blob: 6ff3c3937c89c443e8e1c28c0e5263691a32b0c8 [file] [log] [blame]
#define GLM_FORCE_EXPLICIT_CTOR
#include <glm/common.hpp>
#include <glm/gtc/constants.hpp>
#include <glm/gtc/epsilon.hpp>
#include <glm/gtc/vec1.hpp>
#include <glm/gtc/random.hpp>
#include <vector>
#include <cstdio>
#include <cmath>
#include <ctime>
namespace floor_
{
int test()
{
int Error(0);
{
float A(1.1f);
float B = glm::floor(A);
}
{
double A(1.1f);
double B = glm::floor(A);
}
{
glm::vec1 A(1.1f);
glm::vec1 B = glm::floor(A);
Error += glm::all(glm::epsilonEqual(B, glm::vec1(1.0), 0.0001f)) ? 0 : 1;
}
{
glm::dvec1 A(1.1f);
glm::dvec1 B = glm::floor(A);
Error += glm::all(glm::epsilonEqual(B, glm::dvec1(1.0), 0.0001)) ? 0 : 1;
}
{
glm::vec2 A(1.1f);
glm::vec2 B = glm::floor(A);
Error += glm::all(glm::epsilonEqual(B, glm::vec2(1.0), 0.0001f)) ? 0 : 1;
}
{
glm::dvec2 A(1.1f);
glm::dvec2 B = glm::floor(A);
Error += glm::all(glm::epsilonEqual(B, glm::dvec2(1.0), 0.0001)) ? 0 : 1;
}
{
glm::vec3 A(1.1f);
glm::vec3 B = glm::floor(A);
Error += glm::all(glm::epsilonEqual(B, glm::vec3(1.0), 0.0001f)) ? 0 : 1;
}
{
glm::dvec3 A(1.1f);
glm::dvec3 B = glm::floor(A);
Error += glm::all(glm::epsilonEqual(B, glm::dvec3(1.0), 0.0001)) ? 0 : 1;
}
{
glm::vec4 A(1.1f);
glm::vec4 B = glm::floor(A);
Error += glm::all(glm::epsilonEqual(B, glm::vec4(1.0), 0.0001f)) ? 0 : 1;
}
{
glm::dvec4 A(1.1f);
glm::dvec4 B = glm::floor(A);
Error += glm::all(glm::epsilonEqual(B, glm::dvec4(1.0), 0.0001)) ? 0 : 1;
}
return Error;
}
}//namespace floor
namespace modf_
{
int test()
{
int Error(0);
{
float X(1.5f);
float I(0.0f);
float A = glm::modf(X, I);
Error += I == 1.0f ? 0 : 1;
Error += A == 0.5f ? 0 : 1;
}
{
glm::vec4 X(1.1f, 1.2f, 1.5f, 1.7f);
glm::vec4 I(0.0f);
glm::vec4 A = glm::modf(X, I);
Error += I == glm::vec4(1.0f) ? 0 : 1;
Error += glm::all(glm::epsilonEqual(A, glm::vec4(0.1f, 0.2f, 0.5f, 0.7f), 0.00001f)) ? 0 : 1;
}
{
glm::dvec4 X(1.1, 1.2, 1.5, 1.7);
glm::dvec4 I(0.0);
glm::dvec4 A = glm::modf(X, I);
Error += I == glm::dvec4(1.0) ? 0 : 1;
Error += glm::all(glm::epsilonEqual(A, glm::dvec4(0.1, 0.2, 0.5, 0.7), 0.000000001)) ? 0 : 1;
}
{
double X(1.5);
double I(0.0);
double A = glm::modf(X, I);
Error += I == 1.0 ? 0 : 1;
Error += A == 0.5 ? 0 : 1;
}
return Error;
}
}//namespace modf
namespace mod_
{
int test()
{
int Error(0);
{
float A(1.5f);
float B(1.0f);
float C = glm::mod(A, B);
Error += glm::abs(C - 0.5f) < 0.00001f ? 0 : 1;
}
{
float A(-0.2f);
float B(1.0f);
float C = glm::mod(A, B);
Error += glm::abs(C - 0.8f) < 0.00001f ? 0 : 1;
}
{
float A(3.0);
float B(2.0f);
float C = glm::mod(A, B);
Error += glm::abs(C - 1.0f) < 0.00001f ? 0 : 1;
}
{
glm::vec4 A(3.0);
float B(2.0f);
glm::vec4 C = glm::mod(A, B);
Error += glm::all(glm::epsilonEqual(C, glm::vec4(1.0f), 0.00001f)) ? 0 : 1;
}
{
glm::vec4 A(3.0);
glm::vec4 B(2.0f);
glm::vec4 C = glm::mod(A, B);
Error += glm::all(glm::epsilonEqual(C, glm::vec4(1.0f), 0.00001f)) ? 0 : 1;
}
return Error;
}
}//namespace mod_
namespace floatBitsToInt
{
int test()
{
int Error = 0;
{
float A = 1.0f;
int B = glm::floatBitsToInt(A);
float C = glm::intBitsToFloat(B);
int D = *(int*)&A;
Error += B == D ? 0 : 1;
Error += A == C ? 0 : 1;
}
{
glm::vec2 A(1.0f, 2.0f);
glm::ivec2 B = glm::floatBitsToInt(A);
glm::vec2 C = glm::intBitsToFloat(B);
Error += B.x == *(int*)&(A.x) ? 0 : 1;
Error += B.y == *(int*)&(A.y) ? 0 : 1;
Error += A == C? 0 : 1;
}
{
glm::vec3 A(1.0f, 2.0f, 3.0f);
glm::ivec3 B = glm::floatBitsToInt(A);
glm::vec3 C = glm::intBitsToFloat(B);
Error += B.x == *(int*)&(A.x) ? 0 : 1;
Error += B.y == *(int*)&(A.y) ? 0 : 1;
Error += B.z == *(int*)&(A.z) ? 0 : 1;
Error += A == C? 0 : 1;
}
{
glm::vec4 A(1.0f, 2.0f, 3.0f, 4.0f);
glm::ivec4 B = glm::floatBitsToInt(A);
glm::vec4 C = glm::intBitsToFloat(B);
Error += B.x == *(int*)&(A.x) ? 0 : 1;
Error += B.y == *(int*)&(A.y) ? 0 : 1;
Error += B.z == *(int*)&(A.z) ? 0 : 1;
Error += B.w == *(int*)&(A.w) ? 0 : 1;
Error += A == C? 0 : 1;
}
return Error;
}
}//namespace floatBitsToInt
namespace floatBitsToUint
{
int test()
{
int Error = 0;
{
float A = 1.0f;
glm::uint B = glm::floatBitsToUint(A);
float C = glm::intBitsToFloat(B);
Error += B == *(glm::uint*)&A ? 0 : 1;
Error += A == C? 0 : 1;
}
{
glm::vec2 A(1.0f, 2.0f);
glm::uvec2 B = glm::floatBitsToUint(A);
glm::vec2 C = glm::uintBitsToFloat(B);
Error += B.x == *(glm::uint*)&(A.x) ? 0 : 1;
Error += B.y == *(glm::uint*)&(A.y) ? 0 : 1;
Error += A == C ? 0 : 1;
}
{
glm::vec3 A(1.0f, 2.0f, 3.0f);
glm::uvec3 B = glm::floatBitsToUint(A);
glm::vec3 C = glm::uintBitsToFloat(B);
Error += B.x == *(glm::uint*)&(A.x) ? 0 : 1;
Error += B.y == *(glm::uint*)&(A.y) ? 0 : 1;
Error += B.z == *(glm::uint*)&(A.z) ? 0 : 1;
Error += A == C? 0 : 1;
}
{
glm::vec4 A(1.0f, 2.0f, 3.0f, 4.0f);
glm::uvec4 B = glm::floatBitsToUint(A);
glm::vec4 C = glm::uintBitsToFloat(B);
Error += B.x == *(glm::uint*)&(A.x) ? 0 : 1;
Error += B.y == *(glm::uint*)&(A.y) ? 0 : 1;
Error += B.z == *(glm::uint*)&(A.z) ? 0 : 1;
Error += B.w == *(glm::uint*)&(A.w) ? 0 : 1;
Error += A == C? 0 : 1;
}
return Error;
}
}//namespace floatBitsToUint
namespace min_
{
int test()
{
int Error = 0;
glm::vec1 A0 = glm::min(glm::vec1(1), glm::vec1(1));
glm::vec2 B0 = glm::min(glm::vec2(1), glm::vec2(1));
glm::vec2 B1 = glm::min(glm::vec2(1), 1.0f);
bool B2 = glm::all(glm::equal(B0, B1));
Error += B2 ? 0 : 1;
glm::vec3 C0 = glm::min(glm::vec3(1), glm::vec3(1));
glm::vec3 C1 = glm::min(glm::vec3(1), 1.0f);
bool C2 = glm::all(glm::equal(C0, C1));
Error += C2 ? 0 : 1;
glm::vec4 D0 = glm::min(glm::vec4(1), glm::vec4(1));
glm::vec4 D1 = glm::min(glm::vec4(1), 1.0f);
bool D2 = glm::all(glm::equal(D0, D1));
Error += D2 ? 0 : 1;
return Error;
}
}//namespace min_
namespace max_
{
int test()
{
int Error = 0;
glm::vec1 A0 = glm::max(glm::vec1(1), glm::vec1(1));
glm::vec2 B0 = glm::max(glm::vec2(1), glm::vec2(1));
glm::vec2 B1 = glm::max(glm::vec2(1), 1.0f);
bool B2 = glm::all(glm::equal(B0, B1));
Error += B2 ? 0 : 1;
glm::vec3 C0 = glm::max(glm::vec3(1), glm::vec3(1));
glm::vec3 C1 = glm::max(glm::vec3(1), 1.0f);
bool C2 = glm::all(glm::equal(C0, C1));
Error += C2 ? 0 : 1;
glm::vec4 D0 = glm::max(glm::vec4(1), glm::vec4(1));
glm::vec4 D1 = glm::max(glm::vec4(1), 1.0f);
bool D2 = glm::all(glm::equal(D0, D1));
Error += D2 ? 0 : 1;
return Error;
}
}//namespace max_
namespace clamp_
{
int test()
{
int Error = 0;
return Error;
}
}//namespace clamp_
namespace mix_
{
template <typename T, typename B>
struct entry
{
T x;
T y;
B a;
T Result;
};
entry<float, bool> TestBool[] =
{
{0.0f, 1.0f, false, 0.0f},
{0.0f, 1.0f, true, 1.0f},
{-1.0f, 1.0f, false, -1.0f},
{-1.0f, 1.0f, true, 1.0f}
};
entry<float, float> TestFloat[] =
{
{0.0f, 1.0f, 0.0f, 0.0f},
{0.0f, 1.0f, 1.0f, 1.0f},
{-1.0f, 1.0f, 0.0f, -1.0f},
{-1.0f, 1.0f, 1.0f, 1.0f}
};
entry<glm::vec2, bool> TestVec2Bool[] =
{
{glm::vec2(0.0f), glm::vec2(1.0f), false, glm::vec2(0.0f)},
{glm::vec2(0.0f), glm::vec2(1.0f), true, glm::vec2(1.0f)},
{glm::vec2(-1.0f), glm::vec2(1.0f), false, glm::vec2(-1.0f)},
{glm::vec2(-1.0f), glm::vec2(1.0f), true, glm::vec2(1.0f)}
};
entry<glm::vec2, glm::bvec2> TestBVec2[] =
{
{glm::vec2(0.0f), glm::vec2(1.0f), glm::bvec2(false), glm::vec2(0.0f)},
{glm::vec2(0.0f), glm::vec2(1.0f), glm::bvec2(true), glm::vec2(1.0f)},
{glm::vec2(-1.0f), glm::vec2(1.0f), glm::bvec2(false), glm::vec2(-1.0f)},
{glm::vec2(-1.0f), glm::vec2(1.0f), glm::bvec2(true), glm::vec2(1.0f)},
{glm::vec2(-1.0f), glm::vec2(1.0f), glm::bvec2(true, false), glm::vec2(1.0f, -1.0f)}
};
entry<glm::vec3, bool> TestVec3Bool[] =
{
{glm::vec3(0.0f), glm::vec3(1.0f), false, glm::vec3(0.0f)},
{glm::vec3(0.0f), glm::vec3(1.0f), true, glm::vec3(1.0f)},
{glm::vec3(-1.0f), glm::vec3(1.0f), false, glm::vec3(-1.0f)},
{glm::vec3(-1.0f), glm::vec3(1.0f), true, glm::vec3(1.0f)}
};
entry<glm::vec3, glm::bvec3> TestBVec3[] =
{
{glm::vec3(0.0f), glm::vec3(1.0f), glm::bvec3(false), glm::vec3(0.0f)},
{glm::vec3(0.0f), glm::vec3(1.0f), glm::bvec3(true), glm::vec3(1.0f)},
{glm::vec3(-1.0f), glm::vec3(1.0f), glm::bvec3(false), glm::vec3(-1.0f)},
{glm::vec3(-1.0f), glm::vec3(1.0f), glm::bvec3(true), glm::vec3(1.0f)},
{glm::vec3(1.0f, 2.0f, 3.0f), glm::vec3(4.0f, 5.0f, 6.0f), glm::bvec3(true, false, true), glm::vec3(4.0f, 2.0f, 6.0f)}
};
entry<glm::vec4, bool> TestVec4Bool[] =
{
{glm::vec4(0.0f), glm::vec4(1.0f), false, glm::vec4(0.0f)},
{glm::vec4(0.0f), glm::vec4(1.0f), true, glm::vec4(1.0f)},
{glm::vec4(-1.0f), glm::vec4(1.0f), false, glm::vec4(-1.0f)},
{glm::vec4(-1.0f), glm::vec4(1.0f), true, glm::vec4(1.0f)}
};
entry<glm::vec4, glm::bvec4> TestBVec4[] =
{
{glm::vec4(0.0f, 0.0f, 1.0f, 1.0f), glm::vec4(2.0f, 2.0f, 3.0f, 3.0f), glm::bvec4(false, true, false, true), glm::vec4(0.0f, 2.0f, 1.0f, 3.0f)},
{glm::vec4(0.0f), glm::vec4(1.0f), glm::bvec4(true), glm::vec4(1.0f)},
{glm::vec4(-1.0f), glm::vec4(1.0f), glm::bvec4(false), glm::vec4(-1.0f)},
{glm::vec4(-1.0f), glm::vec4(1.0f), glm::bvec4(true), glm::vec4(1.0f)},
{glm::vec4(1.0f, 2.0f, 3.0f, 4.0f), glm::vec4(5.0f, 6.0f, 7.0f, 8.0f), glm::bvec4(true, false, true, false), glm::vec4(5.0f, 2.0f, 7.0f, 4.0f)}
};
int test()
{
int Error = 0;
// Float with bool
{
for(std::size_t i = 0; i < sizeof(TestBool) / sizeof(entry<float, bool>); ++i)
{
float Result = glm::mix(TestBool[i].x, TestBool[i].y, TestBool[i].a);
Error += glm::epsilonEqual(Result, TestBool[i].Result, glm::epsilon<float>()) ? 0 : 1;
}
}
// Float with float
{
for(std::size_t i = 0; i < sizeof(TestFloat) / sizeof(entry<float, float>); ++i)
{
float Result = glm::mix(TestFloat[i].x, TestFloat[i].y, TestFloat[i].a);
Error += glm::epsilonEqual(Result, TestFloat[i].Result, glm::epsilon<float>()) ? 0 : 1;
}
}
// vec2 with bool
{
for(std::size_t i = 0; i < sizeof(TestVec2Bool) / sizeof(entry<glm::vec2, bool>); ++i)
{
glm::vec2 Result = glm::mix(TestVec2Bool[i].x, TestVec2Bool[i].y, TestVec2Bool[i].a);
Error += glm::epsilonEqual(Result.x, TestVec2Bool[i].Result.x, glm::epsilon<float>()) ? 0 : 1;
Error += glm::epsilonEqual(Result.y, TestVec2Bool[i].Result.y, glm::epsilon<float>()) ? 0 : 1;
}
}
// vec2 with bvec2
{
for(std::size_t i = 0; i < sizeof(TestBVec2) / sizeof(entry<glm::vec2, glm::bvec2>); ++i)
{
glm::vec2 Result = glm::mix(TestBVec2[i].x, TestBVec2[i].y, TestBVec2[i].a);
Error += glm::epsilonEqual(Result.x, TestBVec2[i].Result.x, glm::epsilon<float>()) ? 0 : 1;
Error += glm::epsilonEqual(Result.y, TestBVec2[i].Result.y, glm::epsilon<float>()) ? 0 : 1;
}
}
// vec3 with bool
{
for(std::size_t i = 0; i < sizeof(TestVec3Bool) / sizeof(entry<glm::vec3, bool>); ++i)
{
glm::vec3 Result = glm::mix(TestVec3Bool[i].x, TestVec3Bool[i].y, TestVec3Bool[i].a);
Error += glm::epsilonEqual(Result.x, TestVec3Bool[i].Result.x, glm::epsilon<float>()) ? 0 : 1;
Error += glm::epsilonEqual(Result.y, TestVec3Bool[i].Result.y, glm::epsilon<float>()) ? 0 : 1;
Error += glm::epsilonEqual(Result.z, TestVec3Bool[i].Result.z, glm::epsilon<float>()) ? 0 : 1;
}
}
// vec3 with bvec3
{
for(std::size_t i = 0; i < sizeof(TestBVec3) / sizeof(entry<glm::vec3, glm::bvec3>); ++i)
{
glm::vec3 Result = glm::mix(TestBVec3[i].x, TestBVec3[i].y, TestBVec3[i].a);
Error += glm::epsilonEqual(Result.x, TestBVec3[i].Result.x, glm::epsilon<float>()) ? 0 : 1;
Error += glm::epsilonEqual(Result.y, TestBVec3[i].Result.y, glm::epsilon<float>()) ? 0 : 1;
Error += glm::epsilonEqual(Result.z, TestBVec3[i].Result.z, glm::epsilon<float>()) ? 0 : 1;
}
}
// vec4 with bool
{
for(std::size_t i = 0; i < sizeof(TestVec4Bool) / sizeof(entry<glm::vec4, bool>); ++i)
{
glm::vec4 Result = glm::mix(TestVec4Bool[i].x, TestVec4Bool[i].y, TestVec4Bool[i].a);
Error += glm::epsilonEqual(Result.x, TestVec4Bool[i].Result.x, glm::epsilon<float>()) ? 0 : 1;
Error += glm::epsilonEqual(Result.y, TestVec4Bool[i].Result.y, glm::epsilon<float>()) ? 0 : 1;
Error += glm::epsilonEqual(Result.z, TestVec4Bool[i].Result.z, glm::epsilon<float>()) ? 0 : 1;
Error += glm::epsilonEqual(Result.w, TestVec4Bool[i].Result.w, glm::epsilon<float>()) ? 0 : 1;
}
}
// vec4 with bvec4
{
for(std::size_t i = 0; i < sizeof(TestBVec4) / sizeof(entry<glm::vec4, glm::bvec4>); ++i)
{
glm::vec4 Result = glm::mix(TestBVec4[i].x, TestBVec4[i].y, TestBVec4[i].a);
Error += glm::epsilonEqual(Result.x, TestBVec4[i].Result.x, glm::epsilon<float>()) ? 0 : 1;
Error += glm::epsilonEqual(Result.y, TestBVec4[i].Result.y, glm::epsilon<float>()) ? 0 : 1;
Error += glm::epsilonEqual(Result.z, TestBVec4[i].Result.z, glm::epsilon<float>()) ? 0 : 1;
Error += glm::epsilonEqual(Result.w, TestBVec4[i].Result.w, glm::epsilon<float>()) ? 0 : 1;
}
}
return Error;
}
}//namespace mix_
namespace step_
{
template <typename EDGE, typename VEC>
struct entry
{
EDGE edge;
VEC x;
VEC result;
};
entry<float, glm::vec4> TestVec4Scalar [] =
{
{ 1.0f, glm::vec4(1.0f, 2.0f, 3.0f, 4.0f), glm::vec4(1.0f) },
{ 0.0f, glm::vec4(1.0f, 2.0f, 3.0f, 4.0f), glm::vec4(1.0f) },
{ 0.0f, glm::vec4(-1.0f, -2.0f, -3.0f, -4.0f), glm::vec4(0.0f) }
};
entry<glm::vec4, glm::vec4> TestVec4Vector [] =
{
{ glm::vec4(-1.0f, -2.0f, -3.0f, -4.0f), glm::vec4(-2.0f, -3.0f, -4.0f, -5.0f), glm::vec4(0.0f) },
{ glm::vec4( 0.0f, 1.0f, 2.0f, 3.0f), glm::vec4( 1.0f, 2.0f, 3.0f, 4.0f), glm::vec4(1.0f) },
{ glm::vec4( 2.0f, 3.0f, 4.0f, 5.0f), glm::vec4( 1.0f, 2.0f, 3.0f, 4.0f), glm::vec4(0.0f) },
{ glm::vec4( 0.0f, 1.0f, 2.0f, 3.0f), glm::vec4(-1.0f,-2.0f,-3.0f,-4.0f), glm::vec4(0.0f) }
};
int test()
{
int Error = 0;
// vec4 and float
{
for (std::size_t i = 0; i < sizeof(TestVec4Scalar) / sizeof(entry<float, glm::vec4>); ++i)
{
glm::vec4 Result = glm::step(TestVec4Scalar[i].edge, TestVec4Scalar[i].x);
Error += glm::all(glm::epsilonEqual(Result, TestVec4Scalar[i].result, glm::epsilon<float>())) ? 0 : 1;
}
}
// vec4 and vec4
{
for (std::size_t i = 0; i < sizeof(TestVec4Vector) / sizeof(entry<glm::vec4, glm::vec4>); ++i)
{
glm::vec4 Result = glm::step(TestVec4Vector[i].edge, TestVec4Vector[i].x);
Error += glm::all(glm::epsilonEqual(Result, TestVec4Vector[i].result, glm::epsilon<float>())) ? 0 : 1;
}
}
return Error;
}
}//namespace step_
namespace round_
{
int test()
{
int Error = 0;
{
float A = glm::round(0.0f);
Error += A == 0.0f ? 0 : 1;
float B = glm::round(0.5f);
Error += B == 1.0f ? 0 : 1;
float C = glm::round(1.0f);
Error += C == 1.0f ? 0 : 1;
float D = glm::round(0.1f);
Error += D == 0.0f ? 0 : 1;
float E = glm::round(0.9f);
Error += E == 1.0f ? 0 : 1;
float F = glm::round(1.5f);
Error += F == 2.0f ? 0 : 1;
float G = glm::round(1.9f);
Error += G == 2.0f ? 0 : 1;
}
{
float A = glm::round(-0.0f);
Error += A == 0.0f ? 0 : 1;
float B = glm::round(-0.5f);
Error += B == -1.0f ? 0 : 1;
float C = glm::round(-1.0f);
Error += C == -1.0f ? 0 : 1;
float D = glm::round(-0.1f);
Error += D == 0.0f ? 0 : 1;
float E = glm::round(-0.9f);
Error += E == -1.0f ? 0 : 1;
float F = glm::round(-1.5f);
Error += F == -2.0f ? 0 : 1;
float G = glm::round(-1.9f);
Error += G == -2.0f ? 0 : 1;
}
return Error;
}
}//namespace round_
namespace roundEven
{
int test()
{
int Error = 0;
{
float A1 = glm::roundEven(-1.5f);
Error += glm::epsilonEqual(A1, -2.0f, 0.0001f) ? 0 : 1;
float A2 = glm::roundEven(1.5f);
Error += glm::epsilonEqual(A2, 2.0f, 0.0001f) ? 0 : 1;
float A5 = glm::roundEven(-2.5f);
Error += glm::epsilonEqual(A5, -2.0f, 0.0001f) ? 0 : 1;
float A6 = glm::roundEven(2.5f);
Error += glm::epsilonEqual(A6, 2.0f, 0.0001f) ? 0 : 1;
float A3 = glm::roundEven(-3.5f);
Error += glm::epsilonEqual(A3, -4.0f, 0.0001f) ? 0 : 1;
float A4 = glm::roundEven(3.5f);
Error += glm::epsilonEqual(A4, 4.0f, 0.0001f) ? 0 : 1;
float C7 = glm::roundEven(-4.5f);
Error += glm::epsilonEqual(C7, -4.0f, 0.0001f) ? 0 : 1;
float C8 = glm::roundEven(4.5f);
Error += glm::epsilonEqual(C8, 4.0f, 0.0001f) ? 0 : 1;
float C1 = glm::roundEven(-5.5f);
Error += glm::epsilonEqual(C1, -6.0f, 0.0001f) ? 0 : 1;
float C2 = glm::roundEven(5.5f);
Error += glm::epsilonEqual(C2, 6.0f, 0.0001f) ? 0 : 1;
float C3 = glm::roundEven(-6.5f);
Error += glm::epsilonEqual(C3, -6.0f, 0.0001f) ? 0 : 1;
float C4 = glm::roundEven(6.5f);
Error += glm::epsilonEqual(C4, 6.0f, 0.0001f) ? 0 : 1;
float C5 = glm::roundEven(-7.5f);
Error += glm::epsilonEqual(C5, -8.0f, 0.0001f) ? 0 : 1;
float C6 = glm::roundEven(7.5f);
Error += glm::epsilonEqual(C6, 8.0f, 0.0001f) ? 0 : 1;
Error += 0;
}
{
float A7 = glm::roundEven(-2.4f);
Error += glm::epsilonEqual(A7, -2.0f, 0.0001f) ? 0 : 1;
float A8 = glm::roundEven(2.4f);
Error += glm::epsilonEqual(A8, 2.0f, 0.0001f) ? 0 : 1;
float B1 = glm::roundEven(-2.6f);
Error += glm::epsilonEqual(B1, -3.0f, 0.0001f) ? 0 : 1;
float B2 = glm::roundEven(2.6f);
Error += glm::epsilonEqual(B2, 3.0f, 0.0001f) ? 0 : 1;
float B3 = glm::roundEven(-2.0f);
Error += glm::epsilonEqual(B3, -2.0f, 0.0001f) ? 0 : 1;
float B4 = glm::roundEven(2.0f);
Error += glm::epsilonEqual(B4, 2.0f, 0.0001f) ? 0 : 1;
Error += 0;
}
{
float A = glm::roundEven(0.0f);
Error += A == 0.0f ? 0 : 1;
float B = glm::roundEven(0.5f);
Error += B == 0.0f ? 0 : 1;
float C = glm::roundEven(1.0f);
Error += C == 1.0f ? 0 : 1;
float D = glm::roundEven(0.1f);
Error += D == 0.0f ? 0 : 1;
float E = glm::roundEven(0.9f);
Error += E == 1.0f ? 0 : 1;
float F = glm::roundEven(1.5f);
Error += F == 2.0f ? 0 : 1;
float G = glm::roundEven(1.9f);
Error += G == 2.0f ? 0 : 1;
}
{
float A = glm::roundEven(-0.0f);
Error += A == 0.0f ? 0 : 1;
float B = glm::roundEven(-0.5f);
Error += B == -0.0f ? 0 : 1;
float C = glm::roundEven(-1.0f);
Error += C == -1.0f ? 0 : 1;
float D = glm::roundEven(-0.1f);
Error += D == 0.0f ? 0 : 1;
float E = glm::roundEven(-0.9f);
Error += E == -1.0f ? 0 : 1;
float F = glm::roundEven(-1.5f);
Error += F == -2.0f ? 0 : 1;
float G = glm::roundEven(-1.9f);
Error += G == -2.0f ? 0 : 1;
}
{
float A = glm::roundEven(1.5f);
Error += A == 2.0f ? 0 : 1;
float B = glm::roundEven(2.5f);
Error += B == 2.0f ? 0 : 1;
float C = glm::roundEven(3.5f);
Error += C == 4.0f ? 0 : 1;
float D = glm::roundEven(4.5f);
Error += D == 4.0f ? 0 : 1;
float E = glm::roundEven(5.5f);
Error += E == 6.0f ? 0 : 1;
float F = glm::roundEven(6.5f);
Error += F == 6.0f ? 0 : 1;
float G = glm::roundEven(7.5f);
Error += G == 8.0f ? 0 : 1;
}
{
float A = glm::roundEven(-1.5f);
Error += A == -2.0f ? 0 : 1;
float B = glm::roundEven(-2.5f);
Error += B == -2.0f ? 0 : 1;
float C = glm::roundEven(-3.5f);
Error += C == -4.0f ? 0 : 1;
float D = glm::roundEven(-4.5f);
Error += D == -4.0f ? 0 : 1;
float E = glm::roundEven(-5.5f);
Error += E == -6.0f ? 0 : 1;
float F = glm::roundEven(-6.5f);
Error += F == -6.0f ? 0 : 1;
float G = glm::roundEven(-7.5f);
Error += G == -8.0f ? 0 : 1;
}
return Error;
}
}//namespace roundEven
namespace isnan_
{
int test()
{
int Error = 0;
float Zero_f = 0.0;
double Zero_d = 0.0;
{
Error += true == glm::isnan(0.0/Zero_d) ? 0 : 1;
Error += true == glm::any(glm::isnan(glm::dvec2(0.0 / Zero_d))) ? 0 : 1;
Error += true == glm::any(glm::isnan(glm::dvec3(0.0 / Zero_d))) ? 0 : 1;
Error += true == glm::any(glm::isnan(glm::dvec4(0.0 / Zero_d))) ? 0 : 1;
}
{
Error += true == glm::isnan(0.0f/Zero_f) ? 0 : 1;
Error += true == glm::any(glm::isnan(glm::vec2(0.0f/Zero_f))) ? 0 : 1;
Error += true == glm::any(glm::isnan(glm::vec3(0.0f/Zero_f))) ? 0 : 1;
Error += true == glm::any(glm::isnan(glm::vec4(0.0f/Zero_f))) ? 0 : 1;
}
return Error;
}
}//namespace isnan_
namespace isinf_
{
int test()
{
int Error = 0;
float Zero_f = 0.0;
double Zero_d = 0.0;
{
Error += true == glm::isinf( 1.0/Zero_d) ? 0 : 1;
Error += true == glm::isinf(-1.0/Zero_d) ? 0 : 1;
Error += true == glm::any(glm::isinf(glm::dvec2( 1.0/Zero_d))) ? 0 : 1;
Error += true == glm::any(glm::isinf(glm::dvec2(-1.0/Zero_d))) ? 0 : 1;
Error += true == glm::any(glm::isinf(glm::dvec3( 1.0/Zero_d))) ? 0 : 1;
Error += true == glm::any(glm::isinf(glm::dvec3(-1.0/Zero_d))) ? 0 : 1;
Error += true == glm::any(glm::isinf(glm::dvec4( 1.0/Zero_d))) ? 0 : 1;
Error += true == glm::any(glm::isinf(glm::dvec4(-1.0/Zero_d))) ? 0 : 1;
}
{
Error += true == glm::isinf( 1.0f/Zero_f) ? 0 : 1;
Error += true == glm::isinf(-1.0f/Zero_f) ? 0 : 1;
Error += true == glm::any(glm::isinf(glm::vec2( 1.0f/Zero_f))) ? 0 : 1;
Error += true == glm::any(glm::isinf(glm::vec2(-1.0f/Zero_f))) ? 0 : 1;
Error += true == glm::any(glm::isinf(glm::vec3( 1.0f/Zero_f))) ? 0 : 1;
Error += true == glm::any(glm::isinf(glm::vec3(-1.0f/Zero_f))) ? 0 : 1;
Error += true == glm::any(glm::isinf(glm::vec4( 1.0f/Zero_f))) ? 0 : 1;
Error += true == glm::any(glm::isinf(glm::vec4(-1.0f/Zero_f))) ? 0 : 1;
}
return Error;
}
}//namespace isinf_
namespace sign
{
template <typename genFIType>
GLM_FUNC_QUALIFIER genFIType sign_if(genFIType x)
{
GLM_STATIC_ASSERT(
std::numeric_limits<genFIType>::is_iec559 ||
(std::numeric_limits<genFIType>::is_signed && std::numeric_limits<genFIType>::is_integer), "'sign' only accept signed inputs");
genFIType result;
if(x > genFIType(0))
result = genFIType(1);
else if(x < genFIType(0))
result = genFIType(-1);
else
result = genFIType(0);
return result;
}
template <typename genFIType>
GLM_FUNC_QUALIFIER genFIType sign_alu1(genFIType x)
{
GLM_STATIC_ASSERT(
std::numeric_limits<genFIType>::is_signed && std::numeric_limits<genFIType>::is_integer,
"'sign' only accept integer inputs");
return (x >> 31) | ((unsigned)-x >> 31);
}
template <typename genFIType>
GLM_FUNC_QUALIFIER genFIType sign_alu2(genFIType x)
{
GLM_STATIC_ASSERT(
std::numeric_limits<genFIType>::is_signed && std::numeric_limits<genFIType>::is_integer,
"'sign' only accept integer inputs");
return -((unsigned)x >> 31) | (-(unsigned)x >> 31);
}
template <typename genFIType>
GLM_FUNC_QUALIFIER genFIType sign_sub(genFIType x)
{
GLM_STATIC_ASSERT(
std::numeric_limits<genFIType>::is_signed && std::numeric_limits<genFIType>::is_integer,
"'sign' only accept integer inputs");
return ((unsigned)-x >> 31) - ((unsigned)x >> 31);
}
template <typename genFIType>
GLM_FUNC_QUALIFIER genFIType sign_cmp(genFIType x)
{
GLM_STATIC_ASSERT(
std::numeric_limits<genFIType>::is_signed && std::numeric_limits<genFIType>::is_integer,
"'sign' only accept integer inputs");
return (x > 0) - (x < 0);
}
template <typename genType>
struct type
{
genType Value;
genType Return;
};
int test_int32()
{
type<glm::int32> const Data[] =
{
{ std::numeric_limits<glm::int32>::max(), 1},
{ std::numeric_limits<glm::int32>::min(), -1},
{ 0, 0},
{ 1, 1},
{ 2, 1},
{ 3, 1},
{-1,-1},
{-2,-1},
{-3,-1}
};
int Error = 0;
for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<glm::int32>); ++i)
{
glm::int32 Result = glm::sign(Data[i].Value);
Error += Data[i].Return == Result ? 0 : 1;
}
for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<glm::int32>); ++i)
{
glm::int32 Result = sign_cmp(Data[i].Value);
Error += Data[i].Return == Result ? 0 : 1;
}
for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<glm::int32>); ++i)
{
glm::int32 Result = sign_if(Data[i].Value);
Error += Data[i].Return == Result ? 0 : 1;
}
for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<glm::int32>); ++i)
{
glm::int32 Result = sign_alu1(Data[i].Value);
Error += Data[i].Return == Result ? 0 : 1;
}
for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<glm::int32>); ++i)
{
glm::int32 Result = sign_alu2(Data[i].Value);
Error += Data[i].Return == Result ? 0 : 1;
}
return Error;
}
int test_i32vec4()
{
type<glm::i32vec4> const Data[] =
{
{glm::i32vec4( 1), glm::i32vec4( 1)},
{glm::i32vec4( 0), glm::i32vec4( 0)},
{glm::i32vec4( 2), glm::i32vec4( 1)},
{glm::i32vec4( 3), glm::i32vec4( 1)},
{glm::i32vec4(-1), glm::i32vec4(-1)},
{glm::i32vec4(-2), glm::i32vec4(-1)},
{glm::i32vec4(-3), glm::i32vec4(-1)}
};
int Error = 0;
for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<glm::i32vec4>); ++i)
{
glm::i32vec4 Result = glm::sign(Data[i].Value);
Error += glm::all(glm::equal(Data[i].Return, Result)) ? 0 : 1;
}
return Error;
}
int test_f32vec4()
{
type<glm::vec4> const Data[] =
{
{glm::vec4( 1), glm::vec4( 1)},
{glm::vec4( 0), glm::vec4( 0)},
{glm::vec4( 2), glm::vec4( 1)},
{glm::vec4( 3), glm::vec4( 1)},
{glm::vec4(-1), glm::vec4(-1)},
{glm::vec4(-2), glm::vec4(-1)},
{glm::vec4(-3), glm::vec4(-1)}
};
int Error = 0;
for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<glm::vec4>); ++i)
{
glm::vec4 Result = glm::sign(Data[i].Value);
Error += glm::all(glm::equal(Data[i].Return, Result)) ? 0 : 1;
}
return Error;
}
int test()
{
int Error = 0;
Error += test_int32();
Error += test_i32vec4();
Error += test_f32vec4();
return Error;
}
int perf_rand(std::size_t Samples)
{
int Error = 0;
std::size_t const Count = Samples;
std::vector<glm::int32> Input, Output;
Input.resize(Count);
Output.resize(Count);
for(std::size_t i = 0; i < Count; ++i)
Input[i] = static_cast<glm::int32>(glm::linearRand(-65536.f, 65536.f));
std::clock_t Timestamp0 = std::clock();
for(std::size_t i = 0; i < Count; ++i)
Output[i] = sign_cmp(Input[i]);
std::clock_t Timestamp1 = std::clock();
for(std::size_t i = 0; i < Count; ++i)
Output[i] = sign_if(Input[i]);
std::clock_t Timestamp2 = std::clock();
for(std::size_t i = 0; i < Count; ++i)
Output[i] = sign_alu1(Input[i]);
std::clock_t Timestamp3 = std::clock();
for(std::size_t i = 0; i < Count; ++i)
Output[i] = sign_alu2(Input[i]);
std::clock_t Timestamp4 = std::clock();
for(std::size_t i = 0; i < Count; ++i)
Output[i] = sign_sub(Input[i]);
std::clock_t Timestamp5 = std::clock();
for(std::size_t i = 0; i < Count; ++i)
Output[i] = glm::sign(Input[i]);
std::clock_t Timestamp6 = std::clock();
std::printf("sign_cmp(rand) Time %d clocks\n", static_cast<unsigned int>(Timestamp1 - Timestamp0));
std::printf("sign_if(rand) Time %d clocks\n", static_cast<unsigned int>(Timestamp2 - Timestamp1));
std::printf("sign_alu1(rand) Time %d clocks\n", static_cast<unsigned int>(Timestamp3 - Timestamp2));
std::printf("sign_alu2(rand) Time %d clocks\n", static_cast<unsigned int>(Timestamp4 - Timestamp3));
std::printf("sign_sub(rand) Time %d clocks\n", static_cast<unsigned int>(Timestamp5 - Timestamp4));
std::printf("glm::sign(rand) Time %d clocks\n", static_cast<unsigned int>(Timestamp6 - Timestamp5));
return Error;
}
int perf_linear(std::size_t Samples)
{
int Error = 0;
std::size_t const Count = Samples;
std::vector<glm::int32> Input, Output;
Input.resize(Count);
Output.resize(Count);
for(std::size_t i = 0; i < Count; ++i)
Input[i] = static_cast<glm::int32>(i);
std::clock_t Timestamp0 = std::clock();
for(std::size_t i = 0; i < Count; ++i)
Output[i] = sign_cmp(Input[i]);
std::clock_t Timestamp1 = std::clock();
for(std::size_t i = 0; i < Count; ++i)
Output[i] = sign_if(Input[i]);
std::clock_t Timestamp2 = std::clock();
for(std::size_t i = 0; i < Count; ++i)
Output[i] = sign_alu1(Input[i]);
std::clock_t Timestamp3 = std::clock();
for(std::size_t i = 0; i < Count; ++i)
Output[i] = sign_alu2(Input[i]);
std::clock_t Timestamp4 = std::clock();
for(std::size_t i = 0; i < Count; ++i)
Output[i] = sign_sub(Input[i]);
std::clock_t Timestamp5 = std::clock();
std::printf("sign_cmp(linear) Time %d clocks\n", static_cast<unsigned int>(Timestamp1 - Timestamp0));
std::printf("sign_if(linear) Time %d clocks\n", static_cast<unsigned int>(Timestamp2 - Timestamp1));
std::printf("sign_alu1(linear) Time %d clocks\n", static_cast<unsigned int>(Timestamp3 - Timestamp2));
std::printf("sign_alu2(linear) Time %d clocks\n", static_cast<unsigned int>(Timestamp4 - Timestamp3));
std::printf("sign_sub(linear) Time %d clocks\n", static_cast<unsigned int>(Timestamp5 - Timestamp4));
return Error;
}
int perf_linear_cal(std::size_t Samples)
{
int Error = 0;
glm::int32 const Count = static_cast<glm::int32>(Samples);
std::clock_t Timestamp0 = std::clock();
glm::int32 Sum = 0;
for(glm::int32 i = 1; i < Count; ++i)
Sum += sign_cmp(i);
std::clock_t Timestamp1 = std::clock();
for(glm::int32 i = 1; i < Count; ++i)
Sum += sign_if(i);
std::clock_t Timestamp2 = std::clock();
for(glm::int32 i = 1; i < Count; ++i)
Sum += sign_alu1(i);
std::clock_t Timestamp3 = std::clock();
for(glm::int32 i = 1; i < Count; ++i)
Sum += sign_alu2(i);
std::clock_t Timestamp4 = std::clock();
for(glm::int32 i = 1; i < Count; ++i)
Sum += sign_sub(i);
std::clock_t Timestamp5 = std::clock();
std::printf("Sum %d\n", static_cast<unsigned int>(Sum));
std::printf("sign_cmp(linear_cal) Time %d clocks\n", static_cast<unsigned int>(Timestamp1 - Timestamp0));
std::printf("sign_if(linear_cal) Time %d clocks\n", static_cast<unsigned int>(Timestamp2 - Timestamp1));
std::printf("sign_alu1(linear_cal) Time %d clocks\n", static_cast<unsigned int>(Timestamp3 - Timestamp2));
std::printf("sign_alu2(linear_cal) Time %d clocks\n", static_cast<unsigned int>(Timestamp4 - Timestamp3));
std::printf("sign_sub(linear_cal) Time %d clocks\n", static_cast<unsigned int>(Timestamp5 - Timestamp4));
return Error;
}
int perf(std::size_t Samples)
{
int Error(0);
Error += perf_linear_cal(Samples);
Error += perf_linear(Samples);
Error += perf_rand(Samples);
return Error;
}
}//namespace sign
namespace frexp_
{
int test()
{
int Error(0);
{
glm::vec1 x(1024);
glm::ivec1 exp;
glm::vec1 A = glm::frexp(x, exp);
Error += glm::all(glm::epsilonEqual(A, glm::vec1(0.5), 0.00001f)) ? 0 : 1;
Error += glm::all(glm::equal(exp, glm::ivec1(11))) ? 0 : 1;
}
{
glm::vec2 x(1024, 0.24);
glm::ivec2 exp;
glm::vec2 A = glm::frexp(x, exp);
Error += glm::all(glm::epsilonEqual(A, glm::vec2(0.5, 0.96), 0.00001f)) ? 0 : 1;
Error += glm::all(glm::equal(exp, glm::ivec2(11, -2))) ? 0 : 1;
}
{
glm::vec3 x(1024, 0.24, 0);
glm::ivec3 exp;
glm::vec3 A = glm::frexp(x, exp);
Error += glm::all(glm::epsilonEqual(A, glm::vec3(0.5, 0.96, 0.0), 0.00001f)) ? 0 : 1;
Error += glm::all(glm::equal(exp, glm::ivec3(11, -2, 0))) ? 0 : 1;
}
{
glm::vec4 x(1024, 0.24, 0, -1.33);
glm::ivec4 exp;
glm::vec4 A = glm::frexp(x, exp);
Error += glm::all(glm::epsilonEqual(A, glm::vec4(0.5, 0.96, 0.0, -0.665), 0.00001f)) ? 0 : 1;
Error += glm::all(glm::equal(exp, glm::ivec4(11, -2, 0, 1))) ? 0 : 1;
}
return Error;
}
}//namespace frexp_
namespace ldexp_
{
int test()
{
int Error(0);
{
glm::vec1 A = glm::vec1(0.5);
glm::ivec1 exp = glm::ivec1(11);
glm::vec1 x = glm::ldexp(A, exp);
Error += glm::all(glm::epsilonEqual(x, glm::vec1(1024),0.00001f)) ? 0 : 1;
}
{
glm::vec2 A = glm::vec2(0.5, 0.96);
glm::ivec2 exp = glm::ivec2(11, -2);
glm::vec2 x = glm::ldexp(A, exp);
Error += glm::all(glm::epsilonEqual(x, glm::vec2(1024, .24),0.00001f)) ? 0 : 1;
}
{
glm::vec3 A = glm::vec3(0.5, 0.96, 0.0);
glm::ivec3 exp = glm::ivec3(11, -2, 0);
glm::vec3 x = glm::ldexp(A, exp);
Error += glm::all(glm::epsilonEqual(x, glm::vec3(1024, .24, 0),0.00001f)) ? 0 : 1;
}
{
glm::vec4 A = glm::vec4(0.5, 0.96, 0.0, -0.665);
glm::ivec4 exp = glm::ivec4(11, -2, 0, 1);
glm::vec4 x = glm::ldexp(A, exp);
Error += glm::all(glm::epsilonEqual(x, glm::vec4(1024, .24, 0, -1.33),0.00001f)) ? 0 : 1;
}
return Error;
}
}//namespace ldexp_
int main()
{
int Error = 0;
glm::ivec4 const a(1);
glm::ivec4 const b = ~a;
glm::int32 const c(1);
glm::int32 const d = ~c;
# if GLM_ARCH & GLM_ARCH_AVX_BIT && GLM_HAS_UNRESTRICTED_UNIONS
glm_vec4 const A = _mm_set_ps(4, 3, 2, 1);
glm_vec4 const B = glm_vec4_swizzle_xyzw(A);
glm_vec4 const C = _mm_permute_ps(A, _MM_SHUFFLE(3, 2, 1, 0));
glm_vec4 const D = _mm_permute_ps(A, _MM_SHUFFLE(0, 1, 2, 3));
glm_vec4 const E = _mm_shuffle_ps(A, A, _MM_SHUFFLE(0, 1, 2, 3));
# endif
Error += sign::test();
Error += floor_::test();
Error += mod_::test();
Error += modf_::test();
Error += floatBitsToInt::test();
Error += floatBitsToUint::test();
Error += mix_::test();
Error += step_::test();
Error += max_::test();
Error += min_::test();
Error += round_::test();
Error += roundEven::test();
Error += isnan_::test();
Error += isinf_::test();
Error += frexp_::test();
Error += ldexp_::test();
# ifdef NDEBUG
std::size_t Samples = 1000;
Error += sign::perf(Samples);
# endif
return Error;
}