| // Copyright 2014 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #ifndef COBALT_MATH_CUBIC_BEZIER_H_ |
| #define COBALT_MATH_CUBIC_BEZIER_H_ |
| |
| namespace cobalt { |
| namespace math { |
| |
| // CubicBezier implements functionality required to evaluate the cubic-bezier() |
| // class of timing functions as defined here: |
| // https://developer.mozilla.org/en-US/docs/Web/CSS/timing-function |
| // |
| // A cubic Bezier curve is defined by four points P0, P1, P2, and P3. |
| // P0 and P3 are the start and the end of the curve and in CSS these points |
| // are fixed and defined as (0, 0) and (1, 1) respectively. |
| // |
| // Given P1=(x1, y1) and P2=(x2, y2), for each x in [0, 1] the following code |
| // will find y, such that P=(x, y) resides on the curve. |
| // |
| // const CubicBezier curve(x1, y1, x2, y2); |
| // const double y = curve.Solve(x); |
| // |
| class CubicBezier { |
| public: |
| CubicBezier(double x1, double y1, double x2, double y2); |
| ~CubicBezier(); |
| |
| // Returns an approximation of y at the given x. |
| double Solve(double x) const; |
| |
| // Returns an approximation of dy/dx at the given x. |
| double Slope(double x) const; |
| |
| // Sets |min| and |max| to the bezier's minimum and maximum y values in the |
| // interval [0, 1]. |
| void Range(double* min, double* max) const; |
| |
| double x1() const { return x1_; } |
| double y1() const { return y1_; } |
| double x2() const { return x2_; } |
| double y2() const { return y2_; } |
| |
| bool operator==(const CubicBezier& other) const { |
| return x1_ == other.x1_ && y1_ == other.y1_ && x2_ == other.x2_ && |
| y2_ == other.y2_; |
| } |
| |
| private: |
| double x1_; |
| double y1_; |
| double x2_; |
| double y2_; |
| }; |
| |
| } // namespace math |
| } // namespace cobalt |
| |
| #endif // COBALT_MATH_CUBIC_BEZIER_H_ |