| #include <glm/common.hpp> |
| #include <glm/exponential.hpp> |
| #include <glm/gtc/ulp.hpp> |
| #include <glm/gtc/vec1.hpp> |
| |
| int test_pow() |
| { |
| int Error(0); |
| |
| float A = glm::pow(10.f, 10.f); |
| glm::vec1 B = glm::pow(glm::vec1(10.f), glm::vec1(10.f)); |
| glm::vec2 C = glm::pow(glm::vec2(10.f), glm::vec2(10.f)); |
| glm::vec3 D = glm::pow(glm::vec3(10.f), glm::vec3(10.f)); |
| glm::vec4 E = glm::pow(glm::vec4(10.f), glm::vec4(10.f)); |
| |
| return Error; |
| } |
| |
| int test_exp() |
| { |
| int Error(0); |
| |
| float A = glm::exp(10.f); |
| glm::vec1 B = glm::exp(glm::vec1(10.f)); |
| glm::vec2 C = glm::exp(glm::vec2(10.f)); |
| glm::vec3 D = glm::exp(glm::vec3(10.f)); |
| glm::vec4 E = glm::exp(glm::vec4(10.f)); |
| |
| return Error; |
| } |
| |
| int test_log() |
| { |
| int Error(0); |
| |
| float A = glm::log(10.f); |
| glm::vec1 B = glm::log(glm::vec1(10.f)); |
| glm::vec2 C = glm::log(glm::vec2(10.f)); |
| glm::vec3 D = glm::log(glm::vec3(10.f)); |
| glm::vec4 E = glm::log(glm::vec4(10.f)); |
| |
| return Error; |
| } |
| |
| int test_exp2() |
| { |
| int Error(0); |
| |
| float A = glm::exp2(10.f); |
| glm::vec1 B = glm::exp2(glm::vec1(10.f)); |
| glm::vec2 C = glm::exp2(glm::vec2(10.f)); |
| glm::vec3 D = glm::exp2(glm::vec3(10.f)); |
| glm::vec4 E = glm::exp2(glm::vec4(10.f)); |
| |
| return Error; |
| } |
| |
| int test_log2() |
| { |
| int Error(0); |
| |
| float A = glm::log2(10.f); |
| glm::vec1 B = glm::log2(glm::vec1(10.f)); |
| glm::vec2 C = glm::log2(glm::vec2(10.f)); |
| glm::vec3 D = glm::log2(glm::vec3(10.f)); |
| glm::vec4 E = glm::log2(glm::vec4(10.f)); |
| |
| return Error; |
| } |
| |
| int test_sqrt() |
| { |
| int Error(0); |
| |
| # if GLM_ARCH & GLM_ARCH_SSE2_BIT |
| for(float f = 0.1f; f < 30.0f; f += 0.1f) |
| { |
| float r = _mm_cvtss_f32(_mm_sqrt_ps(_mm_set1_ps(f))); |
| float s = std::sqrt(f); |
| Error += glm::abs(r - s) < 0.01f ? 0 : 1; |
| assert(!Error); |
| } |
| # endif//GLM_ARCH & GLM_ARCH_SSE2_BIT |
| |
| float A = glm::sqrt(10.f); |
| glm::vec1 B = glm::sqrt(glm::vec1(10.f)); |
| glm::vec2 C = glm::sqrt(glm::vec2(10.f)); |
| glm::vec3 D = glm::sqrt(glm::vec3(10.f)); |
| glm::vec4 E = glm::sqrt(glm::vec4(10.f)); |
| |
| return Error; |
| } |
| |
| int test_inversesqrt() |
| { |
| int Error(0); |
| |
| glm::uint ulp(0); |
| float diff(0.0f); |
| |
| for(float f = 0.001f; f < 10.f; f *= 1.001f) |
| { |
| glm::lowp_fvec1 u(f); |
| glm::lowp_fvec1 lowp_v = glm::inversesqrt(u); |
| float defaultp_v = glm::inversesqrt(f); |
| |
| ulp = glm::max(glm::float_distance(lowp_v.x, defaultp_v), ulp); |
| diff = glm::abs(lowp_v.x - defaultp_v); |
| } |
| |
| return Error; |
| } |
| |
| int main() |
| { |
| int Error(0); |
| |
| Error += test_pow(); |
| Error += test_exp(); |
| Error += test_log(); |
| Error += test_exp2(); |
| Error += test_log2(); |
| Error += test_sqrt(); |
| Error += test_inversesqrt(); |
| |
| return Error; |
| } |
| |