blob: 3fbc588ea1cf775dba168e152b8b4a4ea422f7a5 [file] [log] [blame]
// Copyright 2019 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
/*=============================================================================
This is a convenience script for debugging with WinDbg (akin to gdbinit)
It can be loaded into WinDbg with: .scriptload full_path\windbg.js
To printout the help message below into the debugger's command window:
!help
=============================================================================*/
function help() {
if (supports_call_command()) {
print("--------------------------------------------------------------------");
print(" LIVE debugging only");
print("--------------------------------------------------------------------");
print(" !jlh(\"local_handle_var_name\")");
print(" prints object held by the handle");
print(" e.g. !jlh(\"key\") or !jlh(\"this->receiver_\")");
print(" !job(address_or_taggedint)");
print(" prints object at the address, e.g. !job(0x235cb869f9)");
print(" !jst() or !jst");
print(" prints javascript stack (output goes into the console)");
print(" !jsbp() or !jsbp");
print(" sets bp in v8::internal::Execution::Call");
print("");
}
print("--------------------------------------------------------------------");
print(" Setup of the script");
print("--------------------------------------------------------------------");
print(" !set_module(\"module_name_no_extension\")");
print(" we'll try the usual suspects for where v8's code might have");
print(" been linked into, but you can also set it manually,");
print(" e.g. !set_module(\"v8_for_testing\")");
print(" !set_iso(isolate_address)");
print(" call this function before using !mem or other heap routines");
print("");
print("--------------------------------------------------------------------");
print(" Managed heap");
print("--------------------------------------------------------------------");
print(" !mem or !mem(\"space1[ space2 ...]\")");
print(" prints memory chunks from the 'space' owned by the heap in the");
print(" isolate set by !set_iso; valid values for 'space' are:");
print(" new, old, map, code, lo [large], nlo [newlarge], ro [readonly]");
print(" if no 'space' specified prints memory chunks for all spaces,");
print(" e.g. !mem(\"code\"), !mem(\"ro new old\")");
print(" !where(address)");
print(" prints name of the space and address of the MemoryChunk the");
print(" 'address' is from, e.g. !where(0x235cb869f9)");
print(" !rs(chunk_address, set_id = 0)");
print(" prints slots from the remembered set in the MemoryChunk. If");
print(" 'chunk_address' isn't specified, prints for all chunks in the");
print(" old space; 'set_id' should match RememberedSetType enum,");
print(" e.g. !rs, !rs 0x2fb14780000, !rs(0x2fb14780000, 1)");
print("");
print("--------------------------------------------------------------------");
print(" Managed objects");
print("--------------------------------------------------------------------");
print(" !jot(tagged_addr, depth)");
print(" dumps the tree of objects using 'tagged_addr' as a root,");
print(" assumes that pointer fields are aligned at ptr_size boundary,");
print(" unspecified depth means 'unlimited',");
print(" e.g. !jot(0x235cb869f9, 2), !jot 0x235cb869f9");
print(" !jo_in_range(start_addr, end_addr)");
print(" prints address/map pointers of objects found inside the range");
print(" specified by 'start_addr' and 'end_addr', assumes the object");
print(" pointers to be aligned at ptr_size boundary,");
print(" e.g. !jo_in_range(0x235cb869f8 - 0x100, 0x235cb869f8 + 0x1a0");
print(" !jo_prev(address, max_slots = 100)");
print(" prints address and map pointer of the nearest object within");
print(" 'max_slots' before the given 'address', assumes the object");
print(" pointers to be aligned at ptr_size boundary,");
print(" e.g. !jo_prev 0x235cb869f8, !jo_prev(0x235cb869f9, 16)");
print(" !jo_next(address, max_slots = 100)");
print(" prints address and map pointer of the nearest object within");
print(" 'max_slots' following the given 'address', assumes the object");
print(" pointers to be aligned at ptr_size boundary,");
print(" e.g. !jo_next 0x235cb869f8, !jo_next(0x235cb869f9, 20)");
print("");
print("--------------------------------------------------------------------");
print(" Miscellaneous");
print("--------------------------------------------------------------------");
print(" !dp(address, count = 10)");
print(" similar to the built-in 'dp' command but augments output with");
print(" more data for values that are managed pointers, note that it");
print(" aligns the given 'address' at ptr_sized boundary,");
print(" e.g. !dp 0x235cb869f9, !dp(0x235cb869f9, 500), !dp @rsp");
print(" !handles(print_handles = false)");
print(" prints stats for handles, if 'print_handles' is true will");
print(" output all handles as well,");
print(" e.g. !handles, !handles(), !handles(true)");
print("");
print("--------------------------------------------------------------------");
print(" To run any function from this script (live or postmortem):");
print("");
print(" dx @$scriptContents.function_name(args)");
print(" e.g. dx @$scriptContents.pointer_size()");
print(" e.g. dx @$scriptContents.is_map(0x235cb869f9)");
print("--------------------------------------------------------------------");
}
/*=============================================================================
On scrip load
=============================================================================*/
/*=============================================================================
Output
=============================================================================*/
function print(s) {
host.diagnostics.debugLog(s + "\n");
}
function inspect(s) {
for (let k of Reflect.ownKeys(s)) {
// Attempting to print either of:
// 'Reflect.get(s, k)', 'typeof Reflect.get(s, k)', 's[k]'
// might throw: "Error: Object does not have a size",
// while 'typeof s[k]' returns 'undefined' and prints the full list of
// properties. Oh well...
print(`${k} => ${typeof s[k]}`);
}
}
function hex(number) {
return `0x${number.toString(16)}`;
}
/*=============================================================================
Utils (postmortem and live)
=============================================================================*/
// WinDbg wraps large integers (0x80000000+) into an object of library type that
// fails isInteger test (and, consequently fail isSafeInteger test even if the
// original value was a safe integer).
// However, that library type does have a set of methods on it which you can use
// to force conversion:
// .asNumber() / .valueOf(): Performs conversion to JavaScript number.
// Throws if the ordinal part of the 64-bit number does not pack into JavaScript
// number without loss of precision.
// .convertToNumber(): Performs conversion to JavaScript number.
// Does NOT throw if the ordinal part of the 64-bit number does not pack into
// JavaScript number. This will simply result in loss of precision.
// The library will also add these methods to the prototype for the standard
// number prototype. Meaning you can always .asNumber() / .convertToNumber() to
// get either JavaScript number or the private Int64 type into a JavaScript
// number.
// We could use the conversion functions but it seems that doing the conversion
// via toString is just as good and slightly more generic...
function int(val) {
if (typeof val === 'number') {
return Number.isInteger(val) ? val : undefined;
}
if (typeof val === 'object') {
let n = parseInt(val.toString());
return isNaN(n) ? undefined : n;
}
return undefined;
}
function is_live_session() {
// Assume that there is a single session (not sure how to get multiple ones
// going, maybe, in kernel debugging?).
return (host.namespace.Debugger.Sessions[0].Attributes.Target.IsLiveTarget);
}
function is_TTD_session() {
// Assume that there is a single session (not sure how to get multiple ones
// going, maybe, in kernel debugging?).
return (host.namespace.Debugger.Sessions[0].Attributes.Target.IsTTDTarget);
}
function supports_call_command() {
return is_live_session() && !is_TTD_session();
}
function cast(address, type_name) {
return host.createTypedObject(address, module_name(), type_name);
}
function pointer_size() {
return host.namespace.Debugger.Sessions[0].Attributes.Machine.PointerSize;
}
function poi(address) {
try {
// readMemoryValues throws if cannot read from 'address'.
return host.memory.readMemoryValues(address, 1, pointer_size())[0];
}
catch (e){}
}
function get_register(name) {
return host.namespace.Debugger.State.DebuggerVariables.curthread
.Registers.User[name];
}
// JS doesn't do bitwise operations on large integers, so let's do it ourselves
// using hex string representation.
function bitwise_and(l, r) {
l = hex(l);
let l_length = l.length;
r = hex(r);
let r_length = r.length;
let res = "";
let length = Math.min(l_length, r_length) - 2; // to account for "0x"
for (let i = 1; i <= length; i++) {
res = (parseInt(l[l_length - i], 16) & parseInt(r[r_length - i], 16))
.toString(16) + res;
}
return parseInt(res, 16);
}
/*=============================================================================
Script setup
=============================================================================*/
// In debug builds v8 code is compiled into v8.dll, and in release builds
// the code is compiled directly into the executable. If you are debugging some
// other embedder, run !set_module and provide the module name to use.
const known_exes = ["d8", "unittests", "mksnapshot", "chrome", "chromium"];
let module_name_cache;
function module_name(use_this_module) {
if (use_this_module) {
module_name_cache = use_this_module;
}
if (!module_name_cache) {
let v8 = host.namespace.Debugger.State.DebuggerVariables.curprocess
.Modules.Where(
function(m) {
return m.Name.indexOf("\\v8.dll") !== -1;
});
let v8_test = host.namespace.Debugger.State.DebuggerVariables.curprocess
.Modules.Where(
function(m) {
return m.Name.indexOf("\\v8_for_testing.dll") !== -1;
});
if (v8.Count() > 0) {
module_name_cache = "v8";
}
else if (v8_test.Count() > 0) {
module_name_cache = "v8_for_testing";
}
else {
for (let exe_name in known_exes) {
let exe = host.namespace.Debugger.State.DebuggerVariables.curprocess
.Modules.Where(
function(m) {
return m.Name.indexOf(`\\${exe_name}.exe`) !== -1;
});
if (exe.Count() > 0) {
module_name_cache = exe_name;
break;
}
}
}
}
if (!module_name_cache) {
print(`ERROR. Couldn't determine module name for v8's symbols.`);
print(`Please run !set_module (e.g. "!set_module \"v8_for_testing\"")`);
}
return module_name_cache;
};
let using_ptr_compr = false;
let isolate_address = 0;
function set_isolate_address(addr, ptr_compr) {
isolate_address = addr;
if (typeof ptr_compr === 'undefined') {
ptr_compr = (bitwise_and(isolate_address, 0xffffffff) == 0);
}
using_ptr_compr = ptr_compr;
if (using_ptr_compr) {
print("The target is using pointer compression.");
}
}
/*=============================================================================
Wrappers around V8's printing functions and other utils for live-debugging
=============================================================================*/
function make_call(fn) {
if (!supports_call_command()) {
print("ERROR: This command is supported in live sessions only!");
return;
}
// .call resets current frame to the top one, so have to manually remember
// and restore it after making the call.
let curframe = host.namespace.Debugger.State.DebuggerVariables.curframe;
let ctl = host.namespace.Debugger.Utility.Control;
let output = ctl.ExecuteCommand(`.call ${fn};g`);
curframe.SwitchTo();
return output;
}
function print_object(address) {
let output = make_call(`_v8_internal_Print_Object(${decomp(address)})`);
// skip the first few lines with meta info of .call command
let skip_line = true;
for (let line of output) {
if (!skip_line) {
print(line);
continue;
}
if (line.includes("deadlocks and corruption of the debuggee")) {
skip_line = false;
}
}
}
function print_object_from_handle(handle_to_object) {
let handle = host.evaluateExpression(handle_to_object);
let location = handle.location_;
let pobj = poi(location.address); // handles use uncompressed pointers
print_object(pobj);
}
function print_js_stack() {
make_call("_v8_internal_Print_StackTrace()");
}
function set_user_js_bp() {
let ctl = host.namespace.Debugger.Utility.Control;
ctl.ExecuteCommand(`bp ${module_name()}!v8::internal::Execution::Call`)
}
/*=============================================================================
Managed heap related functions (live and post-mortem debugging)
=============================================================================*/
/*-----------------------------------------------------------------------------
Pointer compression
-----------------------------------------------------------------------------*/
function tagged_size() {
return using_ptr_compr ? 4 : pointer_size();
}
function get_compressed_ptr_base() {
if (!using_ptr_compr) return 0;
return isolate_address;
}
function decomp(value) {
if (value > 0xffffffff) return value;
return get_compressed_ptr_base() + value;
}
// Adjust for possible pointer compression ('address' is assumed to be on the
// managed heap).
function poim(address) {
try {
// readMemoryValues throws if cannot read from 'address'.
return host.memory.readMemoryValues(decomp(address), 1, tagged_size())[0];
}
catch (e){}
}
/*-----------------------------------------------------------------------------
Exploring objects
-----------------------------------------------------------------------------*/
function is_map(addr) {
let address = int(addr);
if (!Number.isSafeInteger(address) || address % 2 == 0) return false;
// the first field in all objects, including maps, is a map pointer, but for
// maps the pointer is always the same - the meta map that points to itself.
const map_addr = int(poim(address - 1));
if (!Number.isSafeInteger(map_addr)) return false;
const map_map_addr = int(poim(map_addr - 1));
if (!Number.isSafeInteger(map_map_addr)) return false;
return (map_addr === map_map_addr);
}
function is_likely_object(addr) {
let address = int(addr);
if (!Number.isSafeInteger(address) || address % 2 == 0) return false;
// the first field in all objects must be a map pointer
return is_map(poim(address - 1));
}
function find_object_near(aligned_addr, max_distance, step_op) {
if (!step_op) {
const step = tagged_size();
const prev =
find_object_near(aligned_addr, max_distance, x => x - step);
const next =
find_object_near(aligned_addr, max_distance, x => x + step);
if (!prev) return next;
if (!next) return prev;
return (addr - prev <= next - addr) ? prev : next;
}
let maybe_map_addr = poim(aligned_addr);
let iters = 0;
while (maybe_map_addr && iters < max_distance) {
if (is_map(maybe_map_addr)) {
return aligned_addr;
}
aligned_addr = step_op(aligned_addr);
maybe_map_addr = poim(aligned_addr);
iters++;
}
}
function find_object_prev(addr, max_distance) {
if (!Number.isSafeInteger(int(addr))) return;
const ptr_size = tagged_size();
const aligned_addr = addr - (addr % ptr_size);
return find_object_near(aligned_addr, max_distance, x => x - ptr_size);
}
function find_object_next(addr, max_distance) {
if (!Number.isSafeInteger(int(addr))) return;
const ptr_size = tagged_size();
const aligned_addr = addr - (addr % ptr_size) + ptr_size;
return find_object_near(aligned_addr, max_distance, x => x + ptr_size);
}
function print_object_prev(addr, max_slots = 100) {
let obj_addr = find_object_prev(addr, max_slots);
if (!obj_addr) {
print(
`No object found within ${max_slots} slots prior to ${hex(addr)}`);
}
else {
print(
`found object: ${hex(obj_addr + 1)} : ${hex(poim(obj_addr))}`);
}
}
function print_object_next(addr, max_slots = 100) {
let obj_addr = find_object_next(addr, max_slots);
if (!obj_addr) {
print(
`No object found within ${max_slots} slots following ${hex(addr)}`);
}
else {
print(
`found object: ${hex(obj_addr + 1)} : ${hex(poim(obj_addr))}`);
}
}
// This function assumes that pointers to objects are stored at ptr-size aligned
// boundaries.
function print_objects_in_range(start, end){
if (!Number.isSafeInteger(int(start)) || !Number.isSafeInteger(int(end))) {
return;
}
const ptr_size = pointer_size();
if (start < ptr_size || end <= start) return;
let iters = (end - start) / ptr_size;
let cur = start - ptr_size;
print(`===============================================`);
print(`objects in range ${hex(start)} - ${hex(end)}`);
print(`===============================================`);
let count = 0;
while (cur && cur < end) {
let obj = find_object_next(cur, iters);
if (obj) {
count++;
print(`${hex(obj + 1)} : ${hex(poim(obj))}`);
iters = (end - cur) / ptr_size;
}
cur = obj + ptr_size;
}
print(`===============================================`);
print(`found ${count} objects in range ${hex(start)} - ${hex(end)}`)
print(`===============================================`);
}
// This function assumes the pointer fields to be ptr-size aligned.
function print_objects_tree(root, depth_limit) {
if(!is_likely_object(root)) {
print(`${hex(root)} doesn't look like an object`);
return;
}
let path = [];
function impl(obj, depth, depth_limit) {
const ptr_size = tagged_size();
// print the current object and its map pointer
const this_obj =
`${" ".repeat(2 * depth)}${hex(obj)} : ${hex(poim(obj - 1))}`;
const cutoff = depth_limit && depth == depth_limit - 1;
print(`${this_obj}${cutoff ? " (...)" : ""}`);
if (cutoff) return;
path[depth] = obj;
path.length = depth + 1;
let cur = obj - 1 + ptr_size;
// Scan downwards until an address that is likely to be at the start of
// another object, in which case it's time to pop out from the recursion.
let iter = 0; // an arbitrary guard to avoid hanging the debugger
let seen = new Set(path);
while (!is_likely_object(cur + 1) && iter < 100) {
iter++;
let field = poim(cur);
if (is_likely_object(field)) {
if (seen.has(field)) {
print(
`${" ".repeat(2 * depth + 2)}cycle: ${hex(cur)}->${hex(field)}`);
}
else {
impl(field, depth + 1, depth_limit);
}
}
cur += ptr_size;
}
}
print(`===============================================`);
impl(root, 0, depth_limit);
print(`===============================================`);
}
/*-----------------------------------------------------------------------------
Memory spaces
-----------------------------------------------------------------------------*/
const NEVER_EVACUATE = 1 << 7; // see src\heap\spaces.h
function print_memory_chunk_list(space_type, front, top, age_mark) {
let alloc_pos = top ? ` (allocating at: ${top})` : "";
let age_mark_pos = age_mark ? ` (age_mark at: ${top})` : "";
print(`${space_type}${alloc_pos}${age_mark_pos}:`);
if (front.isNull) {
print("<empty>\n");
return;
}
let cur = front;
while (!cur.isNull) {
let imm = cur.flags_ & NEVER_EVACUATE ? "*" : " ";
let addr = hex(cur.address);
let area = `${hex(cur.area_start_)} - ${hex(cur.area_end_)}`;
let dt = `dt ${addr} ${module_name()}!v8::internal::MemoryChunk`;
print(`${imm} ${addr}:\t ${area} (${hex(cur.size_)}) : ${dt}`);
cur = cur.list_node_.next_;
}
print("");
}
const space_tags =
['old', 'new_to', 'new_from', 'ro', 'map', 'code', 'lo', 'nlo'];
function get_chunks_space(space_tag, front, chunks) {
let cur = front;
while (!cur.isNull) {
chunks.push({
'address':cur.address,
'area_start_':cur.area_start_,
'area_end_':cur.area_end_,
'space':space_tag});
cur = cur.list_node_.next_;
}
}
function get_chunks() {
let iso = cast(isolate_address, "v8::internal::Isolate");
let h = iso.heap_;
let chunks = [];
get_chunks_space('old', h.old_space_.memory_chunk_list_.front_, chunks);
get_chunks_space('new_to',
h.new_space_.to_space_.memory_chunk_list_.front_, chunks);
get_chunks_space('new_from',
h.new_space_.from_space_.memory_chunk_list_.front_, chunks);
get_chunks_space('ro', h.read_only_space_.memory_chunk_list_.front_, chunks);
get_chunks_space('map', h.map_space_.memory_chunk_list_.front_, chunks);
get_chunks_space('code', h.code_space_.memory_chunk_list_.front_, chunks);
get_chunks_space('lo', h.lo_space_.memory_chunk_list_.front_, chunks);
get_chunks_space('nlo', h.new_lo_space_.memory_chunk_list_.front_, chunks);
return chunks;
}
function find_chunk(address) {
if (!Number.isSafeInteger(int(address))) return undefined;
let chunks = get_chunks(isolate_address);
for (let c of chunks) {
let chunk = cast(c.address, "v8::internal::MemoryChunk");
if (address >= chunk.area_start_ && address < chunk.area_end_) {
return c;
}
}
return undefined;
}
function print_memory(space = "all") {
if (isolate_address == 0) {
print("Please call !set_iso(isolate_address) first.");
return;
}
let iso = cast(isolate_address, "v8::internal::Isolate");
let h = iso.heap_;
print(`Heap at ${h.targetLocation}`);
let st = space.toLowerCase().split(" ");
print("Im address:\t object area start - end (size)");
if (st.includes("all") || st.includes("old")) {
print_memory_chunk_list("OldSpace",
h.old_space_.memory_chunk_list_.front_,
h.old_space_.allocation_info_.top_);
}
if (st.includes("all") || st.includes("new")) {
// new space doesn't use the chunk list from its base class but from
// the to/from semi-spaces it points to
print_memory_chunk_list("NewSpace_To",
h.new_space_.to_space_.memory_chunk_list_.front_,
h.new_space_.allocation_info_.top_,
h.new_space_.to_space_.age_mark_);
print_memory_chunk_list("NewSpace_From",
h.new_space_.from_space_.memory_chunk_list_.front_);
}
if (st.includes("all") || st.includes("map")) {
print_memory_chunk_list("MapSpace",
h.map_space_.memory_chunk_list_.front_,
h.map_space_.allocation_info_.top_);
}
if (st.includes("all") || st.includes("code")) {
print_memory_chunk_list("CodeSpace",
h.code_space_.memory_chunk_list_.front_,
h.code_space_.allocation_info_.top_);
}
if (st.includes("all") || st.includes("large") || st.includes("lo")) {
print_memory_chunk_list("OldLargeObjectSpace",
h.lo_space_.memory_chunk_list_.front_);
}
if (st.includes("all") || st.includes("newlarge") || st.includes("nlo")) {
print_memory_chunk_list("NewLargeObjectSpace",
h.new_lo_space_.memory_chunk_list_.front_);
}
if (st.includes("all") || st.includes("readonly") || st.includes("ro")) {
print_memory_chunk_list("ReadOnlySpace",
h.read_only_space_.memory_chunk_list_.front_);
}
}
function print_owning_space(address) {
if (isolate_address == 0) {
print("Please call !set_iso(isolate_address) first.");
return;
}
address = decomp(address);
let c = find_chunk(address);
if (c) {
print(`${hex(address)} is in ${c.space} (chunk: ${hex(c.address)})`);
}
else {
print(`Address ${hex(address)} is not in managed heap`);
}
}
/*-----------------------------------------------------------------------------
Handles
-----------------------------------------------------------------------------*/
function print_handles_data(print_handles = false) {
if (isolate_address == 0) {
print("Please call !set_iso(isolate_address) first.");
return;
}
let iso = cast(isolate_address, "v8::internal::Isolate");
let hsd = iso.handle_scope_data_;
let hsimpl = iso.handle_scope_implementer_;
// depth level
print(`Nested depth level: ${hsd.level}`);
// count of handles
const ptr_size = pointer_size();
let blocks = hsimpl.blocks_;
const block_size = 1022; // v8::internal::KB - 2
const first_block = blocks.data_.address;
const last_block = (blocks.size_ == 0)
? first_block
: first_block + ptr_size * (blocks.size_ - 1);
const count = (blocks.size_ == 0)
? 0
: (blocks.size_ - 1) * block_size +
(hsd.next.address - poi(last_block))/ptr_size;
print(`Currently tracking ${count} local handles`);
// print the handles
if (print_handles && count > 0) {
for (let block = first_block; block < last_block;
block += block_size * ptr_size) {
print(`Handles in block at ${hex(block)}`);
for (let i = 0; i < block_size; i++) {
const location = poi(block + i * ptr_size);
print(` ${hex(location)}->${hex(poi(location))}`);
}
}
let location = poi(last_block);
print(`Handles in block at ${hex(last_block)}`);
for (let location = poi(last_block); location < hsd.next.address;
location += ptr_size) {
print(` ${hex(location)}->${hex(poi(location))}`);
}
}
// where will the next handle allocate at?
const prefix = "Next handle's location will be";
if (hsd.next.address < hsd.limit.address) {
print(`${prefix} at ${hex(hsd.next.address)}`);
}
else if (hsimpl.spare_) {
const location = hsimpl.spare_.address;
print(`${prefix} from the spare block at ${hex(location)}`);
}
else {
print(`${prefix} from a new block to be allocated`);
}
}
/*-----------------------------------------------------------------------------
dp
-----------------------------------------------------------------------------*/
function pad_right(addr) {
let addr_hex = hex(addr);
return `${addr_hex}${" ".repeat(pointer_size() * 2 + 2 - addr_hex.length)}`;
}
// TODO irinayat: would be nice to identify handles and smi as well
function dp(addr, count = 10) {
if (isolate_address == 0) {
print(`To see where objects are located, run !set_iso.`);
}
if (!Number.isSafeInteger(int(addr))) {
print(`${hex(addr)} doesn't look like a valid address`);
return;
}
const ptr_size = tagged_size();
let aligned_addr = addr - (addr % ptr_size);
let val = poim(aligned_addr);
let iter = 0;
while (val && iter < count) {
const map = is_map(val);
const obj = is_likely_object(val) && !map;
const augm_map = map ? "map" : "";
const augm_obj = obj ? "obj" : "";
const augm_other = !map && !obj ? "val" : "";
let c = find_chunk(decomp(val));
const augm_space = c ? ` in ${c.space}` : "";
const augm = `${augm_map}${augm_obj}${augm_other}${augm_space}`;
const full_ptr = using_ptr_compr ?
pad_right((map || obj) ? decomp(val) : val) : "";
print(`${pad_right(aligned_addr)} ${pad_right(val)} ${full_ptr} ${augm}`);
aligned_addr += ptr_size;
val = poim(aligned_addr);
iter++;
}
}
/*-----------------------------------------------------------------------------
Remembered Sets
-----------------------------------------------------------------------------*/
// set ids: 0 = OLD_TO_NEW, 1 = 0 = OLD_TO_OLD
function print_remembered_set(chunk_addr, set_id = 0) {
if (!chunk_addr) {
if (isolate_address == 0) {
print("Please call !set_iso(isolate_address) or provide chunk address.");
return;
}
let iso = cast(isolate_address, "v8::internal::Isolate");
let h = iso.heap_;
let chunks = [];
get_chunks_space('old', h.old_space_.memory_chunk_list_.front_, chunks);
get_chunks_space('lo', h.lo_space_.memory_chunk_list_.front_, chunks);
for (let c of chunks) {
try {
print_remembered_set(c.address);
}
catch (e) {
print(`failed to process chunk ${hex(c.address)} due to ${e.message}`);
}
}
return;
}
print(`Remembered set in chunk ${hex(chunk_addr)}`);
let chunk = cast(chunk_addr, "v8::internal::MemoryChunk");
// chunk.slot_set_ is an array of SlotSet's. For standard pages there is 0 or
// 1 item in the array, but for large pages there will be more.
const page_size = 256 * 1024;
const sets_count = Math.floor((chunk.size_ + page_size - 1) / page_size);
let rs = chunk.slot_set_[set_id];
if (rs.isNull) {
print(` <empty>`);
return;
}
if (rs[0].page_start_ != chunk_addr) {
print(`page_start_ [${hex(rs.page_start_)}] doesn't match chunk_addr!`);
return;
}
const ptr_size = tagged_size();
let count = 0;
for (let s = 0; s < sets_count; s++){
const buckets_count = rs[s].buckets_.Count();
for (let b = 0; b < buckets_count; b++) {
let bucket = rs[s].buckets_[b];
if (bucket.isNull) continue;
// there are 32 cells in each bucket, cell's size is 32 bits
print(` bucket ${hex(bucket.address.asNumber())}:`);
const first_cell = bucket.address.asNumber();
for (let c = 0; c < 32; c++) {
let cell = host.memory.readMemoryValues(
first_cell + c * 4, 1, 4 /*size to read*/)[0];
if (cell == 0) continue;
let mask = 1;
for (let bit = 0; bit < 32; bit++){
if (cell & mask) {
count++;
const slot_offset = (b * 32 * 32 + c * 32 + bit) * ptr_size;
const slot = rs[s].page_start_ + slot_offset;
print(` ${hex(slot)} -> ${hex(poim(slot))}`);
}
mask = mask << 1;
}
}
}
}
if (count == 0) print(` <empty>`);
else print(` ${count} remembered pointers in chunk ${hex(chunk_addr)}`);
}
/*=============================================================================
Initialize short aliased names for the most common commands
=============================================================================*/
function initializeScript() {
return [
new host.functionAlias(help, "help"),
new host.functionAlias(print_object_from_handle, "jlh"),
new host.functionAlias(print_object, "job"),
new host.functionAlias(print_js_stack, "jst"),
new host.functionAlias(set_isolate_address, "set_iso"),
new host.functionAlias(module_name, "set_module"),
new host.functionAlias(print_memory, "mem"),
new host.functionAlias(print_owning_space, "where"),
new host.functionAlias(print_handles_data, "handles"),
new host.functionAlias(print_remembered_set, "rs"),
new host.functionAlias(print_object_prev, "jo_prev"),
new host.functionAlias(print_object_next, "jo_next"),
new host.functionAlias(print_objects_in_range, "jo_in_range"),
new host.functionAlias(print_objects_tree, "jot"),
new host.functionAlias(dp, "dp"),
new host.functionAlias(set_user_js_bp, "jsbp"),
]
}