| // Copyright (c) 2011 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| // This defines a set of argument wrappers and related factory methods that |
| // can be used specify the refcounting and reference semantics of arguments |
| // that are bound by the Bind() function in base/bind.h. |
| // |
| // It also defines a set of simple functions and utilities that people want |
| // when using Callback<> and Bind(). |
| // |
| // |
| // ARGUMENT BINDING WRAPPERS |
| // |
| // The wrapper functions are base::Unretained(), base::Owned(), bass::Passed(), |
| // base::ConstRef(), and base::IgnoreResult(). |
| // |
| // Unretained() allows Bind() to bind a non-refcounted class, and to disable |
| // refcounting on arguments that are refcounted objects. |
| // |
| // Owned() transfers ownership of an object to the Callback resulting from |
| // bind; the object will be deleted when the Callback is deleted. |
| // |
| // Passed() is for transferring movable-but-not-copyable types (eg. scoped_ptr) |
| // through a Callback. Logically, this signifies a destructive transfer of |
| // the state of the argument into the target function. Invoking |
| // Callback::Run() twice on a Callback that was created with a Passed() |
| // argument will CHECK() because the first invocation would have already |
| // transferred ownership to the target function. |
| // |
| // ConstRef() allows binding a constant reference to an argument rather |
| // than a copy. |
| // |
| // IgnoreResult() is used to adapt a function or Callback with a return type to |
| // one with a void return. This is most useful if you have a function with, |
| // say, a pesky ignorable bool return that you want to use with PostTask or |
| // something else that expect a Callback with a void return. |
| // |
| // EXAMPLE OF Unretained(): |
| // |
| // class Foo { |
| // public: |
| // void func() { cout << "Foo:f" << endl; } |
| // }; |
| // |
| // // In some function somewhere. |
| // Foo foo; |
| // Closure foo_callback = |
| // Bind(&Foo::func, Unretained(&foo)); |
| // foo_callback.Run(); // Prints "Foo:f". |
| // |
| // Without the Unretained() wrapper on |&foo|, the above call would fail |
| // to compile because Foo does not support the AddRef() and Release() methods. |
| // |
| // |
| // EXAMPLE OF Owned(): |
| // |
| // void foo(int* arg) { cout << *arg << endl } |
| // |
| // int* pn = new int(1); |
| // Closure foo_callback = Bind(&foo, Owned(pn)); |
| // |
| // foo_callback.Run(); // Prints "1" |
| // foo_callback.Run(); // Prints "1" |
| // *n = 2; |
| // foo_callback.Run(); // Prints "2" |
| // |
| // foo_callback.Reset(); // |pn| is deleted. Also will happen when |
| // // |foo_callback| goes out of scope. |
| // |
| // Without Owned(), someone would have to know to delete |pn| when the last |
| // reference to the Callback is deleted. |
| // |
| // |
| // EXAMPLE OF ConstRef(): |
| // |
| // void foo(int arg) { cout << arg << endl } |
| // |
| // int n = 1; |
| // Closure no_ref = Bind(&foo, n); |
| // Closure has_ref = Bind(&foo, ConstRef(n)); |
| // |
| // no_ref.Run(); // Prints "1" |
| // has_ref.Run(); // Prints "1" |
| // |
| // n = 2; |
| // no_ref.Run(); // Prints "1" |
| // has_ref.Run(); // Prints "2" |
| // |
| // Note that because ConstRef() takes a reference on |n|, |n| must outlive all |
| // its bound callbacks. |
| // |
| // |
| // EXAMPLE OF IgnoreResult(): |
| // |
| // int DoSomething(int arg) { cout << arg << endl; } |
| // |
| // // Assign to a Callback with a void return type. |
| // Callback<void(int)> cb = Bind(IgnoreResult(&DoSomething)); |
| // cb->Run(1); // Prints "1". |
| // |
| // // Prints "1" on |ml|. |
| // ml->PostTask(FROM_HERE, Bind(IgnoreResult(&DoSomething), 1); |
| // |
| // |
| // EXAMPLE OF Passed(): |
| // |
| // void TakesOwnership(scoped_ptr<Foo> arg) { } |
| // scoped_ptr<Foo> CreateFoo() { return scoped_ptr<Foo>(new Foo()); } |
| // |
| // scoped_ptr<Foo> f(new Foo()); |
| // |
| // // |cb| is given ownership of Foo(). |f| is now NULL. |
| // // You can use f.Pass() in place of &f, but it's more verbose. |
| // Closure cb = Bind(&TakesOwnership, Passed(&f)); |
| // |
| // // Run was never called so |cb| still owns Foo() and deletes |
| // // it on Reset(). |
| // cb.Reset(); |
| // |
| // // |cb| is given a new Foo created by CreateFoo(). |
| // cb = Bind(&TakesOwnership, Passed(CreateFoo())); |
| // |
| // // |arg| in TakesOwnership() is given ownership of Foo(). |cb| |
| // // no longer owns Foo() and, if reset, would not delete Foo(). |
| // cb.Run(); // Foo() is now transferred to |arg| and deleted. |
| // cb.Run(); // This CHECK()s since Foo() already been used once. |
| // |
| // Passed() is particularly useful with PostTask() when you are transferring |
| // ownership of an argument into a task, but don't necessarily know if the |
| // task will always be executed. This can happen if the task is cancellable |
| // or if it is posted to a MessageLoopProxy. |
| // |
| // |
| // SIMPLE FUNCTIONS AND UTILITIES. |
| // |
| // DoNothing() - Useful for creating a Closure that does nothing when called. |
| // DeletePointer<T>() - Useful for creating a Closure that will delete a |
| // pointer when invoked. Only use this when necessary. |
| // In most cases MessageLoop::DeleteSoon() is a better |
| // fit. |
| // ScopedClosureRunner - Scoper object that runs the wrapped closure when it |
| // goes out of scope. It's conceptually similar to |
| // scoped_ptr<> but calls Run() instead of deleting |
| // the pointer. |
| |
| #ifndef BASE_BIND_HELPERS_H_ |
| #define BASE_BIND_HELPERS_H_ |
| |
| #include "base/basictypes.h" |
| #include "base/callback.h" |
| #include "base/memory/weak_ptr.h" |
| #include "base/template_util.h" |
| |
| namespace base { |
| namespace internal { |
| |
| // Use the Substitution Failure Is Not An Error (SFINAE) trick to inspect T |
| // for the existence of AddRef() and Release() functions of the correct |
| // signature. |
| // |
| // http://en.wikipedia.org/wiki/Substitution_failure_is_not_an_error |
| // http://stackoverflow.com/questions/257288/is-it-possible-to-write-a-c-template-to-check-for-a-functions-existence |
| // http://stackoverflow.com/questions/4358584/sfinae-approach-comparison |
| // http://stackoverflow.com/questions/1966362/sfinae-to-check-for-inherited-member-functions |
| // |
| // The last link in particular show the method used below. |
| // |
| // For SFINAE to work with inherited methods, we need to pull some extra tricks |
| // with multiple inheritance. In the more standard formulation, the overloads |
| // of Check would be: |
| // |
| // template <typename C> |
| // Yes NotTheCheckWeWant(Helper<&C::TargetFunc>*); |
| // |
| // template <typename C> |
| // No NotTheCheckWeWant(...); |
| // |
| // static const bool value = sizeof(NotTheCheckWeWant<T>(0)) == sizeof(Yes); |
| // |
| // The problem here is that template resolution will not match |
| // C::TargetFunc if TargetFunc does not exist directly in C. That is, if |
| // TargetFunc in inherited from an ancestor, &C::TargetFunc will not match, |
| // |value| will be false. This formulation only checks for whether or |
| // not TargetFunc exist directly in the class being introspected. |
| // |
| // To get around this, we play a dirty trick with multiple inheritance. |
| // First, We create a class BaseMixin that declares each function that we |
| // want to probe for. Then we create a class Base that inherits from both T |
| // (the class we wish to probe) and BaseMixin. Note that the function |
| // signature in BaseMixin does not need to match the signature of the function |
| // we are probing for; thus it's easiest to just use void(void). |
| // |
| // Now, if TargetFunc exists somewhere in T, then &Base::TargetFunc has an |
| // ambiguous resolution between BaseMixin and T. This lets us write the |
| // following: |
| // |
| // template <typename C> |
| // No GoodCheck(Helper<&C::TargetFunc>*); |
| // |
| // template <typename C> |
| // Yes GoodCheck(...); |
| // |
| // static const bool value = sizeof(GoodCheck<Base>(0)) == sizeof(Yes); |
| // |
| // Notice here that the variadic version of GoodCheck() returns Yes here |
| // instead of No like the previous one. Also notice that we calculate |value| |
| // by specializing GoodCheck() on Base instead of T. |
| // |
| // We've reversed the roles of the variadic, and Helper overloads. |
| // GoodCheck(Helper<&C::TargetFunc>*), when C = Base, fails to be a valid |
| // substitution if T::TargetFunc exists. Thus GoodCheck<Base>(0) will resolve |
| // to the variadic version if T has TargetFunc. If T::TargetFunc does not |
| // exist, then &C::TargetFunc is not ambiguous, and the overload resolution |
| // will prefer GoodCheck(Helper<&C::TargetFunc>*). |
| // |
| // This method of SFINAE will correctly probe for inherited names, but it cannot |
| // typecheck those names. It's still a good enough sanity check though. |
| // |
| // Works on gcc-4.2, gcc-4.4, and Visual Studio 2008. |
| // |
| // TODO(ajwong): Move to ref_counted.h or template_util.h when we've vetted |
| // this works well. |
| // |
| // TODO(ajwong): Make this check for Release() as well. |
| // See http://crbug.com/82038. |
| template <typename T> |
| class SupportsAddRefAndRelease { |
| typedef char Yes[1]; |
| typedef char No[2]; |
| |
| struct BaseMixin { |
| void AddRef(); |
| }; |
| |
| // MSVC warns when you try to use Base if T has a private destructor, the |
| // common pattern for refcounted types. It does this even though no attempt to |
| // instantiate Base is made. We disable the warning for this definition. |
| #if defined(OS_WIN) || defined(COBALT_WIN) |
| #pragma warning(push) |
| #pragma warning(disable : 4624) |
| #endif |
| struct Base : public T, public BaseMixin { |
| }; |
| #if defined(OS_WIN) || defined(COBALT_WIN) |
| #pragma warning(pop) |
| #endif |
| |
| template <void(BaseMixin::*)(void)> struct Helper {}; |
| |
| template <typename C> |
| static No& Check(Helper<&C::AddRef>*); |
| |
| template <typename > |
| static Yes& Check(...); |
| |
| public: |
| static const bool value = sizeof(Check<Base>(0)) == sizeof(Yes); |
| }; |
| |
| // Helpers to assert that arguments of a recounted type are bound with a |
| // scoped_refptr. |
| template <bool IsClasstype, typename T> |
| struct UnsafeBindtoRefCountedArgHelper : false_type { |
| }; |
| |
| template <typename T> |
| struct UnsafeBindtoRefCountedArgHelper<true, T> |
| : integral_constant<bool, SupportsAddRefAndRelease<T>::value> { |
| }; |
| |
| template <typename T> |
| struct UnsafeBindtoRefCountedArg : false_type { |
| }; |
| |
| template <typename T> |
| struct UnsafeBindtoRefCountedArg<T*> |
| : UnsafeBindtoRefCountedArgHelper<is_class<T>::value, T> { |
| }; |
| |
| template <typename T> |
| class HasIsMethodTag { |
| typedef char Yes[1]; |
| typedef char No[2]; |
| |
| template <typename U> |
| static Yes& Check(typename U::IsMethod*); |
| |
| template <typename U> |
| static No& Check(...); |
| |
| public: |
| static const bool value = sizeof(Check<T>(0)) == sizeof(Yes); |
| }; |
| |
| template <typename T> |
| class UnretainedWrapper { |
| public: |
| explicit UnretainedWrapper(T* o) : ptr_(o) {} |
| T* get() const { return ptr_; } |
| private: |
| T* ptr_; |
| }; |
| |
| template <typename T> |
| class ConstRefWrapper { |
| public: |
| explicit ConstRefWrapper(const T& o) : ptr_(&o) {} |
| const T& get() const { return *ptr_; } |
| private: |
| const T* ptr_; |
| }; |
| |
| template <typename T> |
| struct IgnoreResultHelper { |
| explicit IgnoreResultHelper(T functor) : functor_(functor) {} |
| |
| T functor_; |
| }; |
| |
| template <typename T> |
| struct IgnoreResultHelper<Callback<T> > { |
| explicit IgnoreResultHelper(const Callback<T>& functor) : functor_(functor) {} |
| |
| const Callback<T>& functor_; |
| }; |
| |
| // An alternate implementation is to avoid the destructive copy, and instead |
| // specialize ParamTraits<> for OwnedWrapper<> to change the StorageType to |
| // a class that is essentially a scoped_ptr<>. |
| // |
| // The current implementation has the benefit though of leaving ParamTraits<> |
| // fully in callback_internal.h as well as avoiding type conversions during |
| // storage. |
| template <typename T> |
| class OwnedWrapper { |
| public: |
| explicit OwnedWrapper(T* o) : ptr_(o) {} |
| ~OwnedWrapper() { delete ptr_; } |
| T* get() const { return ptr_; } |
| OwnedWrapper(const OwnedWrapper& other) { |
| ptr_ = other.ptr_; |
| other.ptr_ = NULL; |
| } |
| |
| private: |
| mutable T* ptr_; |
| }; |
| |
| // PassedWrapper is a copyable adapter for a scoper that ignores const. |
| // |
| // It is needed to get around the fact that Bind() takes a const reference to |
| // all its arguments. Because Bind() takes a const reference to avoid |
| // unnecessary copies, it is incompatible with movable-but-not-copyable |
| // types; doing a destructive "move" of the type into Bind() would violate |
| // the const correctness. |
| // |
| // This conundrum cannot be solved without either C++11 rvalue references or |
| // a O(2^n) blowup of Bind() templates to handle each combination of regular |
| // types and movable-but-not-copyable types. Thus we introduce a wrapper type |
| // that is copyable to transmit the correct type information down into |
| // BindState<>. Ignoring const in this type makes sense because it is only |
| // created when we are explicitly trying to do a destructive move. |
| // |
| // Two notes: |
| // 1) PassedWrapper supports any type that has a "Pass()" function. |
| // This is intentional. The whitelisting of which specific types we |
| // support is maintained by CallbackParamTraits<>. |
| // 2) is_valid_ is distinct from NULL because it is valid to bind a "NULL" |
| // scoper to a Callback and allow the Callback to execute once. |
| template <typename T> |
| class PassedWrapper { |
| public: |
| explicit PassedWrapper(T scoper) : is_valid_(true), scoper_(scoper.Pass()) {} |
| PassedWrapper(const PassedWrapper& other) |
| : is_valid_(other.is_valid_), scoper_(other.scoper_.Pass()) { |
| } |
| T Pass() const { |
| CHECK(is_valid_); |
| is_valid_ = false; |
| return scoper_.Pass(); |
| } |
| |
| private: |
| mutable bool is_valid_; |
| mutable T scoper_; |
| }; |
| |
| // Unwrap the stored parameters for the wrappers above. |
| template <typename T> |
| struct UnwrapTraits { |
| typedef const T& ForwardType; |
| static ForwardType Unwrap(const T& o) { return o; } |
| }; |
| |
| template <typename T> |
| struct UnwrapTraits<UnretainedWrapper<T> > { |
| typedef T* ForwardType; |
| static ForwardType Unwrap(UnretainedWrapper<T> unretained) { |
| return unretained.get(); |
| } |
| }; |
| |
| template <typename T> |
| struct UnwrapTraits<ConstRefWrapper<T> > { |
| typedef const T& ForwardType; |
| static ForwardType Unwrap(ConstRefWrapper<T> const_ref) { |
| return const_ref.get(); |
| } |
| }; |
| |
| template <typename T> |
| struct UnwrapTraits<scoped_refptr<T> > { |
| typedef T* ForwardType; |
| static ForwardType Unwrap(const scoped_refptr<T>& o) { return o.get(); } |
| }; |
| |
| template <typename T> |
| struct UnwrapTraits<WeakPtr<T> > { |
| typedef const WeakPtr<T>& ForwardType; |
| static ForwardType Unwrap(const WeakPtr<T>& o) { return o; } |
| }; |
| |
| template <typename T> |
| struct UnwrapTraits<OwnedWrapper<T> > { |
| typedef T* ForwardType; |
| static ForwardType Unwrap(const OwnedWrapper<T>& o) { |
| return o.get(); |
| } |
| }; |
| |
| template <typename T> |
| struct UnwrapTraits<PassedWrapper<T> > { |
| typedef T ForwardType; |
| static T Unwrap(PassedWrapper<T>& o) { |
| return o.Pass(); |
| } |
| }; |
| |
| // Utility for handling different refcounting semantics in the Bind() |
| // function. |
| template <bool is_method, typename T> |
| struct MaybeRefcount; |
| |
| template <typename T> |
| struct MaybeRefcount<false, T> { |
| static void AddRef(const T&) {} |
| static void Release(const T&) {} |
| }; |
| |
| template <typename T, size_t n> |
| struct MaybeRefcount<false, T[n]> { |
| static void AddRef(const T*) {} |
| static void Release(const T*) {} |
| }; |
| |
| template <typename T> |
| struct MaybeRefcount<true, T> { |
| static void AddRef(const T&) {} |
| static void Release(const T&) {} |
| }; |
| |
| template <typename T> |
| struct MaybeRefcount<true, T*> { |
| static void AddRef(T* o) { o->AddRef(); } |
| static void Release(T* o) { o->Release(); } |
| }; |
| |
| // No need to additionally AddRef() and Release() since we are storing a |
| // scoped_refptr<> inside the storage object already. |
| template <typename T> |
| struct MaybeRefcount<true, scoped_refptr<T> > { |
| static void AddRef(const scoped_refptr<T>&) {} |
| static void Release(const scoped_refptr<T>&) {} |
| }; |
| |
| template <typename T> |
| struct MaybeRefcount<true, const T*> { |
| static void AddRef(const T* o) { o->AddRef(); } |
| static void Release(const T* o) { o->Release(); } |
| }; |
| |
| // IsWeakMethod is a helper that determine if we are binding a WeakPtr<> to a |
| // method. It is used internally by Bind() to select the correct |
| // InvokeHelper that will no-op itself in the event the WeakPtr<> for |
| // the target object is invalidated. |
| // |
| // P1 should be the type of the object that will be received of the method. |
| template <bool IsMethod, typename P1> |
| struct IsWeakMethod : public false_type {}; |
| |
| template <typename T> |
| struct IsWeakMethod<true, WeakPtr<T> > : public true_type {}; |
| |
| template <typename T> |
| struct IsWeakMethod<true, ConstRefWrapper<WeakPtr<T> > > : public true_type {}; |
| |
| } // namespace internal |
| |
| template <typename T> |
| static inline internal::UnretainedWrapper<T> Unretained(T* o) { |
| return internal::UnretainedWrapper<T>(o); |
| } |
| |
| template <typename T> |
| static inline internal::ConstRefWrapper<T> ConstRef(const T& o) { |
| return internal::ConstRefWrapper<T>(o); |
| } |
| |
| template <typename T> |
| static inline internal::OwnedWrapper<T> Owned(T* o) { |
| return internal::OwnedWrapper<T>(o); |
| } |
| |
| // We offer 2 syntaxes for calling Passed(). The first takes a temporary and |
| // is best suited for use with the return value of a function. The second |
| // takes a pointer to the scoper and is just syntactic sugar to avoid having |
| // to write Passed(scoper.Pass()). |
| template <typename T> |
| static inline internal::PassedWrapper<T> Passed(T scoper) { |
| return internal::PassedWrapper<T>(scoper.Pass()); |
| } |
| template <typename T> |
| static inline internal::PassedWrapper<T> Passed(T* scoper) { |
| return internal::PassedWrapper<T>(scoper->Pass()); |
| } |
| |
| template <typename T> |
| static inline internal::IgnoreResultHelper<T> IgnoreResult(T data) { |
| return internal::IgnoreResultHelper<T>(data); |
| } |
| |
| template <typename T> |
| static inline internal::IgnoreResultHelper<Callback<T> > |
| IgnoreResult(const Callback<T>& data) { |
| return internal::IgnoreResultHelper<Callback<T> >(data); |
| } |
| |
| BASE_EXPORT void DoNothing(); |
| |
| template<typename T> |
| void DeletePointer(T* obj) { |
| delete obj; |
| } |
| |
| // ScopedClosureRunner is akin to scoped_ptr for Closures. It ensures that the |
| // Closure is executed and deleted no matter how the current scope exits. |
| class BASE_EXPORT ScopedClosureRunner { |
| public: |
| explicit ScopedClosureRunner(const Closure& closure); |
| ~ScopedClosureRunner(); |
| |
| Closure Release(); |
| |
| private: |
| Closure closure_; |
| |
| DISALLOW_IMPLICIT_CONSTRUCTORS(ScopedClosureRunner); |
| }; |
| |
| } // namespace base |
| |
| #endif // BASE_BIND_HELPERS_H_ |