| #define GLM_FORCE_EXPLICIT_CTOR |
| #include <glm/common.hpp> |
| #include <glm/gtc/constants.hpp> |
| #include <glm/gtc/epsilon.hpp> |
| #include <glm/gtc/vec1.hpp> |
| #include <glm/gtc/random.hpp> |
| #include <vector> |
| #include <cstdio> |
| #include <cmath> |
| #include <ctime> |
| |
| namespace floor_ |
| { |
| int test() |
| { |
| int Error(0); |
| |
| { |
| float A(1.1f); |
| float B = glm::floor(A); |
| } |
| |
| { |
| double A(1.1f); |
| double B = glm::floor(A); |
| } |
| |
| { |
| glm::vec1 A(1.1f); |
| glm::vec1 B = glm::floor(A); |
| |
| Error += glm::all(glm::epsilonEqual(B, glm::vec1(1.0), 0.0001f)) ? 0 : 1; |
| } |
| |
| { |
| glm::dvec1 A(1.1f); |
| glm::dvec1 B = glm::floor(A); |
| |
| Error += glm::all(glm::epsilonEqual(B, glm::dvec1(1.0), 0.0001)) ? 0 : 1; |
| } |
| |
| { |
| glm::vec2 A(1.1f); |
| glm::vec2 B = glm::floor(A); |
| |
| Error += glm::all(glm::epsilonEqual(B, glm::vec2(1.0), 0.0001f)) ? 0 : 1; |
| } |
| |
| { |
| glm::dvec2 A(1.1f); |
| glm::dvec2 B = glm::floor(A); |
| |
| Error += glm::all(glm::epsilonEqual(B, glm::dvec2(1.0), 0.0001)) ? 0 : 1; |
| } |
| |
| { |
| glm::vec3 A(1.1f); |
| glm::vec3 B = glm::floor(A); |
| |
| Error += glm::all(glm::epsilonEqual(B, glm::vec3(1.0), 0.0001f)) ? 0 : 1; |
| } |
| |
| { |
| glm::dvec3 A(1.1f); |
| glm::dvec3 B = glm::floor(A); |
| |
| Error += glm::all(glm::epsilonEqual(B, glm::dvec3(1.0), 0.0001)) ? 0 : 1; |
| } |
| |
| { |
| glm::vec4 A(1.1f); |
| glm::vec4 B = glm::floor(A); |
| |
| Error += glm::all(glm::epsilonEqual(B, glm::vec4(1.0), 0.0001f)) ? 0 : 1; |
| } |
| |
| { |
| glm::dvec4 A(1.1f); |
| glm::dvec4 B = glm::floor(A); |
| |
| Error += glm::all(glm::epsilonEqual(B, glm::dvec4(1.0), 0.0001)) ? 0 : 1; |
| } |
| |
| return Error; |
| } |
| }//namespace floor |
| |
| namespace modf_ |
| { |
| int test() |
| { |
| int Error(0); |
| |
| { |
| float X(1.5f); |
| float I(0.0f); |
| float A = glm::modf(X, I); |
| |
| Error += I == 1.0f ? 0 : 1; |
| Error += A == 0.5f ? 0 : 1; |
| } |
| |
| { |
| glm::vec4 X(1.1f, 1.2f, 1.5f, 1.7f); |
| glm::vec4 I(0.0f); |
| glm::vec4 A = glm::modf(X, I); |
| |
| Error += I == glm::vec4(1.0f) ? 0 : 1; |
| Error += glm::all(glm::epsilonEqual(A, glm::vec4(0.1f, 0.2f, 0.5f, 0.7f), 0.00001f)) ? 0 : 1; |
| } |
| |
| { |
| glm::dvec4 X(1.1, 1.2, 1.5, 1.7); |
| glm::dvec4 I(0.0); |
| glm::dvec4 A = glm::modf(X, I); |
| |
| Error += I == glm::dvec4(1.0) ? 0 : 1; |
| Error += glm::all(glm::epsilonEqual(A, glm::dvec4(0.1, 0.2, 0.5, 0.7), 0.000000001)) ? 0 : 1; |
| } |
| |
| { |
| double X(1.5); |
| double I(0.0); |
| double A = glm::modf(X, I); |
| |
| Error += I == 1.0 ? 0 : 1; |
| Error += A == 0.5 ? 0 : 1; |
| } |
| |
| return Error; |
| } |
| }//namespace modf |
| |
| namespace mod_ |
| { |
| int test() |
| { |
| int Error(0); |
| |
| { |
| float A(1.5f); |
| float B(1.0f); |
| float C = glm::mod(A, B); |
| |
| Error += glm::abs(C - 0.5f) < 0.00001f ? 0 : 1; |
| } |
| |
| { |
| float A(-0.2f); |
| float B(1.0f); |
| float C = glm::mod(A, B); |
| |
| Error += glm::abs(C - 0.8f) < 0.00001f ? 0 : 1; |
| } |
| |
| { |
| float A(3.0); |
| float B(2.0f); |
| float C = glm::mod(A, B); |
| |
| Error += glm::abs(C - 1.0f) < 0.00001f ? 0 : 1; |
| } |
| |
| { |
| glm::vec4 A(3.0); |
| float B(2.0f); |
| glm::vec4 C = glm::mod(A, B); |
| |
| Error += glm::all(glm::epsilonEqual(C, glm::vec4(1.0f), 0.00001f)) ? 0 : 1; |
| } |
| |
| { |
| glm::vec4 A(3.0); |
| glm::vec4 B(2.0f); |
| glm::vec4 C = glm::mod(A, B); |
| |
| Error += glm::all(glm::epsilonEqual(C, glm::vec4(1.0f), 0.00001f)) ? 0 : 1; |
| } |
| |
| return Error; |
| } |
| }//namespace mod_ |
| |
| namespace floatBitsToInt |
| { |
| int test() |
| { |
| int Error = 0; |
| |
| { |
| float A = 1.0f; |
| int B = glm::floatBitsToInt(A); |
| float C = glm::intBitsToFloat(B); |
| int D = *(int*)&A; |
| Error += B == D ? 0 : 1; |
| Error += A == C ? 0 : 1; |
| } |
| |
| { |
| glm::vec2 A(1.0f, 2.0f); |
| glm::ivec2 B = glm::floatBitsToInt(A); |
| glm::vec2 C = glm::intBitsToFloat(B); |
| Error += B.x == *(int*)&(A.x) ? 0 : 1; |
| Error += B.y == *(int*)&(A.y) ? 0 : 1; |
| Error += A == C? 0 : 1; |
| } |
| |
| { |
| glm::vec3 A(1.0f, 2.0f, 3.0f); |
| glm::ivec3 B = glm::floatBitsToInt(A); |
| glm::vec3 C = glm::intBitsToFloat(B); |
| Error += B.x == *(int*)&(A.x) ? 0 : 1; |
| Error += B.y == *(int*)&(A.y) ? 0 : 1; |
| Error += B.z == *(int*)&(A.z) ? 0 : 1; |
| Error += A == C? 0 : 1; |
| } |
| |
| { |
| glm::vec4 A(1.0f, 2.0f, 3.0f, 4.0f); |
| glm::ivec4 B = glm::floatBitsToInt(A); |
| glm::vec4 C = glm::intBitsToFloat(B); |
| Error += B.x == *(int*)&(A.x) ? 0 : 1; |
| Error += B.y == *(int*)&(A.y) ? 0 : 1; |
| Error += B.z == *(int*)&(A.z) ? 0 : 1; |
| Error += B.w == *(int*)&(A.w) ? 0 : 1; |
| Error += A == C? 0 : 1; |
| } |
| |
| return Error; |
| } |
| }//namespace floatBitsToInt |
| |
| namespace floatBitsToUint |
| { |
| int test() |
| { |
| int Error = 0; |
| |
| { |
| float A = 1.0f; |
| glm::uint B = glm::floatBitsToUint(A); |
| float C = glm::intBitsToFloat(B); |
| Error += B == *(glm::uint*)&A ? 0 : 1; |
| Error += A == C? 0 : 1; |
| } |
| |
| { |
| glm::vec2 A(1.0f, 2.0f); |
| glm::uvec2 B = glm::floatBitsToUint(A); |
| glm::vec2 C = glm::uintBitsToFloat(B); |
| Error += B.x == *(glm::uint*)&(A.x) ? 0 : 1; |
| Error += B.y == *(glm::uint*)&(A.y) ? 0 : 1; |
| Error += A == C ? 0 : 1; |
| } |
| |
| { |
| glm::vec3 A(1.0f, 2.0f, 3.0f); |
| glm::uvec3 B = glm::floatBitsToUint(A); |
| glm::vec3 C = glm::uintBitsToFloat(B); |
| Error += B.x == *(glm::uint*)&(A.x) ? 0 : 1; |
| Error += B.y == *(glm::uint*)&(A.y) ? 0 : 1; |
| Error += B.z == *(glm::uint*)&(A.z) ? 0 : 1; |
| Error += A == C? 0 : 1; |
| } |
| |
| { |
| glm::vec4 A(1.0f, 2.0f, 3.0f, 4.0f); |
| glm::uvec4 B = glm::floatBitsToUint(A); |
| glm::vec4 C = glm::uintBitsToFloat(B); |
| Error += B.x == *(glm::uint*)&(A.x) ? 0 : 1; |
| Error += B.y == *(glm::uint*)&(A.y) ? 0 : 1; |
| Error += B.z == *(glm::uint*)&(A.z) ? 0 : 1; |
| Error += B.w == *(glm::uint*)&(A.w) ? 0 : 1; |
| Error += A == C? 0 : 1; |
| } |
| |
| return Error; |
| } |
| }//namespace floatBitsToUint |
| |
| namespace min_ |
| { |
| int test() |
| { |
| int Error = 0; |
| |
| glm::vec1 A0 = glm::min(glm::vec1(1), glm::vec1(1)); |
| |
| glm::vec2 B0 = glm::min(glm::vec2(1), glm::vec2(1)); |
| glm::vec2 B1 = glm::min(glm::vec2(1), 1.0f); |
| bool B2 = glm::all(glm::equal(B0, B1)); |
| Error += B2 ? 0 : 1; |
| |
| glm::vec3 C0 = glm::min(glm::vec3(1), glm::vec3(1)); |
| glm::vec3 C1 = glm::min(glm::vec3(1), 1.0f); |
| bool C2 = glm::all(glm::equal(C0, C1)); |
| Error += C2 ? 0 : 1; |
| |
| glm::vec4 D0 = glm::min(glm::vec4(1), glm::vec4(1)); |
| glm::vec4 D1 = glm::min(glm::vec4(1), 1.0f); |
| bool D2 = glm::all(glm::equal(D0, D1)); |
| Error += D2 ? 0 : 1; |
| |
| return Error; |
| } |
| }//namespace min_ |
| |
| namespace max_ |
| { |
| int test() |
| { |
| int Error = 0; |
| |
| glm::vec1 A0 = glm::max(glm::vec1(1), glm::vec1(1)); |
| |
| glm::vec2 B0 = glm::max(glm::vec2(1), glm::vec2(1)); |
| glm::vec2 B1 = glm::max(glm::vec2(1), 1.0f); |
| bool B2 = glm::all(glm::equal(B0, B1)); |
| Error += B2 ? 0 : 1; |
| |
| glm::vec3 C0 = glm::max(glm::vec3(1), glm::vec3(1)); |
| glm::vec3 C1 = glm::max(glm::vec3(1), 1.0f); |
| bool C2 = glm::all(glm::equal(C0, C1)); |
| Error += C2 ? 0 : 1; |
| |
| glm::vec4 D0 = glm::max(glm::vec4(1), glm::vec4(1)); |
| glm::vec4 D1 = glm::max(glm::vec4(1), 1.0f); |
| bool D2 = glm::all(glm::equal(D0, D1)); |
| Error += D2 ? 0 : 1; |
| |
| return Error; |
| } |
| }//namespace max_ |
| |
| namespace clamp_ |
| { |
| int test() |
| { |
| int Error = 0; |
| |
| return Error; |
| } |
| }//namespace clamp_ |
| |
| namespace mix_ |
| { |
| template <typename T, typename B> |
| struct entry |
| { |
| T x; |
| T y; |
| B a; |
| T Result; |
| }; |
| |
| entry<float, bool> TestBool[] = |
| { |
| {0.0f, 1.0f, false, 0.0f}, |
| {0.0f, 1.0f, true, 1.0f}, |
| {-1.0f, 1.0f, false, -1.0f}, |
| {-1.0f, 1.0f, true, 1.0f} |
| }; |
| |
| entry<float, float> TestFloat[] = |
| { |
| {0.0f, 1.0f, 0.0f, 0.0f}, |
| {0.0f, 1.0f, 1.0f, 1.0f}, |
| {-1.0f, 1.0f, 0.0f, -1.0f}, |
| {-1.0f, 1.0f, 1.0f, 1.0f} |
| }; |
| |
| entry<glm::vec2, bool> TestVec2Bool[] = |
| { |
| {glm::vec2(0.0f), glm::vec2(1.0f), false, glm::vec2(0.0f)}, |
| {glm::vec2(0.0f), glm::vec2(1.0f), true, glm::vec2(1.0f)}, |
| {glm::vec2(-1.0f), glm::vec2(1.0f), false, glm::vec2(-1.0f)}, |
| {glm::vec2(-1.0f), glm::vec2(1.0f), true, glm::vec2(1.0f)} |
| }; |
| |
| entry<glm::vec2, glm::bvec2> TestBVec2[] = |
| { |
| {glm::vec2(0.0f), glm::vec2(1.0f), glm::bvec2(false), glm::vec2(0.0f)}, |
| {glm::vec2(0.0f), glm::vec2(1.0f), glm::bvec2(true), glm::vec2(1.0f)}, |
| {glm::vec2(-1.0f), glm::vec2(1.0f), glm::bvec2(false), glm::vec2(-1.0f)}, |
| {glm::vec2(-1.0f), glm::vec2(1.0f), glm::bvec2(true), glm::vec2(1.0f)}, |
| {glm::vec2(-1.0f), glm::vec2(1.0f), glm::bvec2(true, false), glm::vec2(1.0f, -1.0f)} |
| }; |
| |
| entry<glm::vec3, bool> TestVec3Bool[] = |
| { |
| {glm::vec3(0.0f), glm::vec3(1.0f), false, glm::vec3(0.0f)}, |
| {glm::vec3(0.0f), glm::vec3(1.0f), true, glm::vec3(1.0f)}, |
| {glm::vec3(-1.0f), glm::vec3(1.0f), false, glm::vec3(-1.0f)}, |
| {glm::vec3(-1.0f), glm::vec3(1.0f), true, glm::vec3(1.0f)} |
| }; |
| |
| entry<glm::vec3, glm::bvec3> TestBVec3[] = |
| { |
| {glm::vec3(0.0f), glm::vec3(1.0f), glm::bvec3(false), glm::vec3(0.0f)}, |
| {glm::vec3(0.0f), glm::vec3(1.0f), glm::bvec3(true), glm::vec3(1.0f)}, |
| {glm::vec3(-1.0f), glm::vec3(1.0f), glm::bvec3(false), glm::vec3(-1.0f)}, |
| {glm::vec3(-1.0f), glm::vec3(1.0f), glm::bvec3(true), glm::vec3(1.0f)}, |
| {glm::vec3(1.0f, 2.0f, 3.0f), glm::vec3(4.0f, 5.0f, 6.0f), glm::bvec3(true, false, true), glm::vec3(4.0f, 2.0f, 6.0f)} |
| }; |
| |
| entry<glm::vec4, bool> TestVec4Bool[] = |
| { |
| {glm::vec4(0.0f), glm::vec4(1.0f), false, glm::vec4(0.0f)}, |
| {glm::vec4(0.0f), glm::vec4(1.0f), true, glm::vec4(1.0f)}, |
| {glm::vec4(-1.0f), glm::vec4(1.0f), false, glm::vec4(-1.0f)}, |
| {glm::vec4(-1.0f), glm::vec4(1.0f), true, glm::vec4(1.0f)} |
| }; |
| |
| entry<glm::vec4, glm::bvec4> TestBVec4[] = |
| { |
| {glm::vec4(0.0f, 0.0f, 1.0f, 1.0f), glm::vec4(2.0f, 2.0f, 3.0f, 3.0f), glm::bvec4(false, true, false, true), glm::vec4(0.0f, 2.0f, 1.0f, 3.0f)}, |
| {glm::vec4(0.0f), glm::vec4(1.0f), glm::bvec4(true), glm::vec4(1.0f)}, |
| {glm::vec4(-1.0f), glm::vec4(1.0f), glm::bvec4(false), glm::vec4(-1.0f)}, |
| {glm::vec4(-1.0f), glm::vec4(1.0f), glm::bvec4(true), glm::vec4(1.0f)}, |
| {glm::vec4(1.0f, 2.0f, 3.0f, 4.0f), glm::vec4(5.0f, 6.0f, 7.0f, 8.0f), glm::bvec4(true, false, true, false), glm::vec4(5.0f, 2.0f, 7.0f, 4.0f)} |
| }; |
| |
| int test() |
| { |
| int Error = 0; |
| |
| // Float with bool |
| { |
| for(std::size_t i = 0; i < sizeof(TestBool) / sizeof(entry<float, bool>); ++i) |
| { |
| float Result = glm::mix(TestBool[i].x, TestBool[i].y, TestBool[i].a); |
| Error += glm::epsilonEqual(Result, TestBool[i].Result, glm::epsilon<float>()) ? 0 : 1; |
| } |
| } |
| |
| // Float with float |
| { |
| for(std::size_t i = 0; i < sizeof(TestFloat) / sizeof(entry<float, float>); ++i) |
| { |
| float Result = glm::mix(TestFloat[i].x, TestFloat[i].y, TestFloat[i].a); |
| Error += glm::epsilonEqual(Result, TestFloat[i].Result, glm::epsilon<float>()) ? 0 : 1; |
| } |
| } |
| |
| // vec2 with bool |
| { |
| for(std::size_t i = 0; i < sizeof(TestVec2Bool) / sizeof(entry<glm::vec2, bool>); ++i) |
| { |
| glm::vec2 Result = glm::mix(TestVec2Bool[i].x, TestVec2Bool[i].y, TestVec2Bool[i].a); |
| Error += glm::epsilonEqual(Result.x, TestVec2Bool[i].Result.x, glm::epsilon<float>()) ? 0 : 1; |
| Error += glm::epsilonEqual(Result.y, TestVec2Bool[i].Result.y, glm::epsilon<float>()) ? 0 : 1; |
| } |
| } |
| |
| // vec2 with bvec2 |
| { |
| for(std::size_t i = 0; i < sizeof(TestBVec2) / sizeof(entry<glm::vec2, glm::bvec2>); ++i) |
| { |
| glm::vec2 Result = glm::mix(TestBVec2[i].x, TestBVec2[i].y, TestBVec2[i].a); |
| Error += glm::epsilonEqual(Result.x, TestBVec2[i].Result.x, glm::epsilon<float>()) ? 0 : 1; |
| Error += glm::epsilonEqual(Result.y, TestBVec2[i].Result.y, glm::epsilon<float>()) ? 0 : 1; |
| } |
| } |
| |
| // vec3 with bool |
| { |
| for(std::size_t i = 0; i < sizeof(TestVec3Bool) / sizeof(entry<glm::vec3, bool>); ++i) |
| { |
| glm::vec3 Result = glm::mix(TestVec3Bool[i].x, TestVec3Bool[i].y, TestVec3Bool[i].a); |
| Error += glm::epsilonEqual(Result.x, TestVec3Bool[i].Result.x, glm::epsilon<float>()) ? 0 : 1; |
| Error += glm::epsilonEqual(Result.y, TestVec3Bool[i].Result.y, glm::epsilon<float>()) ? 0 : 1; |
| Error += glm::epsilonEqual(Result.z, TestVec3Bool[i].Result.z, glm::epsilon<float>()) ? 0 : 1; |
| } |
| } |
| |
| // vec3 with bvec3 |
| { |
| for(std::size_t i = 0; i < sizeof(TestBVec3) / sizeof(entry<glm::vec3, glm::bvec3>); ++i) |
| { |
| glm::vec3 Result = glm::mix(TestBVec3[i].x, TestBVec3[i].y, TestBVec3[i].a); |
| Error += glm::epsilonEqual(Result.x, TestBVec3[i].Result.x, glm::epsilon<float>()) ? 0 : 1; |
| Error += glm::epsilonEqual(Result.y, TestBVec3[i].Result.y, glm::epsilon<float>()) ? 0 : 1; |
| Error += glm::epsilonEqual(Result.z, TestBVec3[i].Result.z, glm::epsilon<float>()) ? 0 : 1; |
| } |
| } |
| |
| // vec4 with bool |
| { |
| for(std::size_t i = 0; i < sizeof(TestVec4Bool) / sizeof(entry<glm::vec4, bool>); ++i) |
| { |
| glm::vec4 Result = glm::mix(TestVec4Bool[i].x, TestVec4Bool[i].y, TestVec4Bool[i].a); |
| Error += glm::epsilonEqual(Result.x, TestVec4Bool[i].Result.x, glm::epsilon<float>()) ? 0 : 1; |
| Error += glm::epsilonEqual(Result.y, TestVec4Bool[i].Result.y, glm::epsilon<float>()) ? 0 : 1; |
| Error += glm::epsilonEqual(Result.z, TestVec4Bool[i].Result.z, glm::epsilon<float>()) ? 0 : 1; |
| Error += glm::epsilonEqual(Result.w, TestVec4Bool[i].Result.w, glm::epsilon<float>()) ? 0 : 1; |
| } |
| } |
| |
| // vec4 with bvec4 |
| { |
| for(std::size_t i = 0; i < sizeof(TestBVec4) / sizeof(entry<glm::vec4, glm::bvec4>); ++i) |
| { |
| glm::vec4 Result = glm::mix(TestBVec4[i].x, TestBVec4[i].y, TestBVec4[i].a); |
| Error += glm::epsilonEqual(Result.x, TestBVec4[i].Result.x, glm::epsilon<float>()) ? 0 : 1; |
| Error += glm::epsilonEqual(Result.y, TestBVec4[i].Result.y, glm::epsilon<float>()) ? 0 : 1; |
| Error += glm::epsilonEqual(Result.z, TestBVec4[i].Result.z, glm::epsilon<float>()) ? 0 : 1; |
| Error += glm::epsilonEqual(Result.w, TestBVec4[i].Result.w, glm::epsilon<float>()) ? 0 : 1; |
| } |
| } |
| |
| return Error; |
| } |
| }//namespace mix_ |
| |
| namespace step_ |
| { |
| template <typename EDGE, typename VEC> |
| struct entry |
| { |
| EDGE edge; |
| VEC x; |
| VEC result; |
| }; |
| |
| entry<float, glm::vec4> TestVec4Scalar [] = |
| { |
| { 1.0f, glm::vec4(1.0f, 2.0f, 3.0f, 4.0f), glm::vec4(1.0f) }, |
| { 0.0f, glm::vec4(1.0f, 2.0f, 3.0f, 4.0f), glm::vec4(1.0f) }, |
| { 0.0f, glm::vec4(-1.0f, -2.0f, -3.0f, -4.0f), glm::vec4(0.0f) } |
| }; |
| |
| entry<glm::vec4, glm::vec4> TestVec4Vector [] = |
| { |
| { glm::vec4(-1.0f, -2.0f, -3.0f, -4.0f), glm::vec4(-2.0f, -3.0f, -4.0f, -5.0f), glm::vec4(0.0f) }, |
| { glm::vec4( 0.0f, 1.0f, 2.0f, 3.0f), glm::vec4( 1.0f, 2.0f, 3.0f, 4.0f), glm::vec4(1.0f) }, |
| { glm::vec4( 2.0f, 3.0f, 4.0f, 5.0f), glm::vec4( 1.0f, 2.0f, 3.0f, 4.0f), glm::vec4(0.0f) }, |
| { glm::vec4( 0.0f, 1.0f, 2.0f, 3.0f), glm::vec4(-1.0f,-2.0f,-3.0f,-4.0f), glm::vec4(0.0f) } |
| }; |
| |
| int test() |
| { |
| int Error = 0; |
| |
| // vec4 and float |
| { |
| for (std::size_t i = 0; i < sizeof(TestVec4Scalar) / sizeof(entry<float, glm::vec4>); ++i) |
| { |
| glm::vec4 Result = glm::step(TestVec4Scalar[i].edge, TestVec4Scalar[i].x); |
| Error += glm::all(glm::epsilonEqual(Result, TestVec4Scalar[i].result, glm::epsilon<float>())) ? 0 : 1; |
| } |
| } |
| |
| // vec4 and vec4 |
| { |
| for (std::size_t i = 0; i < sizeof(TestVec4Vector) / sizeof(entry<glm::vec4, glm::vec4>); ++i) |
| { |
| glm::vec4 Result = glm::step(TestVec4Vector[i].edge, TestVec4Vector[i].x); |
| Error += glm::all(glm::epsilonEqual(Result, TestVec4Vector[i].result, glm::epsilon<float>())) ? 0 : 1; |
| } |
| } |
| |
| return Error; |
| } |
| }//namespace step_ |
| |
| namespace round_ |
| { |
| int test() |
| { |
| int Error = 0; |
| |
| { |
| float A = glm::round(0.0f); |
| Error += A == 0.0f ? 0 : 1; |
| float B = glm::round(0.5f); |
| Error += B == 1.0f ? 0 : 1; |
| float C = glm::round(1.0f); |
| Error += C == 1.0f ? 0 : 1; |
| float D = glm::round(0.1f); |
| Error += D == 0.0f ? 0 : 1; |
| float E = glm::round(0.9f); |
| Error += E == 1.0f ? 0 : 1; |
| float F = glm::round(1.5f); |
| Error += F == 2.0f ? 0 : 1; |
| float G = glm::round(1.9f); |
| Error += G == 2.0f ? 0 : 1; |
| } |
| |
| { |
| float A = glm::round(-0.0f); |
| Error += A == 0.0f ? 0 : 1; |
| float B = glm::round(-0.5f); |
| Error += B == -1.0f ? 0 : 1; |
| float C = glm::round(-1.0f); |
| Error += C == -1.0f ? 0 : 1; |
| float D = glm::round(-0.1f); |
| Error += D == 0.0f ? 0 : 1; |
| float E = glm::round(-0.9f); |
| Error += E == -1.0f ? 0 : 1; |
| float F = glm::round(-1.5f); |
| Error += F == -2.0f ? 0 : 1; |
| float G = glm::round(-1.9f); |
| Error += G == -2.0f ? 0 : 1; |
| } |
| |
| return Error; |
| } |
| }//namespace round_ |
| |
| namespace roundEven |
| { |
| int test() |
| { |
| int Error = 0; |
| |
| { |
| float A1 = glm::roundEven(-1.5f); |
| Error += glm::epsilonEqual(A1, -2.0f, 0.0001f) ? 0 : 1; |
| |
| float A2 = glm::roundEven(1.5f); |
| Error += glm::epsilonEqual(A2, 2.0f, 0.0001f) ? 0 : 1; |
| |
| float A5 = glm::roundEven(-2.5f); |
| Error += glm::epsilonEqual(A5, -2.0f, 0.0001f) ? 0 : 1; |
| |
| float A6 = glm::roundEven(2.5f); |
| Error += glm::epsilonEqual(A6, 2.0f, 0.0001f) ? 0 : 1; |
| |
| float A3 = glm::roundEven(-3.5f); |
| Error += glm::epsilonEqual(A3, -4.0f, 0.0001f) ? 0 : 1; |
| |
| float A4 = glm::roundEven(3.5f); |
| Error += glm::epsilonEqual(A4, 4.0f, 0.0001f) ? 0 : 1; |
| |
| float C7 = glm::roundEven(-4.5f); |
| Error += glm::epsilonEqual(C7, -4.0f, 0.0001f) ? 0 : 1; |
| |
| float C8 = glm::roundEven(4.5f); |
| Error += glm::epsilonEqual(C8, 4.0f, 0.0001f) ? 0 : 1; |
| |
| float C1 = glm::roundEven(-5.5f); |
| Error += glm::epsilonEqual(C1, -6.0f, 0.0001f) ? 0 : 1; |
| |
| float C2 = glm::roundEven(5.5f); |
| Error += glm::epsilonEqual(C2, 6.0f, 0.0001f) ? 0 : 1; |
| |
| float C3 = glm::roundEven(-6.5f); |
| Error += glm::epsilonEqual(C3, -6.0f, 0.0001f) ? 0 : 1; |
| |
| float C4 = glm::roundEven(6.5f); |
| Error += glm::epsilonEqual(C4, 6.0f, 0.0001f) ? 0 : 1; |
| |
| float C5 = glm::roundEven(-7.5f); |
| Error += glm::epsilonEqual(C5, -8.0f, 0.0001f) ? 0 : 1; |
| |
| float C6 = glm::roundEven(7.5f); |
| Error += glm::epsilonEqual(C6, 8.0f, 0.0001f) ? 0 : 1; |
| |
| Error += 0; |
| } |
| |
| { |
| float A7 = glm::roundEven(-2.4f); |
| Error += glm::epsilonEqual(A7, -2.0f, 0.0001f) ? 0 : 1; |
| |
| float A8 = glm::roundEven(2.4f); |
| Error += glm::epsilonEqual(A8, 2.0f, 0.0001f) ? 0 : 1; |
| |
| float B1 = glm::roundEven(-2.6f); |
| Error += glm::epsilonEqual(B1, -3.0f, 0.0001f) ? 0 : 1; |
| |
| float B2 = glm::roundEven(2.6f); |
| Error += glm::epsilonEqual(B2, 3.0f, 0.0001f) ? 0 : 1; |
| |
| float B3 = glm::roundEven(-2.0f); |
| Error += glm::epsilonEqual(B3, -2.0f, 0.0001f) ? 0 : 1; |
| |
| float B4 = glm::roundEven(2.0f); |
| Error += glm::epsilonEqual(B4, 2.0f, 0.0001f) ? 0 : 1; |
| |
| Error += 0; |
| } |
| |
| { |
| float A = glm::roundEven(0.0f); |
| Error += A == 0.0f ? 0 : 1; |
| float B = glm::roundEven(0.5f); |
| Error += B == 0.0f ? 0 : 1; |
| float C = glm::roundEven(1.0f); |
| Error += C == 1.0f ? 0 : 1; |
| float D = glm::roundEven(0.1f); |
| Error += D == 0.0f ? 0 : 1; |
| float E = glm::roundEven(0.9f); |
| Error += E == 1.0f ? 0 : 1; |
| float F = glm::roundEven(1.5f); |
| Error += F == 2.0f ? 0 : 1; |
| float G = glm::roundEven(1.9f); |
| Error += G == 2.0f ? 0 : 1; |
| } |
| |
| { |
| float A = glm::roundEven(-0.0f); |
| Error += A == 0.0f ? 0 : 1; |
| float B = glm::roundEven(-0.5f); |
| Error += B == -0.0f ? 0 : 1; |
| float C = glm::roundEven(-1.0f); |
| Error += C == -1.0f ? 0 : 1; |
| float D = glm::roundEven(-0.1f); |
| Error += D == 0.0f ? 0 : 1; |
| float E = glm::roundEven(-0.9f); |
| Error += E == -1.0f ? 0 : 1; |
| float F = glm::roundEven(-1.5f); |
| Error += F == -2.0f ? 0 : 1; |
| float G = glm::roundEven(-1.9f); |
| Error += G == -2.0f ? 0 : 1; |
| } |
| |
| { |
| float A = glm::roundEven(1.5f); |
| Error += A == 2.0f ? 0 : 1; |
| float B = glm::roundEven(2.5f); |
| Error += B == 2.0f ? 0 : 1; |
| float C = glm::roundEven(3.5f); |
| Error += C == 4.0f ? 0 : 1; |
| float D = glm::roundEven(4.5f); |
| Error += D == 4.0f ? 0 : 1; |
| float E = glm::roundEven(5.5f); |
| Error += E == 6.0f ? 0 : 1; |
| float F = glm::roundEven(6.5f); |
| Error += F == 6.0f ? 0 : 1; |
| float G = glm::roundEven(7.5f); |
| Error += G == 8.0f ? 0 : 1; |
| } |
| |
| { |
| float A = glm::roundEven(-1.5f); |
| Error += A == -2.0f ? 0 : 1; |
| float B = glm::roundEven(-2.5f); |
| Error += B == -2.0f ? 0 : 1; |
| float C = glm::roundEven(-3.5f); |
| Error += C == -4.0f ? 0 : 1; |
| float D = glm::roundEven(-4.5f); |
| Error += D == -4.0f ? 0 : 1; |
| float E = glm::roundEven(-5.5f); |
| Error += E == -6.0f ? 0 : 1; |
| float F = glm::roundEven(-6.5f); |
| Error += F == -6.0f ? 0 : 1; |
| float G = glm::roundEven(-7.5f); |
| Error += G == -8.0f ? 0 : 1; |
| } |
| |
| return Error; |
| } |
| }//namespace roundEven |
| |
| namespace isnan_ |
| { |
| int test() |
| { |
| int Error = 0; |
| |
| float Zero_f = 0.0; |
| double Zero_d = 0.0; |
| |
| { |
| Error += true == glm::isnan(0.0/Zero_d) ? 0 : 1; |
| Error += true == glm::any(glm::isnan(glm::dvec2(0.0 / Zero_d))) ? 0 : 1; |
| Error += true == glm::any(glm::isnan(glm::dvec3(0.0 / Zero_d))) ? 0 : 1; |
| Error += true == glm::any(glm::isnan(glm::dvec4(0.0 / Zero_d))) ? 0 : 1; |
| } |
| |
| { |
| Error += true == glm::isnan(0.0f/Zero_f) ? 0 : 1; |
| Error += true == glm::any(glm::isnan(glm::vec2(0.0f/Zero_f))) ? 0 : 1; |
| Error += true == glm::any(glm::isnan(glm::vec3(0.0f/Zero_f))) ? 0 : 1; |
| Error += true == glm::any(glm::isnan(glm::vec4(0.0f/Zero_f))) ? 0 : 1; |
| } |
| |
| return Error; |
| } |
| }//namespace isnan_ |
| |
| namespace isinf_ |
| { |
| int test() |
| { |
| int Error = 0; |
| |
| float Zero_f = 0.0; |
| double Zero_d = 0.0; |
| |
| { |
| Error += true == glm::isinf( 1.0/Zero_d) ? 0 : 1; |
| Error += true == glm::isinf(-1.0/Zero_d) ? 0 : 1; |
| Error += true == glm::any(glm::isinf(glm::dvec2( 1.0/Zero_d))) ? 0 : 1; |
| Error += true == glm::any(glm::isinf(glm::dvec2(-1.0/Zero_d))) ? 0 : 1; |
| Error += true == glm::any(glm::isinf(glm::dvec3( 1.0/Zero_d))) ? 0 : 1; |
| Error += true == glm::any(glm::isinf(glm::dvec3(-1.0/Zero_d))) ? 0 : 1; |
| Error += true == glm::any(glm::isinf(glm::dvec4( 1.0/Zero_d))) ? 0 : 1; |
| Error += true == glm::any(glm::isinf(glm::dvec4(-1.0/Zero_d))) ? 0 : 1; |
| } |
| |
| { |
| Error += true == glm::isinf( 1.0f/Zero_f) ? 0 : 1; |
| Error += true == glm::isinf(-1.0f/Zero_f) ? 0 : 1; |
| Error += true == glm::any(glm::isinf(glm::vec2( 1.0f/Zero_f))) ? 0 : 1; |
| Error += true == glm::any(glm::isinf(glm::vec2(-1.0f/Zero_f))) ? 0 : 1; |
| Error += true == glm::any(glm::isinf(glm::vec3( 1.0f/Zero_f))) ? 0 : 1; |
| Error += true == glm::any(glm::isinf(glm::vec3(-1.0f/Zero_f))) ? 0 : 1; |
| Error += true == glm::any(glm::isinf(glm::vec4( 1.0f/Zero_f))) ? 0 : 1; |
| Error += true == glm::any(glm::isinf(glm::vec4(-1.0f/Zero_f))) ? 0 : 1; |
| } |
| |
| return Error; |
| } |
| }//namespace isinf_ |
| |
| namespace sign |
| { |
| template <typename genFIType> |
| GLM_FUNC_QUALIFIER genFIType sign_if(genFIType x) |
| { |
| GLM_STATIC_ASSERT( |
| std::numeric_limits<genFIType>::is_iec559 || |
| (std::numeric_limits<genFIType>::is_signed && std::numeric_limits<genFIType>::is_integer), "'sign' only accept signed inputs"); |
| |
| genFIType result; |
| if(x > genFIType(0)) |
| result = genFIType(1); |
| else if(x < genFIType(0)) |
| result = genFIType(-1); |
| else |
| result = genFIType(0); |
| return result; |
| } |
| |
| template <typename genFIType> |
| GLM_FUNC_QUALIFIER genFIType sign_alu1(genFIType x) |
| { |
| GLM_STATIC_ASSERT( |
| std::numeric_limits<genFIType>::is_signed && std::numeric_limits<genFIType>::is_integer, |
| "'sign' only accept integer inputs"); |
| |
| return (x >> 31) | ((unsigned)-x >> 31); |
| } |
| |
| template <typename genFIType> |
| GLM_FUNC_QUALIFIER genFIType sign_alu2(genFIType x) |
| { |
| GLM_STATIC_ASSERT( |
| std::numeric_limits<genFIType>::is_signed && std::numeric_limits<genFIType>::is_integer, |
| "'sign' only accept integer inputs"); |
| |
| return -((unsigned)x >> 31) | (-(unsigned)x >> 31); |
| } |
| |
| template <typename genFIType> |
| GLM_FUNC_QUALIFIER genFIType sign_sub(genFIType x) |
| { |
| GLM_STATIC_ASSERT( |
| std::numeric_limits<genFIType>::is_signed && std::numeric_limits<genFIType>::is_integer, |
| "'sign' only accept integer inputs"); |
| |
| return ((unsigned)-x >> 31) - ((unsigned)x >> 31); |
| } |
| |
| template <typename genFIType> |
| GLM_FUNC_QUALIFIER genFIType sign_cmp(genFIType x) |
| { |
| GLM_STATIC_ASSERT( |
| std::numeric_limits<genFIType>::is_signed && std::numeric_limits<genFIType>::is_integer, |
| "'sign' only accept integer inputs"); |
| |
| return (x > 0) - (x < 0); |
| } |
| |
| template <typename genType> |
| struct type |
| { |
| genType Value; |
| genType Return; |
| }; |
| |
| int test_int32() |
| { |
| type<glm::int32> const Data[] = |
| { |
| { std::numeric_limits<glm::int32>::max(), 1}, |
| { std::numeric_limits<glm::int32>::min(), -1}, |
| { 0, 0}, |
| { 1, 1}, |
| { 2, 1}, |
| { 3, 1}, |
| {-1,-1}, |
| {-2,-1}, |
| {-3,-1} |
| }; |
| |
| int Error = 0; |
| |
| for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<glm::int32>); ++i) |
| { |
| glm::int32 Result = glm::sign(Data[i].Value); |
| Error += Data[i].Return == Result ? 0 : 1; |
| } |
| |
| for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<glm::int32>); ++i) |
| { |
| glm::int32 Result = sign_cmp(Data[i].Value); |
| Error += Data[i].Return == Result ? 0 : 1; |
| } |
| |
| for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<glm::int32>); ++i) |
| { |
| glm::int32 Result = sign_if(Data[i].Value); |
| Error += Data[i].Return == Result ? 0 : 1; |
| } |
| |
| for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<glm::int32>); ++i) |
| { |
| glm::int32 Result = sign_alu1(Data[i].Value); |
| Error += Data[i].Return == Result ? 0 : 1; |
| } |
| |
| for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<glm::int32>); ++i) |
| { |
| glm::int32 Result = sign_alu2(Data[i].Value); |
| Error += Data[i].Return == Result ? 0 : 1; |
| } |
| |
| return Error; |
| } |
| |
| int test_i32vec4() |
| { |
| type<glm::i32vec4> const Data[] = |
| { |
| {glm::i32vec4( 1), glm::i32vec4( 1)}, |
| {glm::i32vec4( 0), glm::i32vec4( 0)}, |
| {glm::i32vec4( 2), glm::i32vec4( 1)}, |
| {glm::i32vec4( 3), glm::i32vec4( 1)}, |
| {glm::i32vec4(-1), glm::i32vec4(-1)}, |
| {glm::i32vec4(-2), glm::i32vec4(-1)}, |
| {glm::i32vec4(-3), glm::i32vec4(-1)} |
| }; |
| |
| int Error = 0; |
| |
| for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<glm::i32vec4>); ++i) |
| { |
| glm::i32vec4 Result = glm::sign(Data[i].Value); |
| Error += glm::all(glm::equal(Data[i].Return, Result)) ? 0 : 1; |
| } |
| |
| return Error; |
| } |
| |
| int test_f32vec4() |
| { |
| type<glm::vec4> const Data[] = |
| { |
| {glm::vec4( 1), glm::vec4( 1)}, |
| {glm::vec4( 0), glm::vec4( 0)}, |
| {glm::vec4( 2), glm::vec4( 1)}, |
| {glm::vec4( 3), glm::vec4( 1)}, |
| {glm::vec4(-1), glm::vec4(-1)}, |
| {glm::vec4(-2), glm::vec4(-1)}, |
| {glm::vec4(-3), glm::vec4(-1)} |
| }; |
| |
| int Error = 0; |
| |
| for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<glm::vec4>); ++i) |
| { |
| glm::vec4 Result = glm::sign(Data[i].Value); |
| Error += glm::all(glm::equal(Data[i].Return, Result)) ? 0 : 1; |
| } |
| |
| return Error; |
| } |
| |
| int test() |
| { |
| int Error = 0; |
| |
| Error += test_int32(); |
| Error += test_i32vec4(); |
| Error += test_f32vec4(); |
| |
| return Error; |
| } |
| |
| int perf_rand(std::size_t Samples) |
| { |
| int Error = 0; |
| |
| std::size_t const Count = Samples; |
| std::vector<glm::int32> Input, Output; |
| Input.resize(Count); |
| Output.resize(Count); |
| for(std::size_t i = 0; i < Count; ++i) |
| Input[i] = static_cast<glm::int32>(glm::linearRand(-65536.f, 65536.f)); |
| |
| std::clock_t Timestamp0 = std::clock(); |
| |
| for(std::size_t i = 0; i < Count; ++i) |
| Output[i] = sign_cmp(Input[i]); |
| |
| std::clock_t Timestamp1 = std::clock(); |
| |
| for(std::size_t i = 0; i < Count; ++i) |
| Output[i] = sign_if(Input[i]); |
| |
| std::clock_t Timestamp2 = std::clock(); |
| |
| for(std::size_t i = 0; i < Count; ++i) |
| Output[i] = sign_alu1(Input[i]); |
| |
| std::clock_t Timestamp3 = std::clock(); |
| |
| for(std::size_t i = 0; i < Count; ++i) |
| Output[i] = sign_alu2(Input[i]); |
| |
| std::clock_t Timestamp4 = std::clock(); |
| |
| for(std::size_t i = 0; i < Count; ++i) |
| Output[i] = sign_sub(Input[i]); |
| |
| std::clock_t Timestamp5 = std::clock(); |
| |
| for(std::size_t i = 0; i < Count; ++i) |
| Output[i] = glm::sign(Input[i]); |
| |
| std::clock_t Timestamp6 = std::clock(); |
| |
| std::printf("sign_cmp(rand) Time %d clocks\n", static_cast<unsigned int>(Timestamp1 - Timestamp0)); |
| std::printf("sign_if(rand) Time %d clocks\n", static_cast<unsigned int>(Timestamp2 - Timestamp1)); |
| std::printf("sign_alu1(rand) Time %d clocks\n", static_cast<unsigned int>(Timestamp3 - Timestamp2)); |
| std::printf("sign_alu2(rand) Time %d clocks\n", static_cast<unsigned int>(Timestamp4 - Timestamp3)); |
| std::printf("sign_sub(rand) Time %d clocks\n", static_cast<unsigned int>(Timestamp5 - Timestamp4)); |
| std::printf("glm::sign(rand) Time %d clocks\n", static_cast<unsigned int>(Timestamp6 - Timestamp5)); |
| |
| return Error; |
| } |
| |
| int perf_linear(std::size_t Samples) |
| { |
| int Error = 0; |
| |
| std::size_t const Count = Samples; |
| std::vector<glm::int32> Input, Output; |
| Input.resize(Count); |
| Output.resize(Count); |
| for(std::size_t i = 0; i < Count; ++i) |
| Input[i] = static_cast<glm::int32>(i); |
| |
| std::clock_t Timestamp0 = std::clock(); |
| |
| for(std::size_t i = 0; i < Count; ++i) |
| Output[i] = sign_cmp(Input[i]); |
| |
| std::clock_t Timestamp1 = std::clock(); |
| |
| for(std::size_t i = 0; i < Count; ++i) |
| Output[i] = sign_if(Input[i]); |
| |
| std::clock_t Timestamp2 = std::clock(); |
| |
| for(std::size_t i = 0; i < Count; ++i) |
| Output[i] = sign_alu1(Input[i]); |
| |
| std::clock_t Timestamp3 = std::clock(); |
| |
| for(std::size_t i = 0; i < Count; ++i) |
| Output[i] = sign_alu2(Input[i]); |
| |
| std::clock_t Timestamp4 = std::clock(); |
| |
| for(std::size_t i = 0; i < Count; ++i) |
| Output[i] = sign_sub(Input[i]); |
| |
| std::clock_t Timestamp5 = std::clock(); |
| |
| std::printf("sign_cmp(linear) Time %d clocks\n", static_cast<unsigned int>(Timestamp1 - Timestamp0)); |
| std::printf("sign_if(linear) Time %d clocks\n", static_cast<unsigned int>(Timestamp2 - Timestamp1)); |
| std::printf("sign_alu1(linear) Time %d clocks\n", static_cast<unsigned int>(Timestamp3 - Timestamp2)); |
| std::printf("sign_alu2(linear) Time %d clocks\n", static_cast<unsigned int>(Timestamp4 - Timestamp3)); |
| std::printf("sign_sub(linear) Time %d clocks\n", static_cast<unsigned int>(Timestamp5 - Timestamp4)); |
| |
| return Error; |
| } |
| |
| int perf_linear_cal(std::size_t Samples) |
| { |
| int Error = 0; |
| |
| glm::int32 const Count = static_cast<glm::int32>(Samples); |
| |
| std::clock_t Timestamp0 = std::clock(); |
| glm::int32 Sum = 0; |
| |
| for(glm::int32 i = 1; i < Count; ++i) |
| Sum += sign_cmp(i); |
| |
| std::clock_t Timestamp1 = std::clock(); |
| |
| for(glm::int32 i = 1; i < Count; ++i) |
| Sum += sign_if(i); |
| |
| std::clock_t Timestamp2 = std::clock(); |
| |
| for(glm::int32 i = 1; i < Count; ++i) |
| Sum += sign_alu1(i); |
| |
| std::clock_t Timestamp3 = std::clock(); |
| |
| for(glm::int32 i = 1; i < Count; ++i) |
| Sum += sign_alu2(i); |
| |
| std::clock_t Timestamp4 = std::clock(); |
| |
| for(glm::int32 i = 1; i < Count; ++i) |
| Sum += sign_sub(i); |
| |
| std::clock_t Timestamp5 = std::clock(); |
| |
| std::printf("Sum %d\n", static_cast<unsigned int>(Sum)); |
| |
| std::printf("sign_cmp(linear_cal) Time %d clocks\n", static_cast<unsigned int>(Timestamp1 - Timestamp0)); |
| std::printf("sign_if(linear_cal) Time %d clocks\n", static_cast<unsigned int>(Timestamp2 - Timestamp1)); |
| std::printf("sign_alu1(linear_cal) Time %d clocks\n", static_cast<unsigned int>(Timestamp3 - Timestamp2)); |
| std::printf("sign_alu2(linear_cal) Time %d clocks\n", static_cast<unsigned int>(Timestamp4 - Timestamp3)); |
| std::printf("sign_sub(linear_cal) Time %d clocks\n", static_cast<unsigned int>(Timestamp5 - Timestamp4)); |
| |
| return Error; |
| } |
| |
| int perf(std::size_t Samples) |
| { |
| int Error(0); |
| |
| Error += perf_linear_cal(Samples); |
| Error += perf_linear(Samples); |
| Error += perf_rand(Samples); |
| |
| return Error; |
| } |
| }//namespace sign |
| |
| namespace frexp_ |
| { |
| int test() |
| { |
| int Error(0); |
| |
| { |
| glm::vec1 x(1024); |
| glm::ivec1 exp; |
| glm::vec1 A = glm::frexp(x, exp); |
| Error += glm::all(glm::epsilonEqual(A, glm::vec1(0.5), 0.00001f)) ? 0 : 1; |
| Error += glm::all(glm::equal(exp, glm::ivec1(11))) ? 0 : 1; |
| } |
| |
| { |
| glm::vec2 x(1024, 0.24); |
| glm::ivec2 exp; |
| glm::vec2 A = glm::frexp(x, exp); |
| Error += glm::all(glm::epsilonEqual(A, glm::vec2(0.5, 0.96), 0.00001f)) ? 0 : 1; |
| Error += glm::all(glm::equal(exp, glm::ivec2(11, -2))) ? 0 : 1; |
| } |
| |
| { |
| glm::vec3 x(1024, 0.24, 0); |
| glm::ivec3 exp; |
| glm::vec3 A = glm::frexp(x, exp); |
| Error += glm::all(glm::epsilonEqual(A, glm::vec3(0.5, 0.96, 0.0), 0.00001f)) ? 0 : 1; |
| Error += glm::all(glm::equal(exp, glm::ivec3(11, -2, 0))) ? 0 : 1; |
| } |
| |
| { |
| glm::vec4 x(1024, 0.24, 0, -1.33); |
| glm::ivec4 exp; |
| glm::vec4 A = glm::frexp(x, exp); |
| Error += glm::all(glm::epsilonEqual(A, glm::vec4(0.5, 0.96, 0.0, -0.665), 0.00001f)) ? 0 : 1; |
| Error += glm::all(glm::equal(exp, glm::ivec4(11, -2, 0, 1))) ? 0 : 1; |
| } |
| |
| return Error; |
| } |
| }//namespace frexp_ |
| |
| namespace ldexp_ |
| { |
| int test() |
| { |
| int Error(0); |
| |
| { |
| glm::vec1 A = glm::vec1(0.5); |
| glm::ivec1 exp = glm::ivec1(11); |
| glm::vec1 x = glm::ldexp(A, exp); |
| Error += glm::all(glm::epsilonEqual(x, glm::vec1(1024),0.00001f)) ? 0 : 1; |
| } |
| |
| { |
| glm::vec2 A = glm::vec2(0.5, 0.96); |
| glm::ivec2 exp = glm::ivec2(11, -2); |
| glm::vec2 x = glm::ldexp(A, exp); |
| Error += glm::all(glm::epsilonEqual(x, glm::vec2(1024, .24),0.00001f)) ? 0 : 1; |
| } |
| |
| { |
| glm::vec3 A = glm::vec3(0.5, 0.96, 0.0); |
| glm::ivec3 exp = glm::ivec3(11, -2, 0); |
| glm::vec3 x = glm::ldexp(A, exp); |
| Error += glm::all(glm::epsilonEqual(x, glm::vec3(1024, .24, 0),0.00001f)) ? 0 : 1; |
| } |
| |
| { |
| glm::vec4 A = glm::vec4(0.5, 0.96, 0.0, -0.665); |
| glm::ivec4 exp = glm::ivec4(11, -2, 0, 1); |
| glm::vec4 x = glm::ldexp(A, exp); |
| Error += glm::all(glm::epsilonEqual(x, glm::vec4(1024, .24, 0, -1.33),0.00001f)) ? 0 : 1; |
| } |
| |
| return Error; |
| } |
| }//namespace ldexp_ |
| |
| int main() |
| { |
| int Error = 0; |
| |
| glm::ivec4 const a(1); |
| glm::ivec4 const b = ~a; |
| |
| glm::int32 const c(1); |
| glm::int32 const d = ~c; |
| |
| # if GLM_ARCH & GLM_ARCH_AVX_BIT && GLM_HAS_UNRESTRICTED_UNIONS |
| glm_vec4 const A = _mm_set_ps(4, 3, 2, 1); |
| glm_vec4 const B = glm_vec4_swizzle_xyzw(A); |
| glm_vec4 const C = _mm_permute_ps(A, _MM_SHUFFLE(3, 2, 1, 0)); |
| glm_vec4 const D = _mm_permute_ps(A, _MM_SHUFFLE(0, 1, 2, 3)); |
| glm_vec4 const E = _mm_shuffle_ps(A, A, _MM_SHUFFLE(0, 1, 2, 3)); |
| # endif |
| |
| Error += sign::test(); |
| Error += floor_::test(); |
| Error += mod_::test(); |
| Error += modf_::test(); |
| Error += floatBitsToInt::test(); |
| Error += floatBitsToUint::test(); |
| Error += mix_::test(); |
| Error += step_::test(); |
| Error += max_::test(); |
| Error += min_::test(); |
| Error += round_::test(); |
| Error += roundEven::test(); |
| Error += isnan_::test(); |
| Error += isinf_::test(); |
| Error += frexp_::test(); |
| Error += ldexp_::test(); |
| |
| # ifdef NDEBUG |
| std::size_t Samples = 1000; |
| Error += sign::perf(Samples); |
| # endif |
| |
| return Error; |
| } |
| |