| #include <glm/geometric.hpp> |
| #include <glm/vector_relational.hpp> |
| #include <glm/gtc/epsilon.hpp> |
| #include <glm/gtc/vec1.hpp> |
| #include <limits> |
| |
| namespace length |
| { |
| int test() |
| { |
| float Length1 = glm::length(glm::vec1(1)); |
| float Length2 = glm::length(glm::vec2(1, 0)); |
| float Length3 = glm::length(glm::vec3(1, 0, 0)); |
| float Length4 = glm::length(glm::vec4(1, 0, 0, 0)); |
| |
| int Error = 0; |
| |
| Error += glm::abs(Length1 - 1.0f) < std::numeric_limits<float>::epsilon() ? 0 : 1; |
| Error += glm::abs(Length2 - 1.0f) < std::numeric_limits<float>::epsilon() ? 0 : 1; |
| Error += glm::abs(Length3 - 1.0f) < std::numeric_limits<float>::epsilon() ? 0 : 1; |
| Error += glm::abs(Length4 - 1.0f) < std::numeric_limits<float>::epsilon() ? 0 : 1; |
| |
| return Error; |
| } |
| }//namespace length |
| |
| namespace distance |
| { |
| int test() |
| { |
| float Distance1 = glm::distance(glm::vec1(1), glm::vec1(1)); |
| float Distance2 = glm::distance(glm::vec2(1, 0), glm::vec2(1, 0)); |
| float Distance3 = glm::distance(glm::vec3(1, 0, 0), glm::vec3(1, 0, 0)); |
| float Distance4 = glm::distance(glm::vec4(1, 0, 0, 0), glm::vec4(1, 0, 0, 0)); |
| |
| int Error = 0; |
| |
| Error += glm::abs(Distance1) < std::numeric_limits<float>::epsilon() ? 0 : 1; |
| Error += glm::abs(Distance2) < std::numeric_limits<float>::epsilon() ? 0 : 1; |
| Error += glm::abs(Distance3) < std::numeric_limits<float>::epsilon() ? 0 : 1; |
| Error += glm::abs(Distance4) < std::numeric_limits<float>::epsilon() ? 0 : 1; |
| |
| return Error; |
| } |
| }//namespace distance |
| |
| namespace dot |
| { |
| int test() |
| { |
| float Dot1 = glm::dot(glm::vec1(1), glm::vec1(1)); |
| float Dot2 = glm::dot(glm::vec2(1), glm::vec2(1)); |
| float Dot3 = glm::dot(glm::vec3(1), glm::vec3(1)); |
| float Dot4 = glm::dot(glm::vec4(1), glm::vec4(1)); |
| |
| int Error = 0; |
| |
| Error += glm::abs(Dot1 - 1.0f) < std::numeric_limits<float>::epsilon() ? 0 : 1; |
| Error += glm::abs(Dot2 - 2.0f) < std::numeric_limits<float>::epsilon() ? 0 : 1; |
| Error += glm::abs(Dot3 - 3.0f) < std::numeric_limits<float>::epsilon() ? 0 : 1; |
| Error += glm::abs(Dot4 - 4.0f) < std::numeric_limits<float>::epsilon() ? 0 : 1; |
| |
| return Error; |
| } |
| }//namespace dot |
| |
| namespace cross |
| { |
| int test() |
| { |
| glm::vec3 Cross1 = glm::cross(glm::vec3(1, 0, 0), glm::vec3(0, 1, 0)); |
| glm::vec3 Cross2 = glm::cross(glm::vec3(0, 1, 0), glm::vec3(1, 0, 0)); |
| |
| int Error = 0; |
| |
| Error += glm::all(glm::lessThan(glm::abs(Cross1 - glm::vec3(0, 0, 1)), glm::vec3(std::numeric_limits<float>::epsilon()))) ? 0 : 1; |
| Error += glm::all(glm::lessThan(glm::abs(Cross2 - glm::vec3(0, 0,-1)), glm::vec3(std::numeric_limits<float>::epsilon()))) ? 0 : 1; |
| |
| return Error; |
| } |
| }//namespace cross |
| |
| namespace normalize |
| { |
| int test() |
| { |
| glm::vec3 Normalize1 = glm::normalize(glm::vec3(1, 0, 0)); |
| glm::vec3 Normalize2 = glm::normalize(glm::vec3(2, 0, 0)); |
| |
| glm::vec3 Normalize3 = glm::normalize(glm::vec3(-0.6, 0.7, -0.5)); |
| |
| glm::vec3 ro = glm::vec3(glm::cos(5.f) * 3.f, 2.f, glm::sin(5.f) * 3.f); |
| glm::vec3 w = glm::normalize(glm::vec3(0, -0.2f, 0) - ro); |
| glm::vec3 u = glm::normalize(glm::cross(w, glm::vec3(0, 1, 0))); |
| glm::vec3 v = glm::cross(u, w); |
| |
| int Error = 0; |
| |
| Error += glm::all(glm::lessThan(glm::abs(Normalize1 - glm::vec3(1, 0, 0)), glm::vec3(std::numeric_limits<float>::epsilon()))) ? 0 : 1; |
| Error += glm::all(glm::lessThan(glm::abs(Normalize2 - glm::vec3(1, 0, 0)), glm::vec3(std::numeric_limits<float>::epsilon()))) ? 0 : 1; |
| |
| return Error; |
| } |
| }//namespace normalize |
| |
| namespace faceforward |
| { |
| int test() |
| { |
| int Error = 0; |
| |
| { |
| glm::vec3 N(0.0f, 0.0f, 1.0f); |
| glm::vec3 I(1.0f, 0.0f, 1.0f); |
| glm::vec3 Nref(0.0f, 0.0f, 1.0f); |
| glm::vec3 F = glm::faceforward(N, I, Nref); |
| } |
| |
| return Error; |
| } |
| }//namespace faceforward |
| |
| namespace reflect |
| { |
| int test() |
| { |
| int Error = 0; |
| |
| { |
| glm::vec2 A(1.0f,-1.0f); |
| glm::vec2 B(0.0f, 1.0f); |
| glm::vec2 C = glm::reflect(A, B); |
| Error += C == glm::vec2(1.0, 1.0) ? 0 : 1; |
| } |
| |
| { |
| glm::dvec2 A(1.0f,-1.0f); |
| glm::dvec2 B(0.0f, 1.0f); |
| glm::dvec2 C = glm::reflect(A, B); |
| Error += C == glm::dvec2(1.0, 1.0) ? 0 : 1; |
| } |
| |
| return Error; |
| } |
| }//namespace reflect |
| |
| namespace refract |
| { |
| int test() |
| { |
| int Error = 0; |
| |
| { |
| float A(-1.0f); |
| float B(1.0f); |
| float C = glm::refract(A, B, 0.5f); |
| Error += C == -1.0f ? 0 : 1; |
| } |
| |
| { |
| glm::vec2 A(0.0f,-1.0f); |
| glm::vec2 B(0.0f, 1.0f); |
| glm::vec2 C = glm::refract(A, B, 0.5f); |
| Error += glm::all(glm::epsilonEqual(C, glm::vec2(0.0, -1.0), 0.0001f)) ? 0 : 1; |
| } |
| |
| { |
| glm::dvec2 A(0.0f,-1.0f); |
| glm::dvec2 B(0.0f, 1.0f); |
| glm::dvec2 C = glm::refract(A, B, 0.5); |
| Error += C == glm::dvec2(0.0, -1.0) ? 0 : 1; |
| } |
| |
| return Error; |
| } |
| }//namespace refract |
| |
| int main() |
| { |
| int Error(0); |
| |
| Error += length::test(); |
| Error += distance::test(); |
| Error += dot::test(); |
| Error += cross::test(); |
| Error += normalize::test(); |
| Error += faceforward::test(); |
| Error += reflect::test(); |
| Error += refract::test(); |
| |
| return Error; |
| } |
| |