRITES,
allow_unknown_field_);
return MergeUsingImpl(input, output, &parser);
}
bool TextFormat::Parser::MergeFromString(const string& input,
Message* output) {
io::ArrayInputStream input_stream(input.data(), input.size());
return Merge(&input_stream, output);
}
bool TextFormat::Parser::MergeUsingImpl(io::ZeroCopyInputStream* input,
Message* output,
ParserImpl* parser_impl) {
if (!parser_impl->Parse(output)) return false;
if (!allow_partial_ && !output->IsInitialized()) {
vector<string> missing_fields;
output->FindInitializationErrors(&missing_fields);
parser_impl->ReportError(-1, 0, "Message missing required fields: " +
JoinStrings(missing_fields, ", "));
return false;
}
return true;
}
bool TextFormat::Parser::ParseFieldValueFromString(
const string& input,
const FieldDescriptor* field,
Message* output) {
io::ArrayInputStream input_stream(input.data(), input.size());
ParserImpl parser(output->GetDescriptor(), &input_stream, error_collector_,
finder_, parse_info_tree_,
ParserImpl::ALLOW_SINGULAR_OVERWRITES,
allow_unknown_field_);
return parser.ParseField(field, output);
}
/* static */ bool TextFormat::Parse(io::ZeroCopyInputStream* input,
Message* output) {
return Parser().Parse(input, output);
}
/* static */ bool TextFormat::Merge(io::ZeroCopyInputStream* input,
Message* output) {
return Parser().Merge(input, output);
}
/* static */ bool TextFormat::ParseFromString(const string& input,
Message* output) {
return Parser().ParseFromString(input, output);
}
/* static */ bool TextFormat::MergeFromString(const string& input,
Message* output) {
return Parser().MergeFromString(input, output);
}
// ===========================================================================
TextFormat::Printer::Printer()
: initial_indent_level_(0),
single_line_mode_(false),
use_short_repeated_primitives_(false),
utf8_string_escaping_(false) {}
TextFormat::Printer::~Printer() {}
bool TextFormat::Printer::PrintToString(const Message& message,
string* output) const {
GOOGLE_DCHECK(output) << "output specified is NULL";
output->clear();
io::StringOutputStream output_stream(output);
bool result = Print(message, &output_stream);
return result;
}
bool TextFormat::Printer::PrintUnknownFieldsToString(
const UnknownFieldSet& unknown_fields,
string* output) const {
GOOGLE_DCHECK(output) << "output specified is NULL";
output->clear();
io::StringOutputStream output_stream(output);
return PrintUnknownFields(unknown_fields, &output_stream);
}
bool TextFormat::Printer::Print(const Message& message,
io::ZeroCopyOutputStream* output) const {
TextGenerator generator(output, initial_indent_level_);
Print(message, generator);
// Output false if the generator failed internally.
return !generator.failed();
}
bool TextFormat::Printer::PrintUnknownFields(
const UnknownFieldSet& unknown_fields,
io::ZeroCopyOutputStream* output) const {
TextGenerator generator(output, initial_indent_level_);
PrintUnknownFields(unknown_fields, generator);
// Output false if the generator failed internally.
return !generator.failed();
}
void TextFormat::Printer::Print(const Message& message,
TextGenerator& generator) const {
const Reflection* reflection = message.GetReflection();
vector<const FieldDescriptor*> fields;
reflection->ListFields(message, &fields);
for (int i = 0; i < fields.size(); i++) {
PrintField(message, reflection, fields[i], generator);
}
PrintUnknownFields(reflection->GetUnknownFields(message), generator);
}
void TextFormat::Printer::PrintFieldValueToString(
const Message& message,
const FieldDescriptor* field,
int index,
string* output) const {
GOOGLE_DCHECK(output) << "output specified is NULL";
output->clear();
io::StringOutputStream output_stream(output);
TextGenerator generator(&output_stream, initial_indent_level_);
PrintFieldValue(message, message.GetReflection(), field, index, generator);
}
void TextFormat::Printer::PrintField(const Message& message,
const Reflection* reflection,
const FieldDescriptor* field,
TextGenerator& generator) const {
if (use_short_repeated_primitives_ &&
field->is_repeated() &&
field->cpp_type() != FieldDescriptor::CPPTYPE_STRING &&
field->cpp_type() != FieldDescriptor::CPPTYPE_MESSAGE) {
PrintShortRepeatedField(message, reflection, field, generator);
return;
}
int count = 0;
if (field->is_repeated()) {
count = reflection->FieldSize(message, field);
} else if (reflection->HasField(message, field)) {
count = 1;
}
for (int j = 0; j < count; ++j) {
PrintFieldName(message, reflection, field, generator);
if (field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE) {
if (single_line_mode_) {
generator.Print(" { ");
} else {
generator.Print(" {\n");
generator.Indent();
}
} else {
generator.Print(": ");
}
// Write the field value.
int field_index = j;
if (!field->is_repeated()) {
field_index = -1;
}
PrintFieldValue(message, reflection, field, field_index, generator);
if (field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE) {
if (single_line_mode_) {
generator.Print("} ");
} else {
generator.Outdent();
generator.Print("}\n");
}
} else {
if (single_line_mode_) {
generator.Print(" ");
} else {
generator.Print("\n");
}
}
}
}
void TextFormat::Printer::PrintShortRepeatedField(
const Message& message,
const Reflection* reflection,
const FieldDescriptor* field,
TextGenerator& generator) const {
// Print primitive repeated field in short form.
PrintFieldName(message, reflection, field, generator);
int size = reflection->FieldSize(message, field);
generator.Print(": [");
for (int i = 0; i < size; i++) {
if (i > 0) generator.Print(", ");
PrintFieldValue(message, reflection, field, i, generator);
}
if (single_line_mode_) {
generator.Print("] ");
} else {
generator.Print("]\n");
}
}
void TextFormat::Printer::PrintFieldName(const Message& message,
const Reflection* reflection,
const FieldDescriptor* field,
TextGenerator& generator) const {
if (field->is_extension()) {
generator.Print("[");
// We special-case MessageSet elements for compatibility with proto1.
if (field->containing_type()->options().message_set_wire_format()
&& field->type() == FieldDescriptor::TYPE_MESSAGE
&& field->is_optional()
&& field->extension_scope() == field->message_type()) {
generator.Print(field->message_type()->full_name());
} else {
generator.Print(field->full_name());
}
generator.Print("]");
} else {
if (field->type() == FieldDescriptor::TYPE_GROUP) {
// Groups must be serialized with their original capitalization.
generator.Print(field->message_type()->name());
} else {
generator.Print(field->name());
}
}
}
void TextFormat::Printer::PrintFieldValue(
const Message& message,
const Reflection* reflection,
const FieldDescriptor* field,
int index,
TextGenerator& generator) const {
GOOGLE_DCHECK(field->is_repeated() || (index == -1))
<< "Index must be -1 for non-repeated fields";
switch (field->cpp_type()) {
#define OUTPUT_FIELD(CPPTYPE, METHOD, TO_STRING) \
case FieldDescriptor::CPPTYPE_##CPPTYPE: \
generator.Print(TO_STRING(field->is_repeated() ? \
reflection->GetRepeated##METHOD(message, field, index) : \
reflection->Get##METHOD(message, field))); \
break; \
OUTPUT_FIELD( INT32, Int32, SimpleItoa);
OUTPUT_FIELD( INT64, Int64, SimpleItoa);
OUTPUT_FIELD(UINT32, UInt32, SimpleItoa);
OUTPUT_FIELD(UINT64, UInt64, SimpleItoa);
OUTPUT_FIELD( FLOAT, Float, SimpleFtoa);
OUTPUT_FIELD(DOUBLE, Double, SimpleDtoa);
#undef OUTPUT_FIELD
case FieldDescriptor::CPPTYPE_STRING: {
string scratch;
const string& value = field->is_repeated() ?
reflection->GetRepeatedStringReference(
message, field, index, &scratch) :
reflection->GetStringReference(message, field, &scratch);
generator.Print("\"");
if (utf8_string_escaping_) {
generator.Print(strings::Utf8SafeCEscape(value));
} else {
generator.Print(CEscape(value));
}
generator.Print("\"");
break;
}
case FieldDescriptor::CPPTYPE_BOOL:
if (field->is_repeated()) {
generator.Print(reflection->GetRepeatedBool(message, field, index)
? "true" : "false");
} else {
generator.Print(reflection->GetBool(message, field)
? "true" : "false");
}
break;
case FieldDescriptor::CPPTYPE_ENUM:
generator.Print(field->is_repeated() ?
reflection->GetRepeatedEnum(message, field, index)->name() :
reflection->GetEnum(message, field)->name());
break;
case FieldDescriptor::CPPTYPE_MESSAGE:
Print(field->is_repeated() ?
reflection->GetRepeatedMessage(message, field, index) :
reflection->GetMessage(message, field),
generator);
break;
}
}
/* static */ bool TextFormat::Print(const Message& message,
io::ZeroCopyOutputStream* output) {
return Printer().Print(message, output);
}
/* static */ bool TextFormat::PrintUnknownFields(
const UnknownFieldSet& unknown_fields,
io::ZeroCopyOutputStream* output) {
return Printer().PrintUnknownFields(unknown_fields, output);
}
/* static */ bool TextFormat::PrintToString(
const Message& message, string* output) {
return Printer().PrintToString(message, output);
}
/* static */ bool TextFormat::PrintUnknownFieldsToString(
const UnknownFieldSet& unknown_fields, string* output) {
return Printer().PrintUnknownFieldsToString(unknown_fields, output);
}
/* static */ void TextFormat::PrintFieldValueToString(
const Message& message,
const FieldDescriptor* field,
int index,
string* output) {
return Printer().PrintFieldValueToString(message, field, index, output);
}
/* static */ bool TextFormat::ParseFieldValueFromString(
const string& input,
const FieldDescriptor* field,
Message* message) {
return Parser().ParseFieldValueFromString(input, field, message);
}
// Prints an integer as hex with a fixed number of digits dependent on the
// integer type.
template<typename IntType>
static string PaddedHex(IntType value) {
string result;
result.reserve(sizeof(value) * 2);
for (int i = sizeof(value) * 2 - 1; i >= 0; i--) {
result.push_back(int_to_hex_digit(value >> (i*4) & 0x0F));
}
return result;
}
void TextFormat::Printer::PrintUnknownFields(
const UnknownFieldSet& unknown_fields, TextGenerator& generator) const {
for (int i = 0; i < unknown_fields.field_count(); i++) {
const UnknownField& field = unknown_fields.field(i);
string field_number = SimpleItoa(field.number());
switch (field.type()) {
case UnknownField::TYPE_VARINT:
generator.Print(field_number);
generator.Print(": ");
generator.Print(SimpleItoa(field.varint()));
if (single_line_mode_) {
generator.Print(" ");
} else {
generator.Print("\n");
}
break;
case UnknownField::TYPE_FIXED32: {
generator.Print(field_number);
generator.Print(": 0x");
char buffer[kFastToBufferSize];
generator.Print(FastHex32ToBuffer(field.fixed32(), buffer));
if (single_line_mode_) {
generator.Print(" ");
} else {
generator.Print("\n");
}
break;
}
case UnknownField::TYPE_FIXED64: {
generator.Print(field_number);
generator.Print(": 0x");
char buffer[kFastToBufferSize];
generator.Print(FastHex64ToBuffer(field.fixed64(), buffer));
if (single_line_mode_) {
generator.Print(" ");
} else {
generator.Print("\n");
}
break;
}
case UnknownField::TYPE_LENGTH_DELIMITED: {
generator.Print(field_number);
const string& value = field.length_delimited();
UnknownFieldSet embedded_unknown_fields;
if (!value.empty() && embedded_unknown_fields.ParseFromString(value)) {
// This field is parseable as a Message.
// So it is probably an embedded message.
if (single_line_mode_) {
generator.Print(" { ");
} else {
generator.Print(" {\n");
generator.Indent();
}
PrintUnknownFields(embedded_unknown_fields, generator);
if (single_line_mode_) {
generator.Print("} ");
} else {
generator.Outdent();
generator.Print("}\n");
}
} else {
// This field is not parseable as a Message.
// So it is probably just a plain string.
generator.Print(": \"");
generator.Print(CEscape(value));
generator.Print("\"");
if (single_line_mode_) {
generator.Print(" ");
} else {
generator.Print("\n");
}
}
break;
}
case UnknownField::TYPE_GROUP:
generator.Print(field_number);
if (single_line_mode_) {
generator.Print(" { ");
} else {
generator.Print(" {\n");
generator.Indent();
}
PrintUnknownFields(field.group(), generator);
if (single_line_mode_) {
generator.Print("} ");
} else {
generator.Outdent();
generator.Print("}\n");
}
break;
}
}
}
} // namespace protobuf
} // namespace google