| // Copyright 2014 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "cobalt/math/cubic_bezier.h" |
| |
| #include <algorithm> |
| #include <cmath> |
| |
| #include "base/logging.h" |
| |
| namespace cobalt { |
| namespace math { |
| |
| namespace { |
| |
| static const double kBezierEpsilon = 1e-7; |
| static const int MAX_STEPS = 30; |
| |
| static double eval_bezier(double p1, double p2, double t) { |
| const double p1_times_3 = 3.0 * p1; |
| const double p2_times_3 = 3.0 * p2; |
| const double h3 = p1_times_3; |
| const double h1 = p1_times_3 - p2_times_3 + 1.0; |
| const double h2 = p2_times_3 - 6.0 * p1; |
| return t * (t * (t * h1 + h2) + h3); |
| } |
| |
| static double eval_bezier_derivative(double p1, double p2, double t) { |
| const double h1 = 9.0 * p1 - 9.0 * p2 + 3.0; |
| const double h2 = 6.0 * p2 - 12.0 * p1; |
| const double h3 = 3.0 * p1; |
| return t * (t * h1 + h2) + h3; |
| } |
| |
| // Finds t such that eval_bezier(x1, x2, t) = x. |
| // There is a unique solution if x1 and x2 lie within (0, 1). |
| static double bezier_interp(double x1, double x2, double x) { |
| DCHECK_GE(1.0, x1); |
| DCHECK_LE(0.0, x1); |
| DCHECK_GE(1.0, x2); |
| DCHECK_LE(0.0, x2); |
| |
| x1 = std::min(std::max(x1, 0.0), 1.0); |
| x2 = std::min(std::max(x2, 0.0), 1.0); |
| |
| // We use Newton's Method to solve this problem, since x can be outside of |
| // the range [0, 1] and the bisection method can only search within a finite |
| // range. We fall back to the bisection method for a single step if the |
| // derivative of the function is smaller than the step size at that step, |
| // implying instability. |
| double t = 0.0; |
| double step = 1.0; |
| for (int i = 0; i < MAX_STEPS; ++i, step *= 0.5) { |
| const double error = eval_bezier(x1, x2, t) - x; |
| if (std::abs(error) < kBezierEpsilon) break; |
| |
| const double derivative = eval_bezier_derivative(x1, x2, t); |
| |
| if (std::abs(derivative) < step) { |
| t += error > 0.0 ? -step : step; |
| } else { |
| const double newton_step = -error / derivative; |
| t += newton_step; |
| } |
| } |
| |
| // We should have terminated the above loop because we got close to x, not |
| // because we exceeded MAX_STEPS. Warn if this is not the case. |
| if (std::abs(eval_bezier(x1, x2, t) - x) > kBezierEpsilon) { |
| DLOG(WARNING) << "Notable error detected in bezier evaluation."; |
| } |
| |
| return t; |
| } |
| |
| } // namespace |
| |
| CubicBezier::CubicBezier(double x1, double y1, double x2, double y2) |
| : x1_(x1), y1_(y1), x2_(x2), y2_(y2) {} |
| |
| CubicBezier::~CubicBezier() {} |
| |
| double CubicBezier::Solve(double x) const { |
| return eval_bezier(y1_, y2_, bezier_interp(x1_, x2_, x)); |
| } |
| |
| double CubicBezier::Slope(double x) const { |
| double t = bezier_interp(x1_, x2_, x); |
| double dx_dt = eval_bezier_derivative(x1_, x2_, t); |
| double dy_dt = eval_bezier_derivative(y1_, y2_, t); |
| return dy_dt / dx_dt; |
| } |
| |
| void CubicBezier::Range(double* min, double* max) const { |
| *min = 0; |
| *max = 1; |
| if (0 <= y1_ && y1_ < 1 && 0 <= y2_ && y2_ <= 1) return; |
| |
| // Represent the function's derivative in the form at^2 + bt + c. |
| // (Technically this is (dy/dt)*(1/3), which is suitable for finding zeros |
| // but does not actually give the slope of the curve.) |
| double a = 3 * (y1_ - y2_) + 1; |
| double b = 2 * (y2_ - 2 * y1_); |
| double c = y1_; |
| |
| // Check if the derivative is constant. |
| if (std::abs(a) < kBezierEpsilon && std::abs(b) < kBezierEpsilon) return; |
| |
| // Zeros of the function's derivative. |
| double t_1 = 0; |
| double t_2 = 0; |
| |
| if (std::abs(a) < kBezierEpsilon) { |
| // The function's derivative is linear. |
| t_1 = -c / b; |
| } else { |
| // The function's derivative is a quadratic. We find the zeros of this |
| // quadratic using the quadratic formula. |
| double discriminant = b * b - 4 * a * c; |
| if (discriminant < 0) return; |
| double discriminant_sqrt = sqrt(discriminant); |
| t_1 = (-b + discriminant_sqrt) / (2 * a); |
| t_2 = (-b - discriminant_sqrt) / (2 * a); |
| } |
| |
| double sol_1 = 0; |
| double sol_2 = 0; |
| |
| if (0 < t_1 && t_1 < 1) sol_1 = eval_bezier(y1_, y2_, t_1); |
| |
| if (0 < t_2 && t_2 < 1) sol_2 = eval_bezier(y1_, y2_, t_2); |
| |
| *min = std::min(std::min(*min, sol_1), sol_2); |
| *max = std::max(std::max(*max, sol_1), sol_2); |
| } |
| |
| } // namespace math |
| } // namespace cobalt |