| // Copyright 2011 the V8 project authors. All rights reserved. |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following |
| // disclaimer in the documentation and/or other materials provided |
| // with the distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived |
| // from this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| // Test Math.sin and Math.cos. |
| |
| // Flags: --allow-natives-syntax --opt |
| |
| assertEquals("-Infinity", String(1/Math.sin(-0))); |
| assertEquals(1, Math.cos(-0)); |
| assertEquals("-Infinity", String(1/Math.tan(-0))); |
| |
| // Assert that minus zero does not cause deopt. |
| function no_deopt_on_minus_zero(x) { |
| return Math.sin(x) + Math.cos(x) + Math.tan(x); |
| } |
| |
| no_deopt_on_minus_zero(1); |
| no_deopt_on_minus_zero(1); |
| %OptimizeFunctionOnNextCall(no_deopt_on_minus_zero); |
| no_deopt_on_minus_zero(-0); |
| assertOptimized(no_deopt_on_minus_zero); |
| |
| |
| function sinTest() { |
| assertEquals(0, Math.sin(0)); |
| assertEquals(1, Math.sin(Math.PI / 2)); |
| } |
| |
| function cosTest() { |
| assertEquals(1, Math.cos(0)); |
| assertEquals(-1, Math.cos(Math.PI)); |
| } |
| |
| sinTest(); |
| cosTest(); |
| |
| // By accident, the slow case for sine and cosine were both sine at |
| // some point. This is a regression test for that issue. |
| var x = Math.pow(2, 30); |
| assertTrue(Math.sin(x) != Math.cos(x)); |
| |
| // Ensure that sine and log are not the same. |
| x = 0.5; |
| assertTrue(Math.sin(x) != Math.log(x)); |
| |
| // Test against approximation by series. |
| var factorial = [1]; |
| var accuracy = 50; |
| for (var i = 1; i < accuracy; i++) { |
| factorial[i] = factorial[i-1] * i; |
| } |
| |
| // We sum up in the reverse order for higher precision, as we expect the terms |
| // to grow smaller for x reasonably close to 0. |
| function precision_sum(array) { |
| var result = 0; |
| while (array.length > 0) { |
| result += array.pop(); |
| } |
| return result; |
| } |
| |
| function sin(x) { |
| var sign = 1; |
| var x2 = x*x; |
| var terms = []; |
| for (var i = 1; i < accuracy; i += 2) { |
| terms.push(sign * x / factorial[i]); |
| x *= x2; |
| sign *= -1; |
| } |
| return precision_sum(terms); |
| } |
| |
| function cos(x) { |
| var sign = -1; |
| var x2 = x*x; |
| x = x2; |
| var terms = [1]; |
| for (var i = 2; i < accuracy; i += 2) { |
| terms.push(sign * x / factorial[i]); |
| x *= x2; |
| sign *= -1; |
| } |
| return precision_sum(terms); |
| } |
| |
| function abs_error(fun, ref, x) { |
| return Math.abs(ref(x) - fun(x)); |
| } |
| |
| var test_inputs = []; |
| for (var i = -10000; i < 10000; i += 177) test_inputs.push(i/1257); |
| var epsilon = 0.0000001; |
| |
| test_inputs.push(0); |
| test_inputs.push(0 + epsilon); |
| test_inputs.push(0 - epsilon); |
| test_inputs.push(Math.PI/2); |
| test_inputs.push(Math.PI/2 + epsilon); |
| test_inputs.push(Math.PI/2 - epsilon); |
| test_inputs.push(Math.PI); |
| test_inputs.push(Math.PI + epsilon); |
| test_inputs.push(Math.PI - epsilon); |
| test_inputs.push(- 2*Math.PI); |
| test_inputs.push(- 2*Math.PI + epsilon); |
| test_inputs.push(- 2*Math.PI - epsilon); |
| |
| var squares = []; |
| for (var i = 0; i < test_inputs.length; i++) { |
| var x = test_inputs[i]; |
| var err_sin = abs_error(Math.sin, sin, x); |
| var err_cos = abs_error(Math.cos, cos, x) |
| assertEqualsDelta(0, err_sin, 1E-13); |
| assertEqualsDelta(0, err_cos, 1E-13); |
| squares.push(err_sin*err_sin + err_cos*err_cos); |
| } |
| |
| // Sum squares up by adding them pairwise, to avoid losing precision. |
| while (squares.length > 1) { |
| var reduced = []; |
| if (squares.length % 2 == 1) reduced.push(squares.pop()); |
| // Remaining number of elements is even. |
| while(squares.length > 1) reduced.push(squares.pop() + squares.pop()); |
| squares = reduced; |
| } |
| |
| var err_rms = Math.sqrt(squares[0] / test_inputs.length / 2); |
| assertEqualsDelta(0, err_rms, 1E-14); |
| |
| assertEquals(-1, Math.cos({ valueOf: function() { return Math.PI; } })); |
| assertEquals(0, Math.sin("0x00000")); |
| assertEquals(1, Math.cos("0x00000")); |
| assertTrue(isNaN(Math.sin(Infinity))); |
| assertTrue(isNaN(Math.cos("-Infinity"))); |
| assertTrue(Math.tan(Math.PI/2) > 1e16); |
| assertTrue(Math.tan(-Math.PI/2) < -1e16); |
| assertEquals("-Infinity", String(1/Math.sin("-0"))); |
| |
| // Assert that the remainder after division by pi is reasonably precise. |
| function assertError(expected, x, epsilon) { |
| assertTrue(Math.abs(x - expected) < epsilon); |
| } |
| |
| assertEqualsDelta(0.9367521275331447, Math.cos(1e06), 1e-15); |
| assertEqualsDelta(0.8731196226768560, Math.cos(1e10), 1e-08); |
| assertEqualsDelta(0.9367521275331447, Math.cos(-1e06), 1e-15); |
| assertEqualsDelta(0.8731196226768560, Math.cos(-1e10), 1e-08); |
| assertEqualsDelta(-0.3499935021712929, Math.sin(1e06), 1e-15); |
| assertEqualsDelta(-0.4875060250875106, Math.sin(1e10), 1e-08); |
| assertEqualsDelta(0.3499935021712929, Math.sin(-1e06), 1e-15); |
| assertEqualsDelta(0.4875060250875106, Math.sin(-1e10), 1e-08); |
| assertEqualsDelta(0.7796880066069787, Math.sin(1e16), 1e-05); |
| assertEqualsDelta(-0.6261681981330861, Math.cos(1e16), 1e-05); |
| |
| // Assert that remainder calculation terminates. |
| for (var i = -1024; i < 1024; i++) { |
| assertFalse(isNaN(Math.sin(Math.pow(2, i)))); |
| } |
| |
| assertFalse(isNaN(Math.cos(1.57079632679489700))); |
| assertFalse(isNaN(Math.cos(-1e-100))); |
| assertFalse(isNaN(Math.cos(-1e-323))); |
| |
| // Tests for specific values expected from the fdlibm implementation. |
| |
| var two_32 = Math.pow(2, -32); |
| var two_28 = Math.pow(2, -28); |
| |
| // Tests for Math.sin for |x| < pi/4 |
| assertEquals(Infinity, 1/Math.sin(+0.0)); |
| assertEquals(-Infinity, 1/Math.sin(-0.0)); |
| // sin(x) = x for x < 2^-27 |
| assertEquals(two_32, Math.sin(two_32)); |
| assertEquals(-two_32, Math.sin(-two_32)); |
| // sin(pi/8) = sqrt(sqrt(2)-1)/2^(3/4) |
| assertEquals(0.3826834323650898, Math.sin(Math.PI/8)); |
| assertEquals(-0.3826834323650898, -Math.sin(Math.PI/8)); |
| |
| // Tests for Math.cos for |x| < pi/4 |
| // cos(x) = 1 for |x| < 2^-27 |
| assertEquals(1, Math.cos(two_32)); |
| assertEquals(1, Math.cos(-two_32)); |
| // Test KERNELCOS for |x| < 0.3. |
| // cos(pi/20) = sqrt(sqrt(2)*sqrt(sqrt(5)+5)+4)/2^(3/2) |
| assertEquals(0.9876883405951378, Math.cos(Math.PI/20)); |
| // Test KERNELCOS for x ~= 0.78125 |
| assertEquals(0.7100335477927638, Math.cos(0.7812504768371582)); |
| assertEquals(0.7100338835660797, Math.cos(0.78125)); |
| // Test KERNELCOS for |x| > 0.3. |
| // cos(pi/8) = sqrt(sqrt(2)+1)/2^(3/4) |
| assertEquals(0.9238795325112867, Math.cos(Math.PI/8)); |
| // Test KERNELTAN for |x| < 0.67434. |
| assertEquals(0.9238795325112867, Math.cos(-Math.PI/8)); |
| |
| // Tests for Math.tan for |x| < pi/4 |
| assertEquals(Infinity, 1/Math.tan(0.0)); |
| assertEquals(-Infinity, 1/Math.tan(-0.0)); |
| // tan(x) = x for |x| < 2^-28 |
| assertEquals(two_32, Math.tan(two_32)); |
| assertEquals(-two_32, Math.tan(-two_32)); |
| // Test KERNELTAN for |x| > 0.67434. |
| assertEquals(0.8211418015898941, Math.tan(11/16)); |
| assertEquals(-0.8211418015898941, Math.tan(-11/16)); |
| assertEquals(0.41421356237309503, Math.tan(Math.PI / 8)); |
| // crbug/427468 |
| assertEquals(0.7993357819992383, Math.tan(0.6743358)); |
| |
| // Tests for Math.sin. |
| assertEquals(0.479425538604203, Math.sin(0.5)); |
| assertEquals(-0.479425538604203, Math.sin(-0.5)); |
| assertEquals(1, Math.sin(Math.PI/2)); |
| assertEquals(-1, Math.sin(-Math.PI/2)); |
| // Test that Math.sin(Math.PI) != 0 since Math.PI is not exact. |
| assertEquals(1.2246467991473532e-16, Math.sin(Math.PI)); |
| assertEquals(-7.047032979958965e-14, Math.sin(2200*Math.PI)); |
| // Test Math.sin for various phases. |
| assertEquals(-0.7071067811865477, Math.sin(7/4 * Math.PI)); |
| assertEquals(0.7071067811865474, Math.sin(9/4 * Math.PI)); |
| assertEquals(0.7071067811865483, Math.sin(11/4 * Math.PI)); |
| assertEquals(-0.7071067811865479, Math.sin(13/4 * Math.PI)); |
| assertEquals(-3.2103381051568376e-11, Math.sin(1048576/4 * Math.PI)); |
| |
| // Tests for Math.cos. |
| assertEquals(1, Math.cos(two_28)); |
| // Cover different code paths in KERNELCOS. |
| assertEquals(0.9689124217106447, Math.cos(0.25)); |
| assertEquals(0.8775825618903728, Math.cos(0.5)); |
| assertEquals(0.7073882691671998, Math.cos(0.785)); |
| // Test that Math.cos(Math.PI/2) != 0 since Math.PI is not exact. |
| assertEquals(6.123233995736766e-17, Math.cos(Math.PI/2)); |
| // Test Math.cos for various phases. |
| assertEquals(0.7071067811865474, Math.cos(7/4 * Math.PI)); |
| assertEquals(0.7071067811865477, Math.cos(9/4 * Math.PI)); |
| assertEquals(-0.7071067811865467, Math.cos(11/4 * Math.PI)); |
| assertEquals(-0.7071067811865471, Math.cos(13/4 * Math.PI)); |
| assertEquals(0.9367521275331447, Math.cos(1000000)); |
| assertEquals(-3.435757038074824e-12, Math.cos(1048575/2 * Math.PI)); |
| |
| // Tests for Math.tan. |
| assertEquals(two_28, Math.tan(two_28)); |
| // Test that Math.tan(Math.PI/2) != Infinity since Math.PI is not exact. |
| assertEquals(1.633123935319537e16, Math.tan(Math.PI/2)); |
| // Cover different code paths in KERNELTAN (tangent and cotangent) |
| assertEquals(0.5463024898437905, Math.tan(0.5)); |
| assertEquals(2.0000000000000027, Math.tan(1.107148717794091)); |
| assertEquals(-1.0000000000000004, Math.tan(7/4*Math.PI)); |
| assertEquals(0.9999999999999994, Math.tan(9/4*Math.PI)); |
| assertEquals(-6.420676210313675e-11, Math.tan(1048576/2*Math.PI)); |
| assertEquals(2.910566692924059e11, Math.tan(1048575/2*Math.PI)); |
| |
| // Test Hayne-Panek reduction. |
| assertEquals(0.377820109360752e0, Math.sin(Math.pow(2, 120))); |
| assertEquals(-0.9258790228548379e0, Math.cos(Math.pow(2, 120))); |
| assertEquals(-0.40806638884180424e0, Math.tan(Math.pow(2, 120))); |
| assertEquals(-0.377820109360752e0, Math.sin(-Math.pow(2, 120))); |
| assertEquals(-0.9258790228548379e0, Math.cos(-Math.pow(2, 120))); |
| assertEquals(0.40806638884180424e0, Math.tan(-Math.pow(2, 120))); |