| /// @ref gtx_matrix_interpolation |
| /// @file glm/gtx/matrix_interpolation.hpp |
| |
| namespace glm |
| { |
| template <typename T, precision P> |
| GLM_FUNC_QUALIFIER void axisAngle |
| ( |
| tmat4x4<T, P> const & mat, |
| tvec3<T, P> & axis, |
| T & angle |
| ) |
| { |
| T epsilon = (T)0.01; |
| T epsilon2 = (T)0.1; |
| |
| if((abs(mat[1][0] - mat[0][1]) < epsilon) && (abs(mat[2][0] - mat[0][2]) < epsilon) && (abs(mat[2][1] - mat[1][2]) < epsilon)) |
| { |
| if ((abs(mat[1][0] + mat[0][1]) < epsilon2) && (abs(mat[2][0] + mat[0][2]) < epsilon2) && (abs(mat[2][1] + mat[1][2]) < epsilon2) && (abs(mat[0][0] + mat[1][1] + mat[2][2] - (T)3.0) < epsilon2)) |
| { |
| angle = (T)0.0; |
| axis.x = (T)1.0; |
| axis.y = (T)0.0; |
| axis.z = (T)0.0; |
| return; |
| } |
| angle = static_cast<T>(3.1415926535897932384626433832795); |
| T xx = (mat[0][0] + (T)1.0) / (T)2.0; |
| T yy = (mat[1][1] + (T)1.0) / (T)2.0; |
| T zz = (mat[2][2] + (T)1.0) / (T)2.0; |
| T xy = (mat[1][0] + mat[0][1]) / (T)4.0; |
| T xz = (mat[2][0] + mat[0][2]) / (T)4.0; |
| T yz = (mat[2][1] + mat[1][2]) / (T)4.0; |
| if((xx > yy) && (xx > zz)) |
| { |
| if (xx < epsilon) { |
| axis.x = (T)0.0; |
| axis.y = (T)0.7071; |
| axis.z = (T)0.7071; |
| } else { |
| axis.x = sqrt(xx); |
| axis.y = xy / axis.x; |
| axis.z = xz / axis.x; |
| } |
| } |
| else if (yy > zz) |
| { |
| if (yy < epsilon) { |
| axis.x = (T)0.7071; |
| axis.y = (T)0.0; |
| axis.z = (T)0.7071; |
| } else { |
| axis.y = sqrt(yy); |
| axis.x = xy / axis.y; |
| axis.z = yz / axis.y; |
| } |
| } |
| else |
| { |
| if (zz < epsilon) { |
| axis.x = (T)0.7071; |
| axis.y = (T)0.7071; |
| axis.z = (T)0.0; |
| } else { |
| axis.z = sqrt(zz); |
| axis.x = xz / axis.z; |
| axis.y = yz / axis.z; |
| } |
| } |
| return; |
| } |
| T s = sqrt((mat[2][1] - mat[1][2]) * (mat[2][1] - mat[1][2]) + (mat[2][0] - mat[0][2]) * (mat[2][0] - mat[0][2]) + (mat[1][0] - mat[0][1]) * (mat[1][0] - mat[0][1])); |
| if (glm::abs(s) < T(0.001)) |
| s = (T)1.0; |
| angle = acos((mat[0][0] + mat[1][1] + mat[2][2] - (T)1.0) / (T)2.0); |
| axis.x = (mat[1][2] - mat[2][1]) / s; |
| axis.y = (mat[2][0] - mat[0][2]) / s; |
| axis.z = (mat[0][1] - mat[1][0]) / s; |
| } |
| |
| template <typename T, precision P> |
| GLM_FUNC_QUALIFIER tmat4x4<T, P> axisAngleMatrix |
| ( |
| tvec3<T, P> const & axis, |
| T const angle |
| ) |
| { |
| T c = cos(angle); |
| T s = sin(angle); |
| T t = static_cast<T>(1) - c; |
| tvec3<T, P> n = normalize(axis); |
| |
| return tmat4x4<T, P>( |
| t * n.x * n.x + c, t * n.x * n.y + n.z * s, t * n.x * n.z - n.y * s, T(0), |
| t * n.x * n.y - n.z * s, t * n.y * n.y + c, t * n.y * n.z + n.x * s, T(0), |
| t * n.x * n.z + n.y * s, t * n.y * n.z - n.x * s, t * n.z * n.z + c, T(0), |
| T(0), T(0), T(0), T(1) |
| ); |
| } |
| |
| template <typename T, precision P> |
| GLM_FUNC_QUALIFIER tmat4x4<T, P> extractMatrixRotation |
| ( |
| tmat4x4<T, P> const & mat |
| ) |
| { |
| return tmat4x4<T, P>( |
| mat[0][0], mat[0][1], mat[0][2], 0.0, |
| mat[1][0], mat[1][1], mat[1][2], 0.0, |
| mat[2][0], mat[2][1], mat[2][2], 0.0, |
| 0.0, 0.0, 0.0, 1.0 |
| ); |
| } |
| |
| template <typename T, precision P> |
| GLM_FUNC_QUALIFIER tmat4x4<T, P> interpolate |
| ( |
| tmat4x4<T, P> const & m1, |
| tmat4x4<T, P> const & m2, |
| T const delta |
| ) |
| { |
| tmat4x4<T, P> m1rot = extractMatrixRotation(m1); |
| tmat4x4<T, P> dltRotation = m2 * transpose(m1rot); |
| tvec3<T, P> dltAxis; |
| T dltAngle; |
| axisAngle(dltRotation, dltAxis, dltAngle); |
| tmat4x4<T, P> out = axisAngleMatrix(dltAxis, dltAngle * delta) * m1rot; |
| out[3][0] = m1[3][0] + delta * (m2[3][0] - m1[3][0]); |
| out[3][1] = m1[3][1] + delta * (m2[3][1] - m1[3][1]); |
| out[3][2] = m1[3][2] + delta * (m2[3][2] - m1[3][2]); |
| return out; |
| } |
| }//namespace glm |