| /// @ref gtx_quaternion |
| /// @file glm/gtx/quaternion.inl |
| |
| #include <limits> |
| #include "../gtc/constants.hpp" |
| |
| namespace glm |
| { |
| template <typename T, precision P> |
| GLM_FUNC_QUALIFIER tvec3<T, P> cross(tvec3<T, P> const& v, tquat<T, P> const& q) |
| { |
| return inverse(q) * v; |
| } |
| |
| template <typename T, precision P> |
| GLM_FUNC_QUALIFIER tvec3<T, P> cross(tquat<T, P> const& q, tvec3<T, P> const& v) |
| { |
| return q * v; |
| } |
| |
| template <typename T, precision P> |
| GLM_FUNC_QUALIFIER tquat<T, P> squad |
| ( |
| tquat<T, P> const & q1, |
| tquat<T, P> const & q2, |
| tquat<T, P> const & s1, |
| tquat<T, P> const & s2, |
| T const & h) |
| { |
| return mix(mix(q1, q2, h), mix(s1, s2, h), static_cast<T>(2) * (static_cast<T>(1) - h) * h); |
| } |
| |
| template <typename T, precision P> |
| GLM_FUNC_QUALIFIER tquat<T, P> intermediate |
| ( |
| tquat<T, P> const & prev, |
| tquat<T, P> const & curr, |
| tquat<T, P> const & next |
| ) |
| { |
| tquat<T, P> invQuat = inverse(curr); |
| return exp((log(next + invQuat) + log(prev + invQuat)) / static_cast<T>(-4)) * curr; |
| } |
| |
| template <typename T, precision P> |
| GLM_FUNC_QUALIFIER tquat<T, P> exp(tquat<T, P> const& q) |
| { |
| tvec3<T, P> u(q.x, q.y, q.z); |
| T const Angle = glm::length(u); |
| if (Angle < epsilon<T>()) |
| return tquat<T, P>(); |
| |
| tvec3<T, P> const v(u / Angle); |
| return tquat<T, P>(cos(Angle), sin(Angle) * v); |
| } |
| |
| template <typename T, precision P> |
| GLM_FUNC_QUALIFIER tquat<T, P> log(tquat<T, P> const& q) |
| { |
| tvec3<T, P> u(q.x, q.y, q.z); |
| T Vec3Len = length(u); |
| |
| if (Vec3Len < epsilon<T>()) |
| { |
| if(q.w > static_cast<T>(0)) |
| return tquat<T, P>(log(q.w), static_cast<T>(0), static_cast<T>(0), static_cast<T>(0)); |
| else if(q.w < static_cast<T>(0)) |
| return tquat<T, P>(log(-q.w), pi<T>(), static_cast<T>(0), static_cast<T>(0)); |
| else |
| return tquat<T, P>(std::numeric_limits<T>::infinity(), std::numeric_limits<T>::infinity(), std::numeric_limits<T>::infinity(), std::numeric_limits<T>::infinity()); |
| } |
| else |
| { |
| T t = atan(Vec3Len, T(q.w)) / Vec3Len; |
| T QuatLen2 = Vec3Len * Vec3Len + q.w * q.w; |
| return tquat<T, P>(static_cast<T>(0.5) * log(QuatLen2), t * q.x, t * q.y, t * q.z); |
| } |
| } |
| |
| template <typename T, precision P> |
| GLM_FUNC_QUALIFIER tquat<T, P> pow(tquat<T, P> const & x, T const & y) |
| { |
| //Raising to the power of 0 should yield 1 |
| //Needed to prevent a division by 0 error later on |
| if(y > -epsilon<T>() && y < epsilon<T>()) |
| return tquat<T, P>(1,0,0,0); |
| |
| //To deal with non-unit quaternions |
| T magnitude = sqrt(x.x * x.x + x.y * x.y + x.z * x.z + x.w *x.w); |
| |
| //Equivalent to raising a real number to a power |
| //Needed to prevent a division by 0 error later on |
| if(abs(x.w / magnitude) > static_cast<T>(1) - epsilon<T>() && abs(x.w / magnitude) < static_cast<T>(1) + epsilon<T>()) |
| return tquat<T, P>(pow(x.w, y),0,0,0); |
| |
| T Angle = acos(x.w / magnitude); |
| T NewAngle = Angle * y; |
| T Div = sin(NewAngle) / sin(Angle); |
| T Mag = pow(magnitude, y - static_cast<T>(1)); |
| |
| return tquat<T, P>(cos(NewAngle) * magnitude * Mag, x.x * Div * Mag, x.y * Div * Mag, x.z * Div * Mag); |
| } |
| |
| template <typename T, precision P> |
| GLM_FUNC_QUALIFIER tvec3<T, P> rotate(tquat<T, P> const& q, tvec3<T, P> const& v) |
| { |
| return q * v; |
| } |
| |
| template <typename T, precision P> |
| GLM_FUNC_QUALIFIER tvec4<T, P> rotate(tquat<T, P> const& q, tvec4<T, P> const& v) |
| { |
| return q * v; |
| } |
| |
| template <typename T, precision P> |
| GLM_FUNC_QUALIFIER T extractRealComponent(tquat<T, P> const& q) |
| { |
| T w = static_cast<T>(1) - q.x * q.x - q.y * q.y - q.z * q.z; |
| if(w < T(0)) |
| return T(0); |
| else |
| return -sqrt(w); |
| } |
| |
| template <typename T, precision P> |
| GLM_FUNC_QUALIFIER T length2(tquat<T, P> const& q) |
| { |
| return q.x * q.x + q.y * q.y + q.z * q.z + q.w * q.w; |
| } |
| |
| template <typename T, precision P> |
| GLM_FUNC_QUALIFIER tquat<T, P> shortMix(tquat<T, P> const& x, tquat<T, P> const& y, T const& a) |
| { |
| if(a <= static_cast<T>(0)) return x; |
| if(a >= static_cast<T>(1)) return y; |
| |
| T fCos = dot(x, y); |
| tquat<T, P> y2(y); //BUG!!! tquat<T> y2; |
| if(fCos < static_cast<T>(0)) |
| { |
| y2 = -y; |
| fCos = -fCos; |
| } |
| |
| //if(fCos > 1.0f) // problem |
| T k0, k1; |
| if(fCos > (static_cast<T>(1) - epsilon<T>())) |
| { |
| k0 = static_cast<T>(1) - a; |
| k1 = static_cast<T>(0) + a; //BUG!!! 1.0f + a; |
| } |
| else |
| { |
| T fSin = sqrt(T(1) - fCos * fCos); |
| T fAngle = atan(fSin, fCos); |
| T fOneOverSin = static_cast<T>(1) / fSin; |
| k0 = sin((static_cast<T>(1) - a) * fAngle) * fOneOverSin; |
| k1 = sin((static_cast<T>(0) + a) * fAngle) * fOneOverSin; |
| } |
| |
| return tquat<T, P>( |
| k0 * x.w + k1 * y2.w, |
| k0 * x.x + k1 * y2.x, |
| k0 * x.y + k1 * y2.y, |
| k0 * x.z + k1 * y2.z); |
| } |
| |
| template <typename T, precision P> |
| GLM_FUNC_QUALIFIER tquat<T, P> fastMix(tquat<T, P> const& x, tquat<T, P> const& y, T const & a) |
| { |
| return glm::normalize(x * (static_cast<T>(1) - a) + (y * a)); |
| } |
| |
| template <typename T, precision P> |
| GLM_FUNC_QUALIFIER tquat<T, P> rotation(tvec3<T, P> const& orig, tvec3<T, P> const& dest) |
| { |
| T cosTheta = dot(orig, dest); |
| tvec3<T, P> rotationAxis; |
| |
| if(cosTheta >= static_cast<T>(1) - epsilon<T>()) |
| return quat(); |
| |
| if(cosTheta < static_cast<T>(-1) + epsilon<T>()) |
| { |
| // special case when vectors in opposite directions : |
| // there is no "ideal" rotation axis |
| // So guess one; any will do as long as it's perpendicular to start |
| // This implementation favors a rotation around the Up axis (Y), |
| // since it's often what you want to do. |
| rotationAxis = cross(tvec3<T, P>(0, 0, 1), orig); |
| if(length2(rotationAxis) < epsilon<T>()) // bad luck, they were parallel, try again! |
| rotationAxis = cross(tvec3<T, P>(1, 0, 0), orig); |
| |
| rotationAxis = normalize(rotationAxis); |
| return angleAxis(pi<T>(), rotationAxis); |
| } |
| |
| // Implementation from Stan Melax's Game Programming Gems 1 article |
| rotationAxis = cross(orig, dest); |
| |
| T s = sqrt((T(1) + cosTheta) * static_cast<T>(2)); |
| T invs = static_cast<T>(1) / s; |
| |
| return tquat<T, P>( |
| s * static_cast<T>(0.5f), |
| rotationAxis.x * invs, |
| rotationAxis.y * invs, |
| rotationAxis.z * invs); |
| } |
| |
| }//namespace glm |