| /// @ref gtx_matrix_decompose |
| /// @file glm/gtx/matrix_decompose.inl |
| |
| namespace glm{ |
| namespace detail |
| { |
| /// Make a linear combination of two vectors and return the result. |
| // result = (a * ascl) + (b * bscl) |
| template <typename T, precision P> |
| GLM_FUNC_QUALIFIER tvec3<T, P> combine( |
| tvec3<T, P> const & a, |
| tvec3<T, P> const & b, |
| T ascl, T bscl) |
| { |
| return (a * ascl) + (b * bscl); |
| } |
| |
| template <typename T, precision P> |
| GLM_FUNC_QUALIFIER tvec3<T, P> scale(tvec3<T, P> const& v, T desiredLength) |
| { |
| return v * desiredLength / length(v); |
| } |
| }//namespace detail |
| |
| // Matrix decompose |
| // http://www.opensource.apple.com/source/WebCore/WebCore-514/platform/graphics/transforms/TransformationMatrix.cpp |
| // Decomposes the mode matrix to translations,rotation scale components |
| |
| template <typename T, precision P> |
| GLM_FUNC_QUALIFIER bool decompose(tmat4x4<T, P> const & ModelMatrix, tvec3<T, P> & Scale, tquat<T, P> & Orientation, tvec3<T, P> & Translation, tvec3<T, P> & Skew, tvec4<T, P> & Perspective) |
| { |
| tmat4x4<T, P> LocalMatrix(ModelMatrix); |
| |
| // Normalize the matrix. |
| if(LocalMatrix[3][3] == static_cast<T>(0)) |
| return false; |
| |
| for(length_t i = 0; i < 4; ++i) |
| for(length_t j = 0; j < 4; ++j) |
| LocalMatrix[i][j] /= LocalMatrix[3][3]; |
| |
| // perspectiveMatrix is used to solve for perspective, but it also provides |
| // an easy way to test for singularity of the upper 3x3 component. |
| tmat4x4<T, P> PerspectiveMatrix(LocalMatrix); |
| |
| for(length_t i = 0; i < 3; i++) |
| PerspectiveMatrix[i][3] = static_cast<T>(0); |
| PerspectiveMatrix[3][3] = static_cast<T>(1); |
| |
| /// TODO: Fixme! |
| if(determinant(PerspectiveMatrix) == static_cast<T>(0)) |
| return false; |
| |
| // First, isolate perspective. This is the messiest. |
| if(LocalMatrix[0][3] != static_cast<T>(0) || LocalMatrix[1][3] != static_cast<T>(0) || LocalMatrix[2][3] != static_cast<T>(0)) |
| { |
| // rightHandSide is the right hand side of the equation. |
| tvec4<T, P> RightHandSide; |
| RightHandSide[0] = LocalMatrix[0][3]; |
| RightHandSide[1] = LocalMatrix[1][3]; |
| RightHandSide[2] = LocalMatrix[2][3]; |
| RightHandSide[3] = LocalMatrix[3][3]; |
| |
| // Solve the equation by inverting PerspectiveMatrix and multiplying |
| // rightHandSide by the inverse. (This is the easiest way, not |
| // necessarily the best.) |
| tmat4x4<T, P> InversePerspectiveMatrix = glm::inverse(PerspectiveMatrix);// inverse(PerspectiveMatrix, inversePerspectiveMatrix); |
| tmat4x4<T, P> TransposedInversePerspectiveMatrix = glm::transpose(InversePerspectiveMatrix);// transposeMatrix4(inversePerspectiveMatrix, transposedInversePerspectiveMatrix); |
| |
| Perspective = TransposedInversePerspectiveMatrix * RightHandSide; |
| // v4MulPointByMatrix(rightHandSide, transposedInversePerspectiveMatrix, perspectivePoint); |
| |
| // Clear the perspective partition |
| LocalMatrix[0][3] = LocalMatrix[1][3] = LocalMatrix[2][3] = static_cast<T>(0); |
| LocalMatrix[3][3] = static_cast<T>(1); |
| } |
| else |
| { |
| // No perspective. |
| Perspective = tvec4<T, P>(0, 0, 0, 1); |
| } |
| |
| // Next take care of translation (easy). |
| Translation = tvec3<T, P>(LocalMatrix[3]); |
| LocalMatrix[3] = tvec4<T, P>(0, 0, 0, LocalMatrix[3].w); |
| |
| tvec3<T, P> Row[3], Pdum3; |
| |
| // Now get scale and shear. |
| for(length_t i = 0; i < 3; ++i) |
| for(int j = 0; j < 3; ++j) |
| Row[i][j] = LocalMatrix[i][j]; |
| |
| // Compute X scale factor and normalize first row. |
| Scale.x = length(Row[0]);// v3Length(Row[0]); |
| |
| Row[0] = detail::scale(Row[0], static_cast<T>(1)); |
| |
| // Compute XY shear factor and make 2nd row orthogonal to 1st. |
| Skew.z = dot(Row[0], Row[1]); |
| Row[1] = detail::combine(Row[1], Row[0], static_cast<T>(1), -Skew.z); |
| |
| // Now, compute Y scale and normalize 2nd row. |
| Scale.y = length(Row[1]); |
| Row[1] = detail::scale(Row[1], static_cast<T>(1)); |
| Skew.z /= Scale.y; |
| |
| // Compute XZ and YZ shears, orthogonalize 3rd row. |
| Skew.y = glm::dot(Row[0], Row[2]); |
| Row[2] = detail::combine(Row[2], Row[0], static_cast<T>(1), -Skew.y); |
| Skew.x = glm::dot(Row[1], Row[2]); |
| Row[2] = detail::combine(Row[2], Row[1], static_cast<T>(1), -Skew.x); |
| |
| // Next, get Z scale and normalize 3rd row. |
| Scale.z = length(Row[2]); |
| Row[2] = detail::scale(Row[2], static_cast<T>(1)); |
| Skew.y /= Scale.z; |
| Skew.x /= Scale.z; |
| |
| // At this point, the matrix (in rows[]) is orthonormal. |
| // Check for a coordinate system flip. If the determinant |
| // is -1, then negate the matrix and the scaling factors. |
| Pdum3 = cross(Row[1], Row[2]); // v3Cross(row[1], row[2], Pdum3); |
| if(dot(Row[0], Pdum3) < 0) |
| { |
| for(length_t i = 0; i < 3; i++) |
| { |
| Scale.x *= static_cast<T>(-1); |
| Row[i] *= static_cast<T>(-1); |
| } |
| } |
| |
| // Now, get the rotations out, as described in the gem. |
| |
| // FIXME - Add the ability to return either quaternions (which are |
| // easier to recompose with) or Euler angles (rx, ry, rz), which |
| // are easier for authors to deal with. The latter will only be useful |
| // when we fix https://bugs.webkit.org/show_bug.cgi?id=23799, so I |
| // will leave the Euler angle code here for now. |
| |
| // ret.rotateY = asin(-Row[0][2]); |
| // if (cos(ret.rotateY) != 0) { |
| // ret.rotateX = atan2(Row[1][2], Row[2][2]); |
| // ret.rotateZ = atan2(Row[0][1], Row[0][0]); |
| // } else { |
| // ret.rotateX = atan2(-Row[2][0], Row[1][1]); |
| // ret.rotateZ = 0; |
| // } |
| |
| T s, t, x, y, z, w; |
| |
| t = Row[0][0] + Row[1][1] + Row[2][2] + static_cast<T>(1); |
| |
| if(t > static_cast<T>(1e-4)) |
| { |
| s = static_cast<T>(0.5) / sqrt(t); |
| w = static_cast<T>(0.25) / s; |
| x = (Row[2][1] - Row[1][2]) * s; |
| y = (Row[0][2] - Row[2][0]) * s; |
| z = (Row[1][0] - Row[0][1]) * s; |
| } |
| else if(Row[0][0] > Row[1][1] && Row[0][0] > Row[2][2]) |
| { |
| s = sqrt (static_cast<T>(1) + Row[0][0] - Row[1][1] - Row[2][2]) * static_cast<T>(2); // S=4*qx |
| x = static_cast<T>(0.25) * s; |
| y = (Row[0][1] + Row[1][0]) / s; |
| z = (Row[0][2] + Row[2][0]) / s; |
| w = (Row[2][1] - Row[1][2]) / s; |
| } |
| else if(Row[1][1] > Row[2][2]) |
| { |
| s = sqrt (static_cast<T>(1) + Row[1][1] - Row[0][0] - Row[2][2]) * static_cast<T>(2); // S=4*qy |
| x = (Row[0][1] + Row[1][0]) / s; |
| y = static_cast<T>(0.25) * s; |
| z = (Row[1][2] + Row[2][1]) / s; |
| w = (Row[0][2] - Row[2][0]) / s; |
| } |
| else |
| { |
| s = sqrt(static_cast<T>(1) + Row[2][2] - Row[0][0] - Row[1][1]) * static_cast<T>(2); // S=4*qz |
| x = (Row[0][2] + Row[2][0]) / s; |
| y = (Row[1][2] + Row[2][1]) / s; |
| z = static_cast<T>(0.25) * s; |
| w = (Row[1][0] - Row[0][1]) / s; |
| } |
| |
| Orientation.x = x; |
| Orientation.y = y; |
| Orientation.z = z; |
| Orientation.w = w; |
| |
| return true; |
| } |
| }//namespace glm |