| /// @ref gtc_matrix_transform |
| /// @file glm/gtc/matrix_transform.inl |
| |
| #include "../geometric.hpp" |
| #include "../trigonometric.hpp" |
| #include "../matrix.hpp" |
| |
| namespace glm |
| { |
| template <typename T, precision P> |
| GLM_FUNC_QUALIFIER tmat4x4<T, P> translate(tmat4x4<T, P> const & m, tvec3<T, P> const & v) |
| { |
| tmat4x4<T, P> Result(m); |
| Result[3] = m[0] * v[0] + m[1] * v[1] + m[2] * v[2] + m[3]; |
| return Result; |
| } |
| |
| template <typename T, precision P> |
| GLM_FUNC_QUALIFIER tmat4x4<T, P> rotate(tmat4x4<T, P> const & m, T angle, tvec3<T, P> const & v) |
| { |
| T const a = angle; |
| T const c = cos(a); |
| T const s = sin(a); |
| |
| tvec3<T, P> axis(normalize(v)); |
| tvec3<T, P> temp((T(1) - c) * axis); |
| |
| tmat4x4<T, P> Rotate(uninitialize); |
| Rotate[0][0] = c + temp[0] * axis[0]; |
| Rotate[0][1] = temp[0] * axis[1] + s * axis[2]; |
| Rotate[0][2] = temp[0] * axis[2] - s * axis[1]; |
| |
| Rotate[1][0] = temp[1] * axis[0] - s * axis[2]; |
| Rotate[1][1] = c + temp[1] * axis[1]; |
| Rotate[1][2] = temp[1] * axis[2] + s * axis[0]; |
| |
| Rotate[2][0] = temp[2] * axis[0] + s * axis[1]; |
| Rotate[2][1] = temp[2] * axis[1] - s * axis[0]; |
| Rotate[2][2] = c + temp[2] * axis[2]; |
| |
| tmat4x4<T, P> Result(uninitialize); |
| Result[0] = m[0] * Rotate[0][0] + m[1] * Rotate[0][1] + m[2] * Rotate[0][2]; |
| Result[1] = m[0] * Rotate[1][0] + m[1] * Rotate[1][1] + m[2] * Rotate[1][2]; |
| Result[2] = m[0] * Rotate[2][0] + m[1] * Rotate[2][1] + m[2] * Rotate[2][2]; |
| Result[3] = m[3]; |
| return Result; |
| } |
| |
| template <typename T, precision P> |
| GLM_FUNC_QUALIFIER tmat4x4<T, P> rotate_slow(tmat4x4<T, P> const & m, T angle, tvec3<T, P> const & v) |
| { |
| T const a = angle; |
| T const c = cos(a); |
| T const s = sin(a); |
| tmat4x4<T, P> Result; |
| |
| tvec3<T, P> axis = normalize(v); |
| |
| Result[0][0] = c + (static_cast<T>(1) - c) * axis.x * axis.x; |
| Result[0][1] = (static_cast<T>(1) - c) * axis.x * axis.y + s * axis.z; |
| Result[0][2] = (static_cast<T>(1) - c) * axis.x * axis.z - s * axis.y; |
| Result[0][3] = static_cast<T>(0); |
| |
| Result[1][0] = (static_cast<T>(1) - c) * axis.y * axis.x - s * axis.z; |
| Result[1][1] = c + (static_cast<T>(1) - c) * axis.y * axis.y; |
| Result[1][2] = (static_cast<T>(1) - c) * axis.y * axis.z + s * axis.x; |
| Result[1][3] = static_cast<T>(0); |
| |
| Result[2][0] = (static_cast<T>(1) - c) * axis.z * axis.x + s * axis.y; |
| Result[2][1] = (static_cast<T>(1) - c) * axis.z * axis.y - s * axis.x; |
| Result[2][2] = c + (static_cast<T>(1) - c) * axis.z * axis.z; |
| Result[2][3] = static_cast<T>(0); |
| |
| Result[3] = tvec4<T, P>(0, 0, 0, 1); |
| return m * Result; |
| } |
| |
| template <typename T, precision P> |
| GLM_FUNC_QUALIFIER tmat4x4<T, P> scale(tmat4x4<T, P> const & m, tvec3<T, P> const & v) |
| { |
| tmat4x4<T, P> Result(uninitialize); |
| Result[0] = m[0] * v[0]; |
| Result[1] = m[1] * v[1]; |
| Result[2] = m[2] * v[2]; |
| Result[3] = m[3]; |
| return Result; |
| } |
| |
| template <typename T, precision P> |
| GLM_FUNC_QUALIFIER tmat4x4<T, P> scale_slow(tmat4x4<T, P> const & m, tvec3<T, P> const & v) |
| { |
| tmat4x4<T, P> Result(T(1)); |
| Result[0][0] = v.x; |
| Result[1][1] = v.y; |
| Result[2][2] = v.z; |
| return m * Result; |
| } |
| |
| template <typename T> |
| GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> ortho |
| ( |
| T left, T right, |
| T bottom, T top, |
| T zNear, T zFar |
| ) |
| { |
| # if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED |
| return orthoLH(left, right, bottom, top, zNear, zFar); |
| # else |
| return orthoRH(left, right, bottom, top, zNear, zFar); |
| # endif |
| } |
| |
| template <typename T> |
| GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> orthoLH |
| ( |
| T left, T right, |
| T bottom, T top, |
| T zNear, T zFar |
| ) |
| { |
| tmat4x4<T, defaultp> Result(1); |
| Result[0][0] = static_cast<T>(2) / (right - left); |
| Result[1][1] = static_cast<T>(2) / (top - bottom); |
| Result[3][0] = - (right + left) / (right - left); |
| Result[3][1] = - (top + bottom) / (top - bottom); |
| |
| # if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE |
| Result[2][2] = static_cast<T>(1) / (zFar - zNear); |
| Result[3][2] = - zNear / (zFar - zNear); |
| # else |
| Result[2][2] = static_cast<T>(2) / (zFar - zNear); |
| Result[3][2] = - (zFar + zNear) / (zFar - zNear); |
| # endif |
| |
| return Result; |
| } |
| |
| template <typename T> |
| GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> orthoRH |
| ( |
| T left, T right, |
| T bottom, T top, |
| T zNear, T zFar |
| ) |
| { |
| tmat4x4<T, defaultp> Result(1); |
| Result[0][0] = static_cast<T>(2) / (right - left); |
| Result[1][1] = static_cast<T>(2) / (top - bottom); |
| Result[3][0] = - (right + left) / (right - left); |
| Result[3][1] = - (top + bottom) / (top - bottom); |
| |
| # if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE |
| Result[2][2] = - static_cast<T>(1) / (zFar - zNear); |
| Result[3][2] = - zNear / (zFar - zNear); |
| # else |
| Result[2][2] = - static_cast<T>(2) / (zFar - zNear); |
| Result[3][2] = - (zFar + zNear) / (zFar - zNear); |
| # endif |
| |
| return Result; |
| } |
| |
| template <typename T> |
| GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> ortho |
| ( |
| T left, T right, |
| T bottom, T top |
| ) |
| { |
| tmat4x4<T, defaultp> Result(1); |
| Result[0][0] = static_cast<T>(2) / (right - left); |
| Result[1][1] = static_cast<T>(2) / (top - bottom); |
| Result[2][2] = - static_cast<T>(1); |
| Result[3][0] = - (right + left) / (right - left); |
| Result[3][1] = - (top + bottom) / (top - bottom); |
| return Result; |
| } |
| |
| template <typename T> |
| GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> frustum |
| ( |
| T left, T right, |
| T bottom, T top, |
| T nearVal, T farVal |
| ) |
| { |
| # if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED |
| return frustumLH(left, right, bottom, top, nearVal, farVal); |
| # else |
| return frustumRH(left, right, bottom, top, nearVal, farVal); |
| # endif |
| } |
| |
| template <typename T> |
| GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> frustumLH |
| ( |
| T left, T right, |
| T bottom, T top, |
| T nearVal, T farVal |
| ) |
| { |
| tmat4x4<T, defaultp> Result(0); |
| Result[0][0] = (static_cast<T>(2) * nearVal) / (right - left); |
| Result[1][1] = (static_cast<T>(2) * nearVal) / (top - bottom); |
| Result[2][0] = (right + left) / (right - left); |
| Result[2][1] = (top + bottom) / (top - bottom); |
| Result[2][3] = static_cast<T>(1); |
| |
| # if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE |
| Result[2][2] = farVal / (farVal - nearVal); |
| Result[3][2] = -(farVal * nearVal) / (farVal - nearVal); |
| # else |
| Result[2][2] = (farVal + nearVal) / (farVal - nearVal); |
| Result[3][2] = - (static_cast<T>(2) * farVal * nearVal) / (farVal - nearVal); |
| # endif |
| |
| return Result; |
| } |
| |
| template <typename T> |
| GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> frustumRH |
| ( |
| T left, T right, |
| T bottom, T top, |
| T nearVal, T farVal |
| ) |
| { |
| tmat4x4<T, defaultp> Result(0); |
| Result[0][0] = (static_cast<T>(2) * nearVal) / (right - left); |
| Result[1][1] = (static_cast<T>(2) * nearVal) / (top - bottom); |
| Result[2][0] = (right + left) / (right - left); |
| Result[2][1] = (top + bottom) / (top - bottom); |
| Result[2][3] = static_cast<T>(-1); |
| |
| # if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE |
| Result[2][2] = farVal / (nearVal - farVal); |
| Result[3][2] = -(farVal * nearVal) / (farVal - nearVal); |
| # else |
| Result[2][2] = - (farVal + nearVal) / (farVal - nearVal); |
| Result[3][2] = - (static_cast<T>(2) * farVal * nearVal) / (farVal - nearVal); |
| # endif |
| |
| return Result; |
| } |
| |
| template <typename T> |
| GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> perspective(T fovy, T aspect, T zNear, T zFar) |
| { |
| # if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED |
| return perspectiveLH(fovy, aspect, zNear, zFar); |
| # else |
| return perspectiveRH(fovy, aspect, zNear, zFar); |
| # endif |
| } |
| |
| template <typename T> |
| GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> perspectiveRH(T fovy, T aspect, T zNear, T zFar) |
| { |
| assert(abs(aspect - std::numeric_limits<T>::epsilon()) > static_cast<T>(0)); |
| |
| T const tanHalfFovy = tan(fovy / static_cast<T>(2)); |
| |
| tmat4x4<T, defaultp> Result(static_cast<T>(0)); |
| Result[0][0] = static_cast<T>(1) / (aspect * tanHalfFovy); |
| Result[1][1] = static_cast<T>(1) / (tanHalfFovy); |
| Result[2][3] = - static_cast<T>(1); |
| |
| # if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE |
| Result[2][2] = zFar / (zNear - zFar); |
| Result[3][2] = -(zFar * zNear) / (zFar - zNear); |
| # else |
| Result[2][2] = - (zFar + zNear) / (zFar - zNear); |
| Result[3][2] = - (static_cast<T>(2) * zFar * zNear) / (zFar - zNear); |
| # endif |
| |
| return Result; |
| } |
| |
| template <typename T> |
| GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> perspectiveLH(T fovy, T aspect, T zNear, T zFar) |
| { |
| assert(abs(aspect - std::numeric_limits<T>::epsilon()) > static_cast<T>(0)); |
| |
| T const tanHalfFovy = tan(fovy / static_cast<T>(2)); |
| |
| tmat4x4<T, defaultp> Result(static_cast<T>(0)); |
| Result[0][0] = static_cast<T>(1) / (aspect * tanHalfFovy); |
| Result[1][1] = static_cast<T>(1) / (tanHalfFovy); |
| Result[2][3] = static_cast<T>(1); |
| |
| # if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE |
| Result[2][2] = zFar / (zFar - zNear); |
| Result[3][2] = -(zFar * zNear) / (zFar - zNear); |
| # else |
| Result[2][2] = (zFar + zNear) / (zFar - zNear); |
| Result[3][2] = - (static_cast<T>(2) * zFar * zNear) / (zFar - zNear); |
| # endif |
| |
| return Result; |
| } |
| |
| template <typename T> |
| GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> perspectiveFov(T fov, T width, T height, T zNear, T zFar) |
| { |
| # if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED |
| return perspectiveFovLH(fov, width, height, zNear, zFar); |
| # else |
| return perspectiveFovRH(fov, width, height, zNear, zFar); |
| # endif |
| } |
| |
| template <typename T> |
| GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> perspectiveFovRH(T fov, T width, T height, T zNear, T zFar) |
| { |
| assert(width > static_cast<T>(0)); |
| assert(height > static_cast<T>(0)); |
| assert(fov > static_cast<T>(0)); |
| |
| T const rad = fov; |
| T const h = glm::cos(static_cast<T>(0.5) * rad) / glm::sin(static_cast<T>(0.5) * rad); |
| T const w = h * height / width; ///todo max(width , Height) / min(width , Height)? |
| |
| tmat4x4<T, defaultp> Result(static_cast<T>(0)); |
| Result[0][0] = w; |
| Result[1][1] = h; |
| Result[2][3] = - static_cast<T>(1); |
| |
| # if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE |
| Result[2][2] = zFar / (zNear - zFar); |
| Result[3][2] = -(zFar * zNear) / (zFar - zNear); |
| # else |
| Result[2][2] = - (zFar + zNear) / (zFar - zNear); |
| Result[3][2] = - (static_cast<T>(2) * zFar * zNear) / (zFar - zNear); |
| # endif |
| |
| return Result; |
| } |
| |
| template <typename T> |
| GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> perspectiveFovLH(T fov, T width, T height, T zNear, T zFar) |
| { |
| assert(width > static_cast<T>(0)); |
| assert(height > static_cast<T>(0)); |
| assert(fov > static_cast<T>(0)); |
| |
| T const rad = fov; |
| T const h = glm::cos(static_cast<T>(0.5) * rad) / glm::sin(static_cast<T>(0.5) * rad); |
| T const w = h * height / width; ///todo max(width , Height) / min(width , Height)? |
| |
| tmat4x4<T, defaultp> Result(static_cast<T>(0)); |
| Result[0][0] = w; |
| Result[1][1] = h; |
| Result[2][3] = static_cast<T>(1); |
| |
| # if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE |
| Result[2][2] = zFar / (zFar - zNear); |
| Result[3][2] = -(zFar * zNear) / (zFar - zNear); |
| # else |
| Result[2][2] = (zFar + zNear) / (zFar - zNear); |
| Result[3][2] = - (static_cast<T>(2) * zFar * zNear) / (zFar - zNear); |
| # endif |
| |
| return Result; |
| } |
| |
| template <typename T> |
| GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> infinitePerspective(T fovy, T aspect, T zNear) |
| { |
| # if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED |
| return infinitePerspectiveLH(fovy, aspect, zNear); |
| # else |
| return infinitePerspectiveRH(fovy, aspect, zNear); |
| # endif |
| } |
| |
| template <typename T> |
| GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> infinitePerspectiveRH(T fovy, T aspect, T zNear) |
| { |
| T const range = tan(fovy / static_cast<T>(2)) * zNear; |
| T const left = -range * aspect; |
| T const right = range * aspect; |
| T const bottom = -range; |
| T const top = range; |
| |
| tmat4x4<T, defaultp> Result(static_cast<T>(0)); |
| Result[0][0] = (static_cast<T>(2) * zNear) / (right - left); |
| Result[1][1] = (static_cast<T>(2) * zNear) / (top - bottom); |
| Result[2][2] = - static_cast<T>(1); |
| Result[2][3] = - static_cast<T>(1); |
| Result[3][2] = - static_cast<T>(2) * zNear; |
| return Result; |
| } |
| |
| template <typename T> |
| GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> infinitePerspectiveLH(T fovy, T aspect, T zNear) |
| { |
| T const range = tan(fovy / static_cast<T>(2)) * zNear; |
| T const left = -range * aspect; |
| T const right = range * aspect; |
| T const bottom = -range; |
| T const top = range; |
| |
| tmat4x4<T, defaultp> Result(T(0)); |
| Result[0][0] = (static_cast<T>(2) * zNear) / (right - left); |
| Result[1][1] = (static_cast<T>(2) * zNear) / (top - bottom); |
| Result[2][2] = static_cast<T>(1); |
| Result[2][3] = static_cast<T>(1); |
| Result[3][2] = - static_cast<T>(2) * zNear; |
| return Result; |
| } |
| |
| // Infinite projection matrix: http://www.terathon.com/gdc07_lengyel.pdf |
| template <typename T> |
| GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> tweakedInfinitePerspective(T fovy, T aspect, T zNear, T ep) |
| { |
| T const range = tan(fovy / static_cast<T>(2)) * zNear; |
| T const left = -range * aspect; |
| T const right = range * aspect; |
| T const bottom = -range; |
| T const top = range; |
| |
| tmat4x4<T, defaultp> Result(static_cast<T>(0)); |
| Result[0][0] = (static_cast<T>(2) * zNear) / (right - left); |
| Result[1][1] = (static_cast<T>(2) * zNear) / (top - bottom); |
| Result[2][2] = ep - static_cast<T>(1); |
| Result[2][3] = static_cast<T>(-1); |
| Result[3][2] = (ep - static_cast<T>(2)) * zNear; |
| return Result; |
| } |
| |
| template <typename T> |
| GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> tweakedInfinitePerspective(T fovy, T aspect, T zNear) |
| { |
| return tweakedInfinitePerspective(fovy, aspect, zNear, epsilon<T>()); |
| } |
| |
| template <typename T, typename U, precision P> |
| GLM_FUNC_QUALIFIER tvec3<T, P> project |
| ( |
| tvec3<T, P> const & obj, |
| tmat4x4<T, P> const & model, |
| tmat4x4<T, P> const & proj, |
| tvec4<U, P> const & viewport |
| ) |
| { |
| tvec4<T, P> tmp = tvec4<T, P>(obj, static_cast<T>(1)); |
| tmp = model * tmp; |
| tmp = proj * tmp; |
| |
| tmp /= tmp.w; |
| # if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE |
| tmp.x = tmp.x * static_cast<T>(0.5) + static_cast<T>(0.5); |
| tmp.y = tmp.y * static_cast<T>(0.5) + static_cast<T>(0.5); |
| # else |
| tmp = tmp * static_cast<T>(0.5) + static_cast<T>(0.5); |
| # endif |
| tmp[0] = tmp[0] * T(viewport[2]) + T(viewport[0]); |
| tmp[1] = tmp[1] * T(viewport[3]) + T(viewport[1]); |
| |
| return tvec3<T, P>(tmp); |
| } |
| |
| template <typename T, typename U, precision P> |
| GLM_FUNC_QUALIFIER tvec3<T, P> unProject |
| ( |
| tvec3<T, P> const & win, |
| tmat4x4<T, P> const & model, |
| tmat4x4<T, P> const & proj, |
| tvec4<U, P> const & viewport |
| ) |
| { |
| tmat4x4<T, P> Inverse = inverse(proj * model); |
| |
| tvec4<T, P> tmp = tvec4<T, P>(win, T(1)); |
| tmp.x = (tmp.x - T(viewport[0])) / T(viewport[2]); |
| tmp.y = (tmp.y - T(viewport[1])) / T(viewport[3]); |
| # if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE |
| tmp.x = tmp.x * static_cast<T>(2) - static_cast<T>(1); |
| tmp.y = tmp.y * static_cast<T>(2) - static_cast<T>(1); |
| # else |
| tmp = tmp * static_cast<T>(2) - static_cast<T>(1); |
| # endif |
| |
| tvec4<T, P> obj = Inverse * tmp; |
| obj /= obj.w; |
| |
| return tvec3<T, P>(obj); |
| } |
| |
| template <typename T, precision P, typename U> |
| GLM_FUNC_QUALIFIER tmat4x4<T, P> pickMatrix(tvec2<T, P> const & center, tvec2<T, P> const & delta, tvec4<U, P> const & viewport) |
| { |
| assert(delta.x > static_cast<T>(0) && delta.y > static_cast<T>(0)); |
| tmat4x4<T, P> Result(static_cast<T>(1)); |
| |
| if(!(delta.x > static_cast<T>(0) && delta.y > static_cast<T>(0))) |
| return Result; // Error |
| |
| tvec3<T, P> Temp( |
| (static_cast<T>(viewport[2]) - static_cast<T>(2) * (center.x - static_cast<T>(viewport[0]))) / delta.x, |
| (static_cast<T>(viewport[3]) - static_cast<T>(2) * (center.y - static_cast<T>(viewport[1]))) / delta.y, |
| static_cast<T>(0)); |
| |
| // Translate and scale the picked region to the entire window |
| Result = translate(Result, Temp); |
| return scale(Result, tvec3<T, P>(static_cast<T>(viewport[2]) / delta.x, static_cast<T>(viewport[3]) / delta.y, static_cast<T>(1))); |
| } |
| |
| template <typename T, precision P> |
| GLM_FUNC_QUALIFIER tmat4x4<T, P> lookAt(tvec3<T, P> const & eye, tvec3<T, P> const & center, tvec3<T, P> const & up) |
| { |
| # if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED |
| return lookAtLH(eye, center, up); |
| # else |
| return lookAtRH(eye, center, up); |
| # endif |
| } |
| |
| template <typename T, precision P> |
| GLM_FUNC_QUALIFIER tmat4x4<T, P> lookAtRH |
| ( |
| tvec3<T, P> const & eye, |
| tvec3<T, P> const & center, |
| tvec3<T, P> const & up |
| ) |
| { |
| tvec3<T, P> const f(normalize(center - eye)); |
| tvec3<T, P> const s(normalize(cross(f, up))); |
| tvec3<T, P> const u(cross(s, f)); |
| |
| tmat4x4<T, P> Result(1); |
| Result[0][0] = s.x; |
| Result[1][0] = s.y; |
| Result[2][0] = s.z; |
| Result[0][1] = u.x; |
| Result[1][1] = u.y; |
| Result[2][1] = u.z; |
| Result[0][2] =-f.x; |
| Result[1][2] =-f.y; |
| Result[2][2] =-f.z; |
| Result[3][0] =-dot(s, eye); |
| Result[3][1] =-dot(u, eye); |
| Result[3][2] = dot(f, eye); |
| return Result; |
| } |
| |
| template <typename T, precision P> |
| GLM_FUNC_QUALIFIER tmat4x4<T, P> lookAtLH |
| ( |
| tvec3<T, P> const & eye, |
| tvec3<T, P> const & center, |
| tvec3<T, P> const & up |
| ) |
| { |
| tvec3<T, P> const f(normalize(center - eye)); |
| tvec3<T, P> const s(normalize(cross(up, f))); |
| tvec3<T, P> const u(cross(f, s)); |
| |
| tmat4x4<T, P> Result(1); |
| Result[0][0] = s.x; |
| Result[1][0] = s.y; |
| Result[2][0] = s.z; |
| Result[0][1] = u.x; |
| Result[1][1] = u.y; |
| Result[2][1] = u.z; |
| Result[0][2] = f.x; |
| Result[1][2] = f.y; |
| Result[2][2] = f.z; |
| Result[3][0] = -dot(s, eye); |
| Result[3][1] = -dot(u, eye); |
| Result[3][2] = -dot(f, eye); |
| return Result; |
| } |
| }//namespace glm |