| /* |
| * Copyright 2014 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include <ctype.h> |
| |
| #include "nanobench.h" |
| |
| #include "AndroidCodecBench.h" |
| #include "Benchmark.h" |
| #include "BitmapRegionDecoderBench.h" |
| #include "CodecBench.h" |
| #include "CodecBenchPriv.h" |
| #include "ColorCodecBench.h" |
| #include "CrashHandler.h" |
| #include "GMBench.h" |
| #include "ProcStats.h" |
| #include "RecordingBench.h" |
| #include "ResultsWriter.h" |
| #include "SKPAnimationBench.h" |
| #include "SKPBench.h" |
| #include "SkAndroidCodec.h" |
| #include "SkAutoMalloc.h" |
| #include "SkBBoxHierarchy.h" |
| #include "SkBitmapRegionDecoder.h" |
| #include "SkCanvas.h" |
| #include "SkCodec.h" |
| #include "SkCommonFlags.h" |
| #include "SkCommonFlagsConfig.h" |
| #include "SkCommonFlagsPathRenderer.h" |
| #include "SkData.h" |
| #include "SkDebugfTracer.h" |
| #include "SkGraphics.h" |
| #include "SkLeanWindows.h" |
| #include "SkOSFile.h" |
| #include "SkOSPath.h" |
| #include "SkPictureRecorder.h" |
| #include "SkSVGDOM.h" |
| #include "SkScan.h" |
| #include "SkString.h" |
| #include "SkSurface.h" |
| #include "SkTaskGroup.h" |
| #include "SkThreadUtils.h" |
| #include "Stats.h" |
| #include "ThermalManager.h" |
| #include "ios_utils.h" |
| |
| #include <stdlib.h> |
| |
| extern bool gSkForceRasterPipelineBlitter; |
| |
| #ifndef SK_BUILD_FOR_WIN32 |
| #include <unistd.h> |
| #endif |
| |
| #if SK_SUPPORT_GPU |
| #include "gl/GrGLDefines.h" |
| #include "GrCaps.h" |
| #include "GrContextFactory.h" |
| #include "gl/GrGLUtil.h" |
| #include "SkGr.h" |
| using sk_gpu_test::GrContextFactory; |
| using sk_gpu_test::TestContext; |
| std::unique_ptr<GrContextFactory> gGrFactory; |
| #endif |
| |
| struct GrContextOptions; |
| |
| static const int kAutoTuneLoops = 0; |
| |
| #if !defined(__has_feature) |
| #define __has_feature(x) 0 |
| #endif |
| |
| static const int kDefaultLoops = |
| #if defined(SK_DEBUG) || __has_feature(address_sanitizer) |
| 1; |
| #else |
| kAutoTuneLoops; |
| #endif |
| |
| static SkString loops_help_txt() { |
| SkString help; |
| help.printf("Number of times to run each bench. Set this to %d to auto-" |
| "tune for each bench. Timings are only reported when auto-tuning.", |
| kAutoTuneLoops); |
| return help; |
| } |
| |
| static SkString to_string(int n) { |
| SkString str; |
| str.appendS32(n); |
| return str; |
| } |
| |
| DEFINE_int32(loops, kDefaultLoops, loops_help_txt().c_str()); |
| |
| DEFINE_int32(samples, 10, "Number of samples to measure for each bench."); |
| DEFINE_int32(ms, 0, "If >0, run each bench for this many ms instead of obeying --samples."); |
| DEFINE_int32(overheadLoops, 100000, "Loops to estimate timer overhead."); |
| DEFINE_double(overheadGoal, 0.0001, |
| "Loop until timer overhead is at most this fraction of our measurments."); |
| DEFINE_double(gpuMs, 5, "Target bench time in millseconds for GPU."); |
| DEFINE_int32(gpuFrameLag, 5, "If unknown, estimated maximum number of frames GPU allows to lag."); |
| |
| DEFINE_string(outResultsFile, "", "If given, write results here as JSON."); |
| DEFINE_int32(maxCalibrationAttempts, 3, |
| "Try up to this many times to guess loops for a bench, or skip the bench."); |
| DEFINE_int32(maxLoops, 1000000, "Never run a bench more times than this."); |
| DEFINE_string(clip, "0,0,1000,1000", "Clip for SKPs."); |
| DEFINE_string(scales, "1.0", "Space-separated scales for SKPs."); |
| DEFINE_string(zoom, "1.0,0", "Comma-separated zoomMax,zoomPeriodMs factors for a periodic SKP zoom " |
| "function that ping-pongs between 1.0 and zoomMax."); |
| DEFINE_bool(bbh, true, "Build a BBH for SKPs?"); |
| DEFINE_bool(lite, false, "Use SkLiteRecorder in recording benchmarks?"); |
| DEFINE_bool(mpd, true, "Use MultiPictureDraw for the SKPs?"); |
| DEFINE_bool(loopSKP, true, "Loop SKPs like we do for micro benches?"); |
| DEFINE_int32(flushEvery, 10, "Flush --outResultsFile every Nth run."); |
| DEFINE_bool(resetGpuContext, true, "Reset the GrContext before running each test."); |
| DEFINE_bool(gpuStats, false, "Print GPU stats after each gpu benchmark?"); |
| DEFINE_bool(gpuStatsDump, false, "Dump GPU states after each benchmark to json"); |
| DEFINE_bool(keepAlive, false, "Print a message every so often so that we don't time out"); |
| DEFINE_string(useThermalManager, "0,1,10,1000", "enabled,threshold,sleepTimeMs,TimeoutMs for " |
| "thermalManager\n"); |
| DEFINE_bool(csv, false, "Print status in CSV format"); |
| DEFINE_string(sourceType, "", |
| "Apply usual --match rules to source type: bench, gm, skp, image, etc."); |
| DEFINE_string(benchType, "", |
| "Apply usual --match rules to bench type: micro, recording, piping, playback, skcodec, etc."); |
| |
| DEFINE_bool(forceRasterPipeline, false, "sets gSkForceRasterPipelineBlitter"); |
| |
| #if SK_SUPPORT_GPU |
| DEFINE_pathrenderer_flag; |
| #endif |
| |
| static double now_ms() { return SkTime::GetNSecs() * 1e-6; } |
| |
| static SkString humanize(double ms) { |
| if (FLAGS_verbose) return SkStringPrintf("%llu", (uint64_t)(ms*1e6)); |
| return HumanizeMs(ms); |
| } |
| #define HUMANIZE(ms) humanize(ms).c_str() |
| |
| bool Target::init(SkImageInfo info, Benchmark* bench) { |
| if (Benchmark::kRaster_Backend == config.backend) { |
| this->surface = SkSurface::MakeRaster(info); |
| if (!this->surface) { |
| return false; |
| } |
| } |
| return true; |
| } |
| bool Target::capturePixels(SkBitmap* bmp) { |
| SkCanvas* canvas = this->getCanvas(); |
| if (!canvas) { |
| return false; |
| } |
| bmp->allocPixels(canvas->imageInfo()); |
| if (!canvas->readPixels(*bmp, 0, 0)) { |
| SkDebugf("Can't read canvas pixels.\n"); |
| return false; |
| } |
| return true; |
| } |
| |
| #if SK_SUPPORT_GPU |
| struct GPUTarget : public Target { |
| explicit GPUTarget(const Config& c) : Target(c), context(nullptr) { } |
| TestContext* context; |
| |
| void setup() override { |
| this->context->makeCurrent(); |
| // Make sure we're done with whatever came before. |
| this->context->finish(); |
| } |
| void endTiming() override { |
| if (this->context) { |
| this->context->waitOnSyncOrSwap(); |
| } |
| } |
| void fence() override { |
| this->context->finish(); |
| } |
| |
| bool needsFrameTiming(int* maxFrameLag) const override { |
| if (!this->context->getMaxGpuFrameLag(maxFrameLag)) { |
| // Frame lag is unknown. |
| *maxFrameLag = FLAGS_gpuFrameLag; |
| } |
| return true; |
| } |
| bool init(SkImageInfo info, Benchmark* bench) override { |
| uint32_t flags = this->config.useDFText ? SkSurfaceProps::kUseDeviceIndependentFonts_Flag : |
| 0; |
| SkSurfaceProps props(flags, SkSurfaceProps::kLegacyFontHost_InitType); |
| this->surface = SkSurface::MakeRenderTarget(gGrFactory->get(this->config.ctxType, |
| this->config.ctxOverrides), |
| SkBudgeted::kNo, info, |
| this->config.samples, &props); |
| this->context = gGrFactory->getContextInfo(this->config.ctxType, |
| this->config.ctxOverrides).testContext(); |
| if (!this->surface.get()) { |
| return false; |
| } |
| if (!this->context->fenceSyncSupport()) { |
| SkDebugf("WARNING: GL context for config \"%s\" does not support fence sync. " |
| "Timings might not be accurate.\n", this->config.name.c_str()); |
| } |
| return true; |
| } |
| void fillOptions(ResultsWriter* log) override { |
| const GrGLubyte* version; |
| if (this->context->backend() == kOpenGL_GrBackend) { |
| const GrGLInterface* gl = |
| reinterpret_cast<const GrGLInterface*>(this->context->backendContext()); |
| GR_GL_CALL_RET(gl, version, GetString(GR_GL_VERSION)); |
| log->configOption("GL_VERSION", (const char*)(version)); |
| |
| GR_GL_CALL_RET(gl, version, GetString(GR_GL_RENDERER)); |
| log->configOption("GL_RENDERER", (const char*) version); |
| |
| GR_GL_CALL_RET(gl, version, GetString(GR_GL_VENDOR)); |
| log->configOption("GL_VENDOR", (const char*) version); |
| |
| GR_GL_CALL_RET(gl, version, GetString(GR_GL_SHADING_LANGUAGE_VERSION)); |
| log->configOption("GL_SHADING_LANGUAGE_VERSION", (const char*) version); |
| } |
| } |
| }; |
| |
| #endif |
| |
| static double time(int loops, Benchmark* bench, Target* target) { |
| SkCanvas* canvas = target->getCanvas(); |
| if (canvas) { |
| canvas->clear(SK_ColorWHITE); |
| } |
| bench->preDraw(canvas); |
| double start = now_ms(); |
| canvas = target->beginTiming(canvas); |
| bench->draw(loops, canvas); |
| if (canvas) { |
| canvas->flush(); |
| } |
| target->endTiming(); |
| double elapsed = now_ms() - start; |
| bench->postDraw(canvas); |
| return elapsed; |
| } |
| |
| static double estimate_timer_overhead() { |
| double overhead = 0; |
| for (int i = 0; i < FLAGS_overheadLoops; i++) { |
| double start = now_ms(); |
| overhead += now_ms() - start; |
| } |
| return overhead / FLAGS_overheadLoops; |
| } |
| |
| static int detect_forever_loops(int loops) { |
| // look for a magic run-forever value |
| if (loops < 0) { |
| loops = SK_MaxS32; |
| } |
| return loops; |
| } |
| |
| static int clamp_loops(int loops) { |
| if (loops < 1) { |
| SkDebugf("ERROR: clamping loops from %d to 1. " |
| "There's probably something wrong with the bench.\n", loops); |
| return 1; |
| } |
| if (loops > FLAGS_maxLoops) { |
| SkDebugf("WARNING: clamping loops from %d to FLAGS_maxLoops, %d.\n", loops, FLAGS_maxLoops); |
| return FLAGS_maxLoops; |
| } |
| return loops; |
| } |
| |
| static bool write_canvas_png(Target* target, const SkString& filename) { |
| |
| if (filename.isEmpty()) { |
| return false; |
| } |
| if (target->getCanvas() && |
| kUnknown_SkColorType == target->getCanvas()->imageInfo().colorType()) { |
| return false; |
| } |
| |
| SkBitmap bmp; |
| |
| if (!target->capturePixels(&bmp)) { |
| return false; |
| } |
| |
| SkString dir = SkOSPath::Dirname(filename.c_str()); |
| if (!sk_mkdir(dir.c_str())) { |
| SkDebugf("Can't make dir %s.\n", dir.c_str()); |
| return false; |
| } |
| SkFILEWStream stream(filename.c_str()); |
| if (!stream.isValid()) { |
| SkDebugf("Can't write %s.\n", filename.c_str()); |
| return false; |
| } |
| if (!SkEncodeImage(&stream, bmp, SkEncodedImageFormat::kPNG, 100)) { |
| SkDebugf("Can't encode a PNG.\n"); |
| return false; |
| } |
| return true; |
| } |
| |
| static int kFailedLoops = -2; |
| static int setup_cpu_bench(const double overhead, Target* target, Benchmark* bench) { |
| // First figure out approximately how many loops of bench it takes to make overhead negligible. |
| double bench_plus_overhead = 0.0; |
| int round = 0; |
| int loops = bench->calculateLoops(FLAGS_loops); |
| if (kAutoTuneLoops == loops) { |
| while (bench_plus_overhead < overhead) { |
| if (round++ == FLAGS_maxCalibrationAttempts) { |
| SkDebugf("WARNING: Can't estimate loops for %s (%s vs. %s); skipping.\n", |
| bench->getUniqueName(), HUMANIZE(bench_plus_overhead), HUMANIZE(overhead)); |
| return kFailedLoops; |
| } |
| bench_plus_overhead = time(1, bench, target); |
| } |
| } |
| |
| // Later we'll just start and stop the timer once but loop N times. |
| // We'll pick N to make timer overhead negligible: |
| // |
| // overhead |
| // ------------------------- < FLAGS_overheadGoal |
| // overhead + N * Bench Time |
| // |
| // where bench_plus_overhead ~=~ overhead + Bench Time. |
| // |
| // Doing some math, we get: |
| // |
| // (overhead / FLAGS_overheadGoal) - overhead |
| // ------------------------------------------ < N |
| // bench_plus_overhead - overhead) |
| // |
| // Luckily, this also works well in practice. :) |
| if (kAutoTuneLoops == loops) { |
| const double numer = overhead / FLAGS_overheadGoal - overhead; |
| const double denom = bench_plus_overhead - overhead; |
| loops = (int)ceil(numer / denom); |
| loops = clamp_loops(loops); |
| } else { |
| loops = detect_forever_loops(loops); |
| } |
| |
| return loops; |
| } |
| |
| static int setup_gpu_bench(Target* target, Benchmark* bench, int maxGpuFrameLag) { |
| // First, figure out how many loops it'll take to get a frame up to FLAGS_gpuMs. |
| int loops = bench->calculateLoops(FLAGS_loops); |
| if (kAutoTuneLoops == loops) { |
| loops = 1; |
| double elapsed = 0; |
| do { |
| if (1<<30 == loops) { |
| // We're about to wrap. Something's wrong with the bench. |
| loops = 0; |
| break; |
| } |
| loops *= 2; |
| // If the GPU lets frames lag at all, we need to make sure we're timing |
| // _this_ round, not still timing last round. |
| for (int i = 0; i < maxGpuFrameLag; i++) { |
| elapsed = time(loops, bench, target); |
| } |
| } while (elapsed < FLAGS_gpuMs); |
| |
| // We've overshot at least a little. Scale back linearly. |
| loops = (int)ceil(loops * FLAGS_gpuMs / elapsed); |
| loops = clamp_loops(loops); |
| |
| // Make sure we're not still timing our calibration. |
| target->fence(); |
| } else { |
| loops = detect_forever_loops(loops); |
| } |
| |
| // Pretty much the same deal as the calibration: do some warmup to make |
| // sure we're timing steady-state pipelined frames. |
| for (int i = 0; i < maxGpuFrameLag - 1; i++) { |
| time(loops, bench, target); |
| } |
| |
| return loops; |
| } |
| |
| #if SK_SUPPORT_GPU |
| #define kBogusContextType GrContextFactory::kGL_ContextType |
| #define kBogusContextOverrides GrContextFactory::ContextOverrides::kNone |
| #else |
| #define kBogusContextType 0 |
| #define kBogusContextOverrides 0 |
| #endif |
| |
| static void create_config(const SkCommandLineConfig* config, SkTArray<Config>* configs) { |
| |
| #if SK_SUPPORT_GPU |
| if (const auto* gpuConfig = config->asConfigGpu()) { |
| if (!FLAGS_gpu) |
| return; |
| |
| const auto ctxType = gpuConfig->getContextType(); |
| const auto ctxOverrides = gpuConfig->getContextOverrides(); |
| const auto sampleCount = gpuConfig->getSamples(); |
| const auto colorType = gpuConfig->getColorType(); |
| auto colorSpace = gpuConfig->getColorSpace(); |
| |
| if (const GrContext* ctx = gGrFactory->get(ctxType, ctxOverrides)) { |
| GrPixelConfig grPixConfig = SkImageInfo2GrPixelConfig(colorType, colorSpace, |
| *ctx->caps()); |
| int supportedSampleCount = ctx->caps()->getSampleCount(sampleCount, grPixConfig); |
| if (sampleCount != supportedSampleCount) { |
| SkDebugf("Configuration sample count %d is not a supported sample count.\n", |
| sampleCount); |
| return; |
| } |
| } else { |
| SkDebugf("No context was available matching config type and options.\n"); |
| return; |
| } |
| |
| Config target = { |
| gpuConfig->getTag(), |
| Benchmark::kGPU_Backend, |
| colorType, |
| kPremul_SkAlphaType, |
| sk_ref_sp(colorSpace), |
| sampleCount, |
| ctxType, |
| ctxOverrides, |
| gpuConfig->getUseDIText() |
| }; |
| |
| configs->push_back(target); |
| return; |
| } |
| #endif |
| |
| #define CPU_CONFIG(name, backend, color, alpha, colorSpace) \ |
| if (config->getTag().equals(#name)) { \ |
| Config config = { \ |
| SkString(#name), Benchmark::backend, color, alpha, colorSpace, \ |
| 0, kBogusContextType, kBogusContextOverrides, false \ |
| }; \ |
| configs->push_back(config); \ |
| return; \ |
| } |
| |
| if (FLAGS_cpu) { |
| CPU_CONFIG(nonrendering, kNonRendering_Backend, |
| kUnknown_SkColorType, kUnpremul_SkAlphaType, nullptr) |
| |
| CPU_CONFIG(8888, kRaster_Backend, |
| kN32_SkColorType, kPremul_SkAlphaType, nullptr) |
| CPU_CONFIG(565, kRaster_Backend, |
| kRGB_565_SkColorType, kOpaque_SkAlphaType, nullptr) |
| auto srgbColorSpace = SkColorSpace::MakeSRGB(); |
| CPU_CONFIG(srgb, kRaster_Backend, |
| kN32_SkColorType, kPremul_SkAlphaType, srgbColorSpace) |
| auto srgbLinearColorSpace = SkColorSpace::MakeSRGBLinear(); |
| CPU_CONFIG(f16, kRaster_Backend, |
| kRGBA_F16_SkColorType, kPremul_SkAlphaType, srgbLinearColorSpace) |
| } |
| |
| #undef CPU_CONFIG |
| } |
| |
| // Append all configs that are enabled and supported. |
| void create_configs(SkTArray<Config>* configs) { |
| SkCommandLineConfigArray array; |
| ParseConfigs(FLAGS_config, &array); |
| for (int i = 0; i < array.count(); ++i) { |
| create_config(array[i].get(), configs); |
| } |
| } |
| |
| // disable warning : switch statement contains default but no 'case' labels |
| #if defined _WIN32 |
| #pragma warning ( push ) |
| #pragma warning ( disable : 4065 ) |
| #endif |
| |
| // If bench is enabled for config, returns a Target* for it, otherwise nullptr. |
| static Target* is_enabled(Benchmark* bench, const Config& config) { |
| if (!bench->isSuitableFor(config.backend)) { |
| return nullptr; |
| } |
| |
| SkImageInfo info = SkImageInfo::Make(bench->getSize().fX, bench->getSize().fY, |
| config.color, config.alpha, config.colorSpace); |
| |
| Target* target = nullptr; |
| |
| switch (config.backend) { |
| #if SK_SUPPORT_GPU |
| case Benchmark::kGPU_Backend: |
| target = new GPUTarget(config); |
| break; |
| #endif |
| default: |
| target = new Target(config); |
| break; |
| } |
| |
| if (!target->init(info, bench)) { |
| delete target; |
| return nullptr; |
| } |
| return target; |
| } |
| |
| #if defined _WIN32 |
| #pragma warning ( pop ) |
| #endif |
| |
| static bool valid_brd_bench(sk_sp<SkData> encoded, SkColorType colorType, uint32_t sampleSize, |
| uint32_t minOutputSize, int* width, int* height) { |
| std::unique_ptr<SkBitmapRegionDecoder> brd( |
| SkBitmapRegionDecoder::Create(encoded, SkBitmapRegionDecoder::kAndroidCodec_Strategy)); |
| if (nullptr == brd.get()) { |
| // This is indicates that subset decoding is not supported for a particular image format. |
| return false; |
| } |
| |
| if (sampleSize * minOutputSize > (uint32_t) brd->width() || sampleSize * minOutputSize > |
| (uint32_t) brd->height()) { |
| // This indicates that the image is not large enough to decode a |
| // minOutputSize x minOutputSize subset at the given sampleSize. |
| return false; |
| } |
| |
| // Set the image width and height. The calling code will use this to choose subsets to decode. |
| *width = brd->width(); |
| *height = brd->height(); |
| return true; |
| } |
| |
| static void cleanup_run(Target* target) { |
| delete target; |
| #if SK_SUPPORT_GPU |
| if (FLAGS_abandonGpuContext) { |
| gGrFactory->abandonContexts(); |
| } |
| if (FLAGS_resetGpuContext || FLAGS_abandonGpuContext) { |
| gGrFactory->destroyContexts(); |
| } |
| #endif |
| } |
| |
| static void collect_files(const SkCommandLineFlags::StringArray& paths, const char* ext, |
| SkTArray<SkString>* list) { |
| for (int i = 0; i < paths.count(); ++i) { |
| if (SkStrEndsWith(paths[i], ext)) { |
| list->push_back(SkString(paths[i])); |
| } else { |
| SkOSFile::Iter it(paths[i], ext); |
| SkString path; |
| while (it.next(&path)) { |
| list->push_back(SkOSPath::Join(paths[i], path.c_str())); |
| } |
| } |
| } |
| } |
| |
| class BenchmarkStream { |
| public: |
| BenchmarkStream() : fBenches(BenchRegistry::Head()) |
| , fGMs(skiagm::GMRegistry::Head()) |
| , fCurrentRecording(0) |
| , fCurrentPiping(0) |
| , fCurrentScale(0) |
| , fCurrentSKP(0) |
| , fCurrentSVG(0) |
| , fCurrentUseMPD(0) |
| , fCurrentCodec(0) |
| , fCurrentAndroidCodec(0) |
| , fCurrentBRDImage(0) |
| , fCurrentColorImage(0) |
| , fCurrentColorType(0) |
| , fCurrentAlphaType(0) |
| , fCurrentSubsetType(0) |
| , fCurrentSampleSize(0) |
| , fCurrentAnimSKP(0) { |
| collect_files(FLAGS_skps, ".skp", &fSKPs); |
| collect_files(FLAGS_svgs, ".svg", &fSVGs); |
| |
| if (4 != sscanf(FLAGS_clip[0], "%d,%d,%d,%d", |
| &fClip.fLeft, &fClip.fTop, &fClip.fRight, &fClip.fBottom)) { |
| SkDebugf("Can't parse %s from --clip as an SkIRect.\n", FLAGS_clip[0]); |
| exit(1); |
| } |
| |
| for (int i = 0; i < FLAGS_scales.count(); i++) { |
| if (1 != sscanf(FLAGS_scales[i], "%f", &fScales.push_back())) { |
| SkDebugf("Can't parse %s from --scales as an SkScalar.\n", FLAGS_scales[i]); |
| exit(1); |
| } |
| } |
| |
| if (2 != sscanf(FLAGS_zoom[0], "%f,%lf", &fZoomMax, &fZoomPeriodMs)) { |
| SkDebugf("Can't parse %s from --zoom as a zoomMax,zoomPeriodMs.\n", FLAGS_zoom[0]); |
| exit(1); |
| } |
| |
| if (FLAGS_mpd) { |
| fUseMPDs.push_back() = true; |
| } |
| fUseMPDs.push_back() = false; |
| |
| // Prepare the images for decoding |
| if (!CollectImages(FLAGS_images, &fImages)) { |
| exit(1); |
| } |
| if (!CollectImages(FLAGS_colorImages, &fColorImages)) { |
| exit(1); |
| } |
| |
| // Choose the candidate color types for image decoding |
| fColorTypes.push_back(kN32_SkColorType); |
| if (!FLAGS_simpleCodec) { |
| fColorTypes.push_back(kRGB_565_SkColorType); |
| fColorTypes.push_back(kAlpha_8_SkColorType); |
| fColorTypes.push_back(kGray_8_SkColorType); |
| } |
| } |
| |
| static sk_sp<SkPicture> ReadPicture(const char* path) { |
| // Not strictly necessary, as it will be checked again later, |
| // but helps to avoid a lot of pointless work if we're going to skip it. |
| if (SkCommandLineFlags::ShouldSkip(FLAGS_match, SkOSPath::Basename(path).c_str())) { |
| return nullptr; |
| } |
| |
| std::unique_ptr<SkStream> stream = SkStream::MakeFromFile(path); |
| if (!stream) { |
| SkDebugf("Could not read %s.\n", path); |
| return nullptr; |
| } |
| |
| return SkPicture::MakeFromStream(stream.get()); |
| } |
| |
| static sk_sp<SkPicture> ReadSVGPicture(const char* path) { |
| SkFILEStream stream(path); |
| if (!stream.isValid()) { |
| SkDebugf("Could not read %s.\n", path); |
| return nullptr; |
| } |
| |
| sk_sp<SkSVGDOM> svgDom = SkSVGDOM::MakeFromStream(stream); |
| if (!svgDom) { |
| SkDebugf("Could not parse %s.\n", path); |
| return nullptr; |
| } |
| |
| // Use the intrinsic SVG size if available, otherwise fall back to a default value. |
| static const SkSize kDefaultContainerSize = SkSize::Make(128, 128); |
| if (svgDom->containerSize().isEmpty()) { |
| svgDom->setContainerSize(kDefaultContainerSize); |
| } |
| |
| SkPictureRecorder recorder; |
| svgDom->render(recorder.beginRecording(svgDom->containerSize().width(), |
| svgDom->containerSize().height())); |
| return recorder.finishRecordingAsPicture(); |
| } |
| |
| Benchmark* next() { |
| std::unique_ptr<Benchmark> bench; |
| do { |
| bench.reset(this->rawNext()); |
| if (!bench) { |
| return nullptr; |
| } |
| } while(SkCommandLineFlags::ShouldSkip(FLAGS_sourceType, fSourceType) || |
| SkCommandLineFlags::ShouldSkip(FLAGS_benchType, fBenchType)); |
| return bench.release(); |
| } |
| |
| Benchmark* rawNext() { |
| if (fBenches) { |
| Benchmark* bench = fBenches->factory()(nullptr); |
| fBenches = fBenches->next(); |
| fSourceType = "bench"; |
| fBenchType = "micro"; |
| return bench; |
| } |
| |
| while (fGMs) { |
| std::unique_ptr<skiagm::GM> gm(fGMs->factory()(nullptr)); |
| fGMs = fGMs->next(); |
| if (gm->runAsBench()) { |
| fSourceType = "gm"; |
| fBenchType = "micro"; |
| return new GMBench(gm.release()); |
| } |
| } |
| |
| // First add all .skps as RecordingBenches. |
| while (fCurrentRecording < fSKPs.count()) { |
| const SkString& path = fSKPs[fCurrentRecording++]; |
| sk_sp<SkPicture> pic = ReadPicture(path.c_str()); |
| if (!pic) { |
| continue; |
| } |
| SkString name = SkOSPath::Basename(path.c_str()); |
| fSourceType = "skp"; |
| fBenchType = "recording"; |
| fSKPBytes = static_cast<double>(pic->approximateBytesUsed()); |
| fSKPOps = pic->approximateOpCount(); |
| return new RecordingBench(name.c_str(), pic.get(), FLAGS_bbh, FLAGS_lite); |
| } |
| |
| // Add all .skps as PipeBenches. |
| while (fCurrentPiping < fSKPs.count()) { |
| const SkString& path = fSKPs[fCurrentPiping++]; |
| sk_sp<SkPicture> pic = ReadPicture(path.c_str()); |
| if (!pic) { |
| continue; |
| } |
| SkString name = SkOSPath::Basename(path.c_str()); |
| fSourceType = "skp"; |
| fBenchType = "piping"; |
| fSKPBytes = static_cast<double>(pic->approximateBytesUsed()); |
| fSKPOps = pic->approximateOpCount(); |
| return new PipingBench(name.c_str(), pic.get()); |
| } |
| |
| // Then once each for each scale as SKPBenches (playback). |
| while (fCurrentScale < fScales.count()) { |
| while (fCurrentSKP < fSKPs.count()) { |
| const SkString& path = fSKPs[fCurrentSKP]; |
| sk_sp<SkPicture> pic = ReadPicture(path.c_str()); |
| if (!pic) { |
| fCurrentSKP++; |
| continue; |
| } |
| |
| while (fCurrentUseMPD < fUseMPDs.count()) { |
| if (FLAGS_bbh) { |
| // The SKP we read off disk doesn't have a BBH. Re-record so it grows one. |
| SkRTreeFactory factory; |
| SkPictureRecorder recorder; |
| pic->playback(recorder.beginRecording(pic->cullRect().width(), |
| pic->cullRect().height(), |
| &factory, |
| 0)); |
| pic = recorder.finishRecordingAsPicture(); |
| } |
| SkString name = SkOSPath::Basename(path.c_str()); |
| fSourceType = "skp"; |
| fBenchType = "playback"; |
| return new SKPBench(name.c_str(), pic.get(), fClip, fScales[fCurrentScale], |
| fUseMPDs[fCurrentUseMPD++], FLAGS_loopSKP); |
| } |
| fCurrentUseMPD = 0; |
| fCurrentSKP++; |
| } |
| |
| while (fCurrentSVG++ < fSVGs.count()) { |
| const char* path = fSVGs[fCurrentSVG - 1].c_str(); |
| if (sk_sp<SkPicture> pic = ReadSVGPicture(path)) { |
| fSourceType = "svg"; |
| fBenchType = "playback"; |
| return new SKPBench(SkOSPath::Basename(path).c_str(), pic.get(), fClip, |
| fScales[fCurrentScale], false, FLAGS_loopSKP); |
| } |
| } |
| |
| fCurrentSKP = 0; |
| fCurrentSVG = 0; |
| fCurrentScale++; |
| } |
| |
| // Now loop over each skp again if we have an animation |
| if (fZoomMax != 1.0f && fZoomPeriodMs > 0) { |
| while (fCurrentAnimSKP < fSKPs.count()) { |
| const SkString& path = fSKPs[fCurrentAnimSKP]; |
| sk_sp<SkPicture> pic = ReadPicture(path.c_str()); |
| if (!pic) { |
| fCurrentAnimSKP++; |
| continue; |
| } |
| |
| fCurrentAnimSKP++; |
| SkString name = SkOSPath::Basename(path.c_str()); |
| sk_sp<SKPAnimationBench::Animation> animation( |
| SKPAnimationBench::CreateZoomAnimation(fZoomMax, fZoomPeriodMs)); |
| return new SKPAnimationBench(name.c_str(), pic.get(), fClip, animation.get(), |
| FLAGS_loopSKP); |
| } |
| } |
| |
| for (; fCurrentCodec < fImages.count(); fCurrentCodec++) { |
| fSourceType = "image"; |
| fBenchType = "skcodec"; |
| const SkString& path = fImages[fCurrentCodec]; |
| if (SkCommandLineFlags::ShouldSkip(FLAGS_match, path.c_str())) { |
| continue; |
| } |
| sk_sp<SkData> encoded(SkData::MakeFromFileName(path.c_str())); |
| std::unique_ptr<SkCodec> codec(SkCodec::NewFromData(encoded)); |
| if (!codec) { |
| // Nothing to time. |
| SkDebugf("Cannot find codec for %s\n", path.c_str()); |
| continue; |
| } |
| |
| while (fCurrentColorType < fColorTypes.count()) { |
| const SkColorType colorType = fColorTypes[fCurrentColorType]; |
| |
| SkAlphaType alphaType = codec->getInfo().alphaType(); |
| if (FLAGS_simpleCodec) { |
| if (kUnpremul_SkAlphaType == alphaType) { |
| alphaType = kPremul_SkAlphaType; |
| } |
| |
| fCurrentColorType++; |
| } else { |
| switch (alphaType) { |
| case kOpaque_SkAlphaType: |
| // We only need to test one alpha type (opaque). |
| fCurrentColorType++; |
| break; |
| case kUnpremul_SkAlphaType: |
| case kPremul_SkAlphaType: |
| if (0 == fCurrentAlphaType) { |
| // Test unpremul first. |
| alphaType = kUnpremul_SkAlphaType; |
| fCurrentAlphaType++; |
| } else { |
| // Test premul. |
| alphaType = kPremul_SkAlphaType; |
| fCurrentAlphaType = 0; |
| fCurrentColorType++; |
| } |
| break; |
| default: |
| SkASSERT(false); |
| fCurrentColorType++; |
| break; |
| } |
| } |
| |
| // Make sure we can decode to this color type and alpha type. |
| SkImageInfo info = |
| codec->getInfo().makeColorType(colorType).makeAlphaType(alphaType); |
| const size_t rowBytes = info.minRowBytes(); |
| SkAutoMalloc storage(info.getSafeSize(rowBytes)); |
| |
| const SkCodec::Result result = codec->getPixels( |
| info, storage.get(), rowBytes); |
| switch (result) { |
| case SkCodec::kSuccess: |
| case SkCodec::kIncompleteInput: |
| return new CodecBench(SkOSPath::Basename(path.c_str()), |
| encoded.get(), colorType, alphaType); |
| case SkCodec::kInvalidConversion: |
| // This is okay. Not all conversions are valid. |
| break; |
| default: |
| // This represents some sort of failure. |
| SkASSERT(false); |
| break; |
| } |
| } |
| fCurrentColorType = 0; |
| } |
| |
| // Run AndroidCodecBenches |
| const int sampleSizes[] = { 2, 4, 8 }; |
| for (; fCurrentAndroidCodec < fImages.count(); fCurrentAndroidCodec++) { |
| fSourceType = "image"; |
| fBenchType = "skandroidcodec"; |
| |
| const SkString& path = fImages[fCurrentAndroidCodec]; |
| if (SkCommandLineFlags::ShouldSkip(FLAGS_match, path.c_str())) { |
| continue; |
| } |
| sk_sp<SkData> encoded(SkData::MakeFromFileName(path.c_str())); |
| std::unique_ptr<SkAndroidCodec> codec(SkAndroidCodec::NewFromData(encoded)); |
| if (!codec) { |
| // Nothing to time. |
| SkDebugf("Cannot find codec for %s\n", path.c_str()); |
| continue; |
| } |
| |
| while (fCurrentSampleSize < (int) SK_ARRAY_COUNT(sampleSizes)) { |
| int sampleSize = sampleSizes[fCurrentSampleSize]; |
| fCurrentSampleSize++; |
| if (10 * sampleSize > SkTMin(codec->getInfo().width(), codec->getInfo().height())) { |
| // Avoid benchmarking scaled decodes of already small images. |
| break; |
| } |
| |
| return new AndroidCodecBench(SkOSPath::Basename(path.c_str()), |
| encoded.get(), sampleSize); |
| } |
| fCurrentSampleSize = 0; |
| } |
| |
| // Run the BRDBenches |
| // We intend to create benchmarks that model the use cases in |
| // android/libraries/social/tiledimage. In this library, an image is decoded in 512x512 |
| // tiles. The image can be translated freely, so the location of a tile may be anywhere in |
| // the image. For that reason, we will benchmark decodes in five representative locations |
| // in the image. Additionally, this use case utilizes power of two scaling, so we will |
| // test on power of two sample sizes. The output tile is always 512x512, so, when a |
| // sampleSize is used, the size of the subset that is decoded is always |
| // (sampleSize*512)x(sampleSize*512). |
| // There are a few good reasons to only test on power of two sample sizes at this time: |
| // All use cases we are aware of only scale by powers of two. |
| // PNG decodes use the indicated sampling strategy regardless of the sample size, so |
| // these tests are sufficient to provide good coverage of our scaling options. |
| const uint32_t brdSampleSizes[] = { 1, 2, 4, 8, 16 }; |
| const uint32_t minOutputSize = 512; |
| for (; fCurrentBRDImage < fImages.count(); fCurrentBRDImage++) { |
| fSourceType = "image"; |
| fBenchType = "BRD"; |
| |
| const SkString& path = fImages[fCurrentBRDImage]; |
| if (SkCommandLineFlags::ShouldSkip(FLAGS_match, path.c_str())) { |
| continue; |
| } |
| |
| while (fCurrentColorType < fColorTypes.count()) { |
| while (fCurrentSampleSize < (int) SK_ARRAY_COUNT(brdSampleSizes)) { |
| while (fCurrentSubsetType <= kLastSingle_SubsetType) { |
| |
| sk_sp<SkData> encoded(SkData::MakeFromFileName(path.c_str())); |
| const SkColorType colorType = fColorTypes[fCurrentColorType]; |
| uint32_t sampleSize = brdSampleSizes[fCurrentSampleSize]; |
| int currentSubsetType = fCurrentSubsetType++; |
| |
| int width = 0; |
| int height = 0; |
| if (!valid_brd_bench(encoded, colorType, sampleSize, minOutputSize, |
| &width, &height)) { |
| break; |
| } |
| |
| SkString basename = SkOSPath::Basename(path.c_str()); |
| SkIRect subset; |
| const uint32_t subsetSize = sampleSize * minOutputSize; |
| switch (currentSubsetType) { |
| case kTopLeft_SubsetType: |
| basename.append("_TopLeft"); |
| subset = SkIRect::MakeXYWH(0, 0, subsetSize, subsetSize); |
| break; |
| case kTopRight_SubsetType: |
| basename.append("_TopRight"); |
| subset = SkIRect::MakeXYWH(width - subsetSize, 0, subsetSize, |
| subsetSize); |
| break; |
| case kMiddle_SubsetType: |
| basename.append("_Middle"); |
| subset = SkIRect::MakeXYWH((width - subsetSize) / 2, |
| (height - subsetSize) / 2, subsetSize, subsetSize); |
| break; |
| case kBottomLeft_SubsetType: |
| basename.append("_BottomLeft"); |
| subset = SkIRect::MakeXYWH(0, height - subsetSize, subsetSize, |
| subsetSize); |
| break; |
| case kBottomRight_SubsetType: |
| basename.append("_BottomRight"); |
| subset = SkIRect::MakeXYWH(width - subsetSize, |
| height - subsetSize, subsetSize, subsetSize); |
| break; |
| default: |
| SkASSERT(false); |
| } |
| |
| return new BitmapRegionDecoderBench(basename.c_str(), encoded.get(), |
| colorType, sampleSize, subset); |
| } |
| fCurrentSubsetType = 0; |
| fCurrentSampleSize++; |
| } |
| fCurrentSampleSize = 0; |
| fCurrentColorType++; |
| } |
| fCurrentColorType = 0; |
| } |
| |
| while (fCurrentColorImage < fColorImages.count()) { |
| fSourceType = "colorimage"; |
| fBenchType = "skcolorcodec"; |
| const SkString& path = fColorImages[fCurrentColorImage]; |
| fCurrentColorImage++; |
| sk_sp<SkData> encoded = SkData::MakeFromFileName(path.c_str()); |
| if (encoded) { |
| return new ColorCodecBench(SkOSPath::Basename(path.c_str()).c_str(), |
| std::move(encoded)); |
| } else { |
| SkDebugf("Could not read file %s.\n", path.c_str()); |
| } |
| } |
| |
| return nullptr; |
| } |
| |
| void fillCurrentOptions(ResultsWriter* log) const { |
| log->configOption("source_type", fSourceType); |
| log->configOption("bench_type", fBenchType); |
| if (0 == strcmp(fSourceType, "skp")) { |
| log->configOption("clip", |
| SkStringPrintf("%d %d %d %d", fClip.fLeft, fClip.fTop, |
| fClip.fRight, fClip.fBottom).c_str()); |
| SkASSERT_RELEASE(fCurrentScale < fScales.count()); // debugging paranoia |
| log->configOption("scale", SkStringPrintf("%.2g", fScales[fCurrentScale]).c_str()); |
| if (fCurrentUseMPD > 0) { |
| SkASSERT(1 == fCurrentUseMPD || 2 == fCurrentUseMPD); |
| log->configOption("multi_picture_draw", fUseMPDs[fCurrentUseMPD-1] ? "true" : "false"); |
| } |
| } |
| if (0 == strcmp(fBenchType, "recording")) { |
| log->metric("bytes", fSKPBytes); |
| log->metric("ops", fSKPOps); |
| } |
| } |
| |
| private: |
| enum SubsetType { |
| kTopLeft_SubsetType = 0, |
| kTopRight_SubsetType = 1, |
| kMiddle_SubsetType = 2, |
| kBottomLeft_SubsetType = 3, |
| kBottomRight_SubsetType = 4, |
| kTranslate_SubsetType = 5, |
| kZoom_SubsetType = 6, |
| kLast_SubsetType = kZoom_SubsetType, |
| kLastSingle_SubsetType = kBottomRight_SubsetType, |
| }; |
| |
| const BenchRegistry* fBenches; |
| const skiagm::GMRegistry* fGMs; |
| SkIRect fClip; |
| SkTArray<SkScalar> fScales; |
| SkTArray<SkString> fSKPs; |
| SkTArray<SkString> fSVGs; |
| SkTArray<bool> fUseMPDs; |
| SkTArray<SkString> fImages; |
| SkTArray<SkString> fColorImages; |
| SkTArray<SkColorType, true> fColorTypes; |
| SkScalar fZoomMax; |
| double fZoomPeriodMs; |
| |
| double fSKPBytes, fSKPOps; |
| |
| const char* fSourceType; // What we're benching: bench, GM, SKP, ... |
| const char* fBenchType; // How we bench it: micro, recording, playback, ... |
| int fCurrentRecording; |
| int fCurrentPiping; |
| int fCurrentScale; |
| int fCurrentSKP; |
| int fCurrentSVG; |
| int fCurrentUseMPD; |
| int fCurrentCodec; |
| int fCurrentAndroidCodec; |
| int fCurrentBRDImage; |
| int fCurrentColorImage; |
| int fCurrentColorType; |
| int fCurrentAlphaType; |
| int fCurrentSubsetType; |
| int fCurrentSampleSize; |
| int fCurrentAnimSKP; |
| }; |
| |
| // Some runs (mostly, Valgrind) are so slow that the bot framework thinks we've hung. |
| // This prints something every once in a while so that it knows we're still working. |
| static void start_keepalive() { |
| struct Loop { |
| static void forever(void*) { |
| for (;;) { |
| static const int kSec = 1200; |
| #if defined(SK_BUILD_FOR_WIN) |
| Sleep(kSec * 1000); |
| #else |
| sleep(kSec); |
| #endif |
| SkDebugf("\nBenchmarks still running...\n"); |
| } |
| } |
| }; |
| static SkThread* intentionallyLeaked = new SkThread(Loop::forever); |
| intentionallyLeaked->start(); |
| } |
| |
| int main(int argc, char** argv) { |
| SkCommandLineFlags::Parse(argc, argv); |
| if (FLAGS_trace) { |
| SkEventTracer::SetInstance(new SkDebugfTracer); |
| } |
| #if defined(SK_BUILD_FOR_IOS) |
| cd_Documents(); |
| #endif |
| SetupCrashHandler(); |
| SkAutoGraphics ag; |
| SkTaskGroup::Enabler enabled(FLAGS_threads); |
| |
| #if SK_SUPPORT_GPU |
| GrContextOptions grContextOpts; |
| grContextOpts.fGpuPathRenderers = CollectGpuPathRenderersFromFlags(); |
| gGrFactory.reset(new GrContextFactory(grContextOpts)); |
| #endif |
| |
| if (FLAGS_veryVerbose) { |
| FLAGS_verbose = true; |
| } |
| |
| if (kAutoTuneLoops != FLAGS_loops) { |
| FLAGS_samples = 1; |
| FLAGS_gpuFrameLag = 0; |
| } |
| |
| if (!FLAGS_writePath.isEmpty()) { |
| SkDebugf("Writing files to %s.\n", FLAGS_writePath[0]); |
| if (!sk_mkdir(FLAGS_writePath[0])) { |
| SkDebugf("Could not create %s. Files won't be written.\n", FLAGS_writePath[0]); |
| FLAGS_writePath.set(0, nullptr); |
| } |
| } |
| |
| std::unique_ptr<ResultsWriter> log(new ResultsWriter); |
| if (!FLAGS_outResultsFile.isEmpty()) { |
| #if defined(SK_RELEASE) |
| log.reset(new NanoJSONResultsWriter(FLAGS_outResultsFile[0])); |
| #else |
| SkDebugf("I'm ignoring --outResultsFile because this is a Debug build."); |
| return 1; |
| #endif |
| } |
| |
| if (1 == FLAGS_properties.count() % 2) { |
| SkDebugf("ERROR: --properties must be passed with an even number of arguments.\n"); |
| return 1; |
| } |
| for (int i = 1; i < FLAGS_properties.count(); i += 2) { |
| log->property(FLAGS_properties[i-1], FLAGS_properties[i]); |
| } |
| |
| if (1 == FLAGS_key.count() % 2) { |
| SkDebugf("ERROR: --key must be passed with an even number of arguments.\n"); |
| return 1; |
| } |
| for (int i = 1; i < FLAGS_key.count(); i += 2) { |
| log->key(FLAGS_key[i-1], FLAGS_key[i]); |
| } |
| |
| const double overhead = estimate_timer_overhead(); |
| SkDebugf("Timer overhead: %s\n", HUMANIZE(overhead)); |
| |
| SkTArray<double> samples; |
| |
| if (kAutoTuneLoops != FLAGS_loops) { |
| SkDebugf("Fixed number of loops; times would only be misleading so we won't print them.\n"); |
| } else if (FLAGS_quiet) { |
| SkDebugf("! -> high variance, ? -> moderate variance\n"); |
| SkDebugf(" micros \tbench\n"); |
| } else if (FLAGS_ms) { |
| SkDebugf("curr/maxrss\tloops\tmin\tmedian\tmean\tmax\tstddev\tsamples\tconfig\tbench\n"); |
| } else { |
| SkDebugf("curr/maxrss\tloops\tmin\tmedian\tmean\tmax\tstddev\t%-*s\tconfig\tbench\n", |
| FLAGS_samples, "samples"); |
| } |
| |
| SkTArray<Config> configs; |
| create_configs(&configs); |
| |
| #ifdef THERMAL_MANAGER_SUPPORTED |
| int tmEnabled, tmThreshold, tmSleepTimeMs, tmTimeoutMs; |
| if (4 != sscanf(FLAGS_useThermalManager[0], "%d,%d,%d,%d", |
| &tmEnabled, &tmThreshold, &tmSleepTimeMs, &tmTimeoutMs)) { |
| SkDebugf("Can't parse %s from --useThermalManager.\n", FLAGS_useThermalManager[0]); |
| exit(1); |
| } |
| ThermalManager tm(tmThreshold, tmSleepTimeMs, tmTimeoutMs); |
| #endif |
| |
| if (FLAGS_keepAlive) { |
| start_keepalive(); |
| } |
| |
| gSkUseAnalyticAA = FLAGS_analyticAA; |
| |
| if (FLAGS_forceAnalyticAA) { |
| gSkForceAnalyticAA = true; |
| } |
| if (FLAGS_forceRasterPipeline) { |
| gSkForceRasterPipelineBlitter = true; |
| } |
| |
| int runs = 0; |
| BenchmarkStream benchStream; |
| while (Benchmark* b = benchStream.next()) { |
| std::unique_ptr<Benchmark> bench(b); |
| if (SkCommandLineFlags::ShouldSkip(FLAGS_match, bench->getUniqueName())) { |
| continue; |
| } |
| |
| if (!configs.empty()) { |
| log->bench(bench->getUniqueName(), bench->getSize().fX, bench->getSize().fY); |
| bench->delayedSetup(); |
| } |
| for (int i = 0; i < configs.count(); ++i) { |
| #ifdef THERMAL_MANAGER_SUPPORTED |
| if (tmEnabled && !tm.coolOffIfNecessary()) { |
| SkDebugf("Could not cool off, timings will be throttled\n"); |
| } |
| #endif |
| Target* target = is_enabled(b, configs[i]); |
| if (!target) { |
| continue; |
| } |
| |
| // During HWUI output this canvas may be nullptr. |
| SkCanvas* canvas = target->getCanvas(); |
| const char* config = target->config.name.c_str(); |
| |
| if (FLAGS_pre_log || FLAGS_dryRun) { |
| SkDebugf("Running %s\t%s\n" |
| , bench->getUniqueName() |
| , config); |
| if (FLAGS_dryRun) { |
| continue; |
| } |
| } |
| |
| target->setup(); |
| bench->perCanvasPreDraw(canvas); |
| |
| int maxFrameLag; |
| int loops = target->needsFrameTiming(&maxFrameLag) |
| ? setup_gpu_bench(target, bench.get(), maxFrameLag) |
| : setup_cpu_bench(overhead, target, bench.get()); |
| |
| if (FLAGS_ms) { |
| samples.reset(); |
| auto stop = now_ms() + FLAGS_ms; |
| do { |
| samples.push_back(time(loops, bench.get(), target) / loops); |
| } while (now_ms() < stop); |
| } else { |
| samples.reset(FLAGS_samples); |
| for (int s = 0; s < FLAGS_samples; s++) { |
| samples[s] = time(loops, bench.get(), target) / loops; |
| } |
| } |
| |
| #if SK_SUPPORT_GPU |
| SkTArray<SkString> keys; |
| SkTArray<double> values; |
| bool gpuStatsDump = FLAGS_gpuStatsDump && Benchmark::kGPU_Backend == configs[i].backend; |
| if (gpuStatsDump) { |
| // TODO cache stats |
| bench->getGpuStats(canvas, &keys, &values); |
| } |
| #endif |
| |
| bench->perCanvasPostDraw(canvas); |
| |
| if (Benchmark::kNonRendering_Backend != target->config.backend && |
| !FLAGS_writePath.isEmpty() && FLAGS_writePath[0]) { |
| SkString pngFilename = SkOSPath::Join(FLAGS_writePath[0], config); |
| pngFilename = SkOSPath::Join(pngFilename.c_str(), bench->getUniqueName()); |
| pngFilename.append(".png"); |
| write_canvas_png(target, pngFilename); |
| } |
| |
| if (kFailedLoops == loops) { |
| // Can't be timed. A warning note has already been printed. |
| cleanup_run(target); |
| continue; |
| } |
| |
| Stats stats(samples); |
| log->config(config); |
| log->configOption("name", bench->getName()); |
| benchStream.fillCurrentOptions(log.get()); |
| target->fillOptions(log.get()); |
| log->metric("min_ms", stats.min); |
| log->metrics("samples", samples); |
| #if SK_SUPPORT_GPU |
| if (gpuStatsDump) { |
| // dump to json, only SKPBench currently returns valid keys / values |
| SkASSERT(keys.count() == values.count()); |
| for (int i = 0; i < keys.count(); i++) { |
| log->metric(keys[i].c_str(), values[i]); |
| } |
| } |
| #endif |
| |
| if (runs++ % FLAGS_flushEvery == 0) { |
| log->flush(); |
| } |
| |
| if (kAutoTuneLoops != FLAGS_loops) { |
| if (configs.count() == 1) { |
| config = ""; // Only print the config if we run the same bench on more than one. |
| } |
| SkDebugf("%4d/%-4dMB\t%s\t%s\n" |
| , sk_tools::getCurrResidentSetSizeMB() |
| , sk_tools::getMaxResidentSetSizeMB() |
| , bench->getUniqueName() |
| , config); |
| } else if (FLAGS_quiet) { |
| const char* mark = " "; |
| const double stddev_percent = 100 * sqrt(stats.var) / stats.mean; |
| if (stddev_percent > 5) mark = "?"; |
| if (stddev_percent > 10) mark = "!"; |
| |
| SkDebugf("%10.2f %s\t%s\t%s\n", |
| stats.median*1e3, mark, bench->getUniqueName(), config); |
| } else if (FLAGS_csv) { |
| const double stddev_percent = 100 * sqrt(stats.var) / stats.mean; |
| SkDebugf("%g,%g,%g,%g,%g,%s,%s\n" |
| , stats.min |
| , stats.median |
| , stats.mean |
| , stats.max |
| , stddev_percent |
| , config |
| , bench->getUniqueName() |
| ); |
| } else { |
| const char* format = "%4d/%-4dMB\t%d\t%s\t%s\t%s\t%s\t%.0f%%\t%s\t%s\t%s\n"; |
| const double stddev_percent = 100 * sqrt(stats.var) / stats.mean; |
| SkDebugf(format |
| , sk_tools::getCurrResidentSetSizeMB() |
| , sk_tools::getMaxResidentSetSizeMB() |
| , loops |
| , HUMANIZE(stats.min) |
| , HUMANIZE(stats.median) |
| , HUMANIZE(stats.mean) |
| , HUMANIZE(stats.max) |
| , stddev_percent |
| , FLAGS_ms ? to_string(samples.count()).c_str() : stats.plot.c_str() |
| , config |
| , bench->getUniqueName() |
| ); |
| } |
| |
| #if SK_SUPPORT_GPU |
| if (FLAGS_gpuStats && Benchmark::kGPU_Backend == configs[i].backend) { |
| GrContext* context = gGrFactory->get(configs[i].ctxType, |
| configs[i].ctxOverrides); |
| context->printCacheStats(); |
| context->printGpuStats(); |
| } |
| #endif |
| |
| if (FLAGS_verbose) { |
| SkDebugf("Samples: "); |
| for (int i = 0; i < samples.count(); i++) { |
| SkDebugf("%s ", HUMANIZE(samples[i])); |
| } |
| SkDebugf("%s\n", bench->getUniqueName()); |
| } |
| cleanup_run(target); |
| } |
| } |
| |
| SkGraphics::PurgeAllCaches(); |
| |
| log->bench("memory_usage", 0,0); |
| log->config("meta"); |
| log->metric("max_rss_mb", sk_tools::getMaxResidentSetSizeMB()); |
| |
| #if SK_SUPPORT_GPU |
| // Make sure we clean up the global GrContextFactory here, otherwise we might race with the |
| // SkEventTracer destructor |
| gGrFactory.reset(nullptr); |
| #endif |
| |
| return 0; |
| } |