blob: c44153d815998438040fa7ec95e13e418e1db993 [file] [log] [blame]
#include <glm/integer.hpp>
#include <glm/vector_relational.hpp>
#include <glm/gtc/vec1.hpp>
#include <vector>
#include <ctime>
#include <cstdio>
enum result
{
SUCCESS,
FAIL,
ASSERT,
STATIC_ASSERT
};
namespace bitfieldInsert
{
template <typename genType, typename sizeType>
struct type
{
genType Base;
genType Insert;
sizeType Offset;
sizeType Bits;
genType Return;
};
typedef type<glm::uint, glm::uint> typeU32;
typeU32 const Data32[] =
{
{0x00000000, 0xffffffff, 0, 32, 0xffffffff},
{0x00000000, 0xffffffff, 0, 31, 0x7fffffff},
{0x00000000, 0xffffffff, 0, 0, 0x00000000},
{0xff000000, 0x0000ff00, 8, 8, 0xff00ff00},
{0xffff0000, 0x0000ffff, 16, 16, 0x00000000},
{0x0000ffff, 0xffff0000, 16, 16, 0xffffffff}
};
int test()
{
int Error = 0;
glm::uint count = sizeof(Data32) / sizeof(typeU32);
for(glm::uint i = 0; i < count; ++i)
{
glm::uint Return = glm::bitfieldInsert(
Data32[i].Base,
Data32[i].Insert,
Data32[i].Offset,
Data32[i].Bits);
Error += Data32[i].Return == Return ? 0 : 1;
}
return Error;
}
}//bitfieldInsert
namespace bitfieldExtract
{
template <typename genType, typename sizeType>
struct type
{
genType Value;
sizeType Offset;
sizeType Bits;
genType Return;
result Result;
};
typedef type<glm::uint, glm::uint> typeU32;
typeU32 const Data32[] =
{
{0xffffffff, 0,32, 0xffffffff, SUCCESS},
{0xffffffff, 8, 0, 0x00000000, SUCCESS},
{0x00000000, 0,32, 0x00000000, SUCCESS},
{0x0f0f0f0f, 0,32, 0x0f0f0f0f, SUCCESS},
{0x00000000, 8, 0, 0x00000000, SUCCESS},
{0x80000000,31, 1, 0x00000001, SUCCESS},
{0x7fffffff,31, 1, 0x00000000, SUCCESS},
{0x00000300, 8, 8, 0x00000003, SUCCESS},
{0x0000ff00, 8, 8, 0x000000ff, SUCCESS},
{0xfffffff0, 0, 5, 0x00000010, SUCCESS},
{0x000000ff, 1, 3, 0x00000007, SUCCESS},
{0x000000ff, 0, 3, 0x00000007, SUCCESS},
{0x00000000, 0, 2, 0x00000000, SUCCESS},
{0xffffffff, 0, 8, 0x000000ff, SUCCESS},
{0xffff0000,16,16, 0x0000ffff, SUCCESS},
{0xfffffff0, 0, 8, 0x00000000, FAIL},
{0xffffffff,16,16, 0x00000000, FAIL},
//{0xffffffff,32, 1, 0x00000000, ASSERT}, // Throw an assert
//{0xffffffff, 0,33, 0x00000000, ASSERT}, // Throw an assert
//{0xffffffff,16,16, 0x00000000, ASSERT}, // Throw an assert
};
int test()
{
int Error = 0;
glm::uint count = sizeof(Data32) / sizeof(typeU32);
for(glm::uint i = 0; i < count; ++i)
{
glm::uint Return = glm::bitfieldExtract(
Data32[i].Value,
Data32[i].Offset,
Data32[i].Bits);
bool Compare = Data32[i].Return == Return;
if(Data32[i].Result == SUCCESS && Compare)
continue;
else if(Data32[i].Result == FAIL && !Compare)
continue;
Error += 1;
}
return Error;
}
}//extractField
namespace bitfieldReverse
{
/*
GLM_FUNC_QUALIFIER unsigned int bitfieldReverseLoop(unsigned int v)
{
unsigned int Result(0);
unsigned int const BitSize = static_cast<unsigned int>(sizeof(unsigned int) * 8);
for(unsigned int i = 0; i < BitSize; ++i)
{
unsigned int const BitSet(v & (static_cast<unsigned int>(1) << i));
unsigned int const BitFirst(BitSet >> i);
Result |= BitFirst << (BitSize - 1 - i);
}
return Result;
}
GLM_FUNC_QUALIFIER glm::uint64_t bitfieldReverseLoop(glm::uint64_t v)
{
glm::uint64_t Result(0);
glm::uint64_t const BitSize = static_cast<glm::uint64_t>(sizeof(unsigned int) * 8);
for(glm::uint64_t i = 0; i < BitSize; ++i)
{
glm::uint64_t const BitSet(v & (static_cast<glm::uint64_t>(1) << i));
glm::uint64_t const BitFirst(BitSet >> i);
Result |= BitFirst << (BitSize - 1 - i);
}
return Result;
}
*/
template <typename T, glm::precision P, template <typename, glm::precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> bitfieldReverseLoop(vecType<T, P> const & v)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_integer, "'bitfieldReverse' only accept integer values");
vecType<T, P> Result(0);
T const BitSize = static_cast<T>(sizeof(T) * 8);
for(T i = 0; i < BitSize; ++i)
{
vecType<T, P> const BitSet(v & (static_cast<T>(1) << i));
vecType<T, P> const BitFirst(BitSet >> i);
Result |= BitFirst << (BitSize - 1 - i);
}
return Result;
}
template <typename T>
GLM_FUNC_QUALIFIER T bitfieldReverseLoop(T v)
{
return bitfieldReverseLoop(glm::tvec1<T>(v)).x;
}
GLM_FUNC_QUALIFIER glm::uint32_t bitfieldReverseUint32(glm::uint32_t x)
{
x = (x & 0x55555555) << 1 | (x & 0xAAAAAAAA) >> 1;
x = (x & 0x33333333) << 2 | (x & 0xCCCCCCCC) >> 2;
x = (x & 0x0F0F0F0F) << 4 | (x & 0xF0F0F0F0) >> 4;
x = (x & 0x00FF00FF) << 8 | (x & 0xFF00FF00) >> 8;
x = (x & 0x0000FFFF) << 16 | (x & 0xFFFF0000) >> 16;
return x;
}
GLM_FUNC_QUALIFIER glm::uint64_t bitfieldReverseUint64(glm::uint64_t x)
{
x = (x & 0x5555555555555555) << 1 | (x & 0xAAAAAAAAAAAAAAAA) >> 1;
x = (x & 0x3333333333333333) << 2 | (x & 0xCCCCCCCCCCCCCCCC) >> 2;
x = (x & 0x0F0F0F0F0F0F0F0F) << 4 | (x & 0xF0F0F0F0F0F0F0F0) >> 4;
x = (x & 0x00FF00FF00FF00FF) << 8 | (x & 0xFF00FF00FF00FF00) >> 8;
x = (x & 0x0000FFFF0000FFFF) << 16 | (x & 0xFFFF0000FFFF0000) >> 16;
x = (x & 0x00000000FFFFFFFF) << 32 | (x & 0xFFFFFFFF00000000) >> 32;
return x;
}
template <bool EXEC = false>
struct compute_bitfieldReverseStep
{
template <typename T, glm::precision P, template <class, glm::precision> class vecType>
GLM_FUNC_QUALIFIER static vecType<T, P> call(vecType<T, P> const & v, T, T)
{
return v;
}
};
template <>
struct compute_bitfieldReverseStep<true>
{
template <typename T, glm::precision P, template <class, glm::precision> class vecType>
GLM_FUNC_QUALIFIER static vecType<T, P> call(vecType<T, P> const & v, T Mask, T Shift)
{
return (v & Mask) << Shift | (v & (~Mask)) >> Shift;
}
};
template <typename T, glm::precision P, template <typename, glm::precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> bitfieldReverseOps(vecType<T, P> const & v)
{
vecType<T, P> x(v);
x = compute_bitfieldReverseStep<sizeof(T) * 8 >= 2>::call(x, T(0x5555555555555555ull), static_cast<T>( 1));
x = compute_bitfieldReverseStep<sizeof(T) * 8 >= 4>::call(x, T(0x3333333333333333ull), static_cast<T>( 2));
x = compute_bitfieldReverseStep<sizeof(T) * 8 >= 8>::call(x, T(0x0F0F0F0F0F0F0F0Full), static_cast<T>( 4));
x = compute_bitfieldReverseStep<sizeof(T) * 8 >= 16>::call(x, T(0x00FF00FF00FF00FFull), static_cast<T>( 8));
x = compute_bitfieldReverseStep<sizeof(T) * 8 >= 32>::call(x, T(0x0000FFFF0000FFFFull), static_cast<T>(16));
x = compute_bitfieldReverseStep<sizeof(T) * 8 >= 64>::call(x, T(0x00000000FFFFFFFFull), static_cast<T>(32));
return x;
}
template <typename genType>
GLM_FUNC_QUALIFIER genType bitfieldReverseOps(genType x)
{
return bitfieldReverseOps(glm::tvec1<genType, glm::defaultp>(x)).x;
}
template <typename genType>
struct type
{
genType Value;
genType Return;
result Result;
};
typedef type<glm::uint> typeU32;
typeU32 const Data32[] =
{
{0x00000001, 0x80000000, SUCCESS},
{0x0000000f, 0xf0000000, SUCCESS},
{0x000000ff, 0xff000000, SUCCESS},
{0xf0000000, 0x0000000f, SUCCESS},
{0xff000000, 0x000000ff, SUCCESS},
{0xffffffff, 0xffffffff, SUCCESS},
{0x00000000, 0x00000000, SUCCESS}
};
typedef type<glm::uint64> typeU64;
#if(((GLM_COMPILER & GLM_COMPILER_GCC) == GLM_COMPILER_GCC) && (GLM_COMPILER < GLM_COMPILER_GCC44))
typeU64 const Data64[] =
{
{0xf000000000000000LLU, 0x000000000000000fLLU, SUCCESS},
{0xffffffffffffffffLLU, 0xffffffffffffffffLLU, SUCCESS},
{0x0000000000000000LLU, 0x0000000000000000LLU, SUCCESS}
};
#else
typeU64 const Data64[] =
{
{0x00000000000000ff, 0xff00000000000000, SUCCESS},
{0x000000000000000f, 0xf000000000000000, SUCCESS},
{0xf000000000000000, 0x000000000000000f, SUCCESS},
{0xffffffffffffffff, 0xffffffffffffffff, SUCCESS},
{0x0000000000000000, 0x0000000000000000, SUCCESS}
};
#endif
int test32_bitfieldReverse()
{
int Error = 0;
std::size_t const Count = sizeof(Data32) / sizeof(typeU32);
for(std::size_t i = 0; i < Count; ++i)
{
glm::uint Return = glm::bitfieldReverse(Data32[i].Value);
bool Compare = Data32[i].Return == Return;
if(Data32[i].Result == SUCCESS)
Error += Compare ? 0 : 1;
else
Error += Compare ? 1 : 0;
}
return Error;
}
int test32_bitfieldReverseLoop()
{
int Error = 0;
std::size_t const Count = sizeof(Data32) / sizeof(typeU32);
for(std::size_t i = 0; i < Count; ++i)
{
glm::uint Return = bitfieldReverseLoop(Data32[i].Value);
bool Compare = Data32[i].Return == Return;
if(Data32[i].Result == SUCCESS)
Error += Compare ? 0 : 1;
else
Error += Compare ? 1 : 0;
}
return Error;
}
int test32_bitfieldReverseUint32()
{
int Error = 0;
std::size_t const Count = sizeof(Data32) / sizeof(typeU32);
for(std::size_t i = 0; i < Count; ++i)
{
glm::uint Return = bitfieldReverseUint32(Data32[i].Value);
bool Compare = Data32[i].Return == Return;
if(Data32[i].Result == SUCCESS)
Error += Compare ? 0 : 1;
else
Error += Compare ? 1 : 0;
}
return Error;
}
int test32_bitfieldReverseOps()
{
int Error = 0;
std::size_t const Count = sizeof(Data32) / sizeof(typeU32);
for(std::size_t i = 0; i < Count; ++i)
{
glm::uint Return = bitfieldReverseOps(Data32[i].Value);
bool Compare = Data32[i].Return == Return;
if(Data32[i].Result == SUCCESS)
Error += Compare ? 0 : 1;
else
Error += Compare ? 1 : 0;
}
return Error;
}
int test64_bitfieldReverse()
{
int Error = 0;
std::size_t const Count = sizeof(Data64) / sizeof(typeU64);
for(std::size_t i = 0; i < Count; ++i)
{
glm::uint64 Return = glm::bitfieldReverse(Data64[i].Value);
bool Compare = Data64[i].Return == Return;
if(Data64[i].Result == SUCCESS)
Error += Compare ? 0 : 1;
else
Error += Compare ? 1 : 0;
}
return Error;
}
int test64_bitfieldReverseLoop()
{
int Error = 0;
std::size_t const Count = sizeof(Data64) / sizeof(typeU64);
for(std::size_t i = 0; i < Count; ++i)
{
glm::uint64 Return = bitfieldReverseLoop(Data64[i].Value);
bool Compare = Data64[i].Return == Return;
if(Data32[i].Result == SUCCESS)
Error += Compare ? 0 : 1;
else
Error += Compare ? 1 : 0;
}
return Error;
}
int test64_bitfieldReverseUint64()
{
int Error = 0;
std::size_t const Count = sizeof(Data64) / sizeof(typeU64);
for(std::size_t i = 0; i < Count; ++i)
{
glm::uint64 Return = bitfieldReverseUint64(Data64[i].Value);
bool Compare = Data64[i].Return == Return;
if(Data64[i].Result == SUCCESS)
Error += Compare ? 0 : 1;
else
Error += Compare ? 1 : 0;
}
return Error;
}
int test64_bitfieldReverseOps()
{
int Error = 0;
std::size_t const Count = sizeof(Data64) / sizeof(typeU64);
for(std::size_t i = 0; i < Count; ++i)
{
glm::uint64 Return = bitfieldReverseOps(Data64[i].Value);
bool Compare = Data64[i].Return == Return;
if(Data64[i].Result == SUCCESS)
Error += Compare ? 0 : 1;
else
Error += Compare ? 1 : 0;
}
return Error;
}
int test()
{
int Error = 0;
Error += test32_bitfieldReverse();
Error += test32_bitfieldReverseLoop();
Error += test32_bitfieldReverseUint32();
Error += test32_bitfieldReverseOps();
Error += test64_bitfieldReverse();
Error += test64_bitfieldReverseLoop();
Error += test64_bitfieldReverseUint64();
Error += test64_bitfieldReverseOps();
return Error;
}
int perf32(glm::uint32 Count)
{
int Error = 0;
std::vector<glm::uint32> Data;
Data.resize(static_cast<std::size_t>(Count));
std::clock_t Timestamps0 = std::clock();
for(glm::uint32 k = 0; k < Count; ++k)
Data[k] = glm::bitfieldReverse(k);
std::clock_t Timestamps1 = std::clock();
for(glm::uint32 k = 0; k < Count; ++k)
Data[k] = bitfieldReverseLoop(k);
std::clock_t Timestamps2 = std::clock();
for(glm::uint32 k = 0; k < Count; ++k)
Data[k] = bitfieldReverseUint32(k);
std::clock_t Timestamps3 = std::clock();
for(glm::uint32 k = 0; k < Count; ++k)
Data[k] = bitfieldReverseOps(k);
std::clock_t Timestamps4 = std::clock();
std::printf("glm::bitfieldReverse: %d clocks\n", static_cast<unsigned int>(Timestamps1 - Timestamps0));
std::printf("bitfieldReverseLoop: %d clocks\n", static_cast<unsigned int>(Timestamps2 - Timestamps1));
std::printf("bitfieldReverseUint32: %d clocks\n", static_cast<unsigned int>(Timestamps3 - Timestamps2));
std::printf("bitfieldReverseOps: %d clocks\n", static_cast<unsigned int>(Timestamps4 - Timestamps3));
return Error;
}
int perf64(glm::uint64 Count)
{
int Error = 0;
std::vector<glm::uint64> Data;
Data.resize(static_cast<std::size_t>(Count));
std::clock_t Timestamps0 = std::clock();
for(glm::uint32 k = 0; k < Count; ++k)
Data[k] = glm::bitfieldReverse(k);
std::clock_t Timestamps1 = std::clock();
for(glm::uint64 k = 0; k < Count; ++k)
Data[k] = bitfieldReverseLoop(k);
std::clock_t Timestamps2 = std::clock();
for(glm::uint64 k = 0; k < Count; ++k)
Data[k] = bitfieldReverseUint64(k);
std::clock_t Timestamps3 = std::clock();
for(glm::uint64 k = 0; k < Count; ++k)
Data[k] = bitfieldReverseOps(k);
std::clock_t Timestamps4 = std::clock();
std::printf("glm::bitfieldReverse - 64: %d clocks\n", static_cast<unsigned int>(Timestamps1 - Timestamps0));
std::printf("bitfieldReverseLoop - 64: %d clocks\n", static_cast<unsigned int>(Timestamps2 - Timestamps1));
std::printf("bitfieldReverseUint - 64: %d clocks\n", static_cast<unsigned int>(Timestamps3 - Timestamps2));
std::printf("bitfieldReverseOps - 64: %d clocks\n", static_cast<unsigned int>(Timestamps4 - Timestamps3));
return Error;
}
int perf(std::size_t Samples)
{
int Error = 0;
Error += perf32(static_cast<glm::uint32>(Samples));
Error += perf64(static_cast<glm::uint64>(Samples));
return Error;
}
}//bitfieldReverse
namespace findMSB
{
template <typename genType, typename retType>
struct type
{
genType Value;
retType Return;
};
# if GLM_HAS_BITSCAN_WINDOWS
template <typename genIUType>
GLM_FUNC_QUALIFIER int findMSB_intrinsic(genIUType Value)
{
GLM_STATIC_ASSERT(std::numeric_limits<genIUType>::is_integer, "'findMSB' only accept integer values");
if(Value == 0)
return -1;
unsigned long Result(0);
_BitScanReverse(&Result, Value);
return int(Result);
}
# endif//GLM_HAS_BITSCAN_WINDOWS
# if GLM_ARCH & GLM_ARCH_AVX && GLM_COMPILER & GLM_COMPILER_VC
template <typename genIUType>
GLM_FUNC_QUALIFIER int findMSB_avx(genIUType Value)
{
GLM_STATIC_ASSERT(std::numeric_limits<genIUType>::is_integer, "'findMSB' only accept integer values");
if(Value == 0)
return -1;
return int(_tzcnt_u32(Value));
}
# endif//GLM_ARCH & GLM_ARCH_AVX && GLM_PLATFORM & GLM_PLATFORM_WINDOWS
template <typename genIUType>
GLM_FUNC_QUALIFIER int findMSB_095(genIUType Value)
{
GLM_STATIC_ASSERT(std::numeric_limits<genIUType>::is_integer, "'findMSB' only accept integer values");
if(Value == genIUType(0) || Value == genIUType(-1))
return -1;
else if(Value > 0)
{
genIUType Bit = genIUType(-1);
for(genIUType tmp = Value; tmp > 0; tmp >>= 1, ++Bit){}
return Bit;
}
else //if(Value < 0)
{
int const BitCount(sizeof(genIUType) * 8);
int MostSignificantBit(-1);
for(int BitIndex(0); BitIndex < BitCount; ++BitIndex)
MostSignificantBit = (Value & (1 << BitIndex)) ? MostSignificantBit : BitIndex;
assert(MostSignificantBit >= 0);
return MostSignificantBit;
}
}
template <typename genIUType>
GLM_FUNC_QUALIFIER int findMSB_nlz1(genIUType x)
{
GLM_STATIC_ASSERT(std::numeric_limits<genIUType>::is_integer, "'findMSB' only accept integer values");
if (x == 0)
return -1;
int n = 0;
if (x <= 0x0000FFFF) {n = n +16; x = x <<16;}
if (x <= 0x00FFFFFF) {n = n + 8; x = x << 8;}
if (x <= 0x0FFFFFFF) {n = n + 4; x = x << 4;}
if (x <= 0x3FFFFFFF) {n = n + 2; x = x << 2;}
if (x <= 0x7FFFFFFF) {n = n + 1;}
return 31 - n;
}
int findMSB_nlz2(unsigned int x)
{
unsigned y;
int n;
n = 32;
y = x >>16; if (y != 0) {n = n -16; x = y;}
y = x >> 8; if (y != 0) {n = n - 8; x = y;}
y = x >> 4; if (y != 0) {n = n - 4; x = y;}
y = x >> 2; if (y != 0) {n = n - 2; x = y;}
y = x >> 1; if (y != 0) return n - 2;
return 32 - (n - x);
}
int findMSB_pop(unsigned int x)
{
x = x | (x >> 1);
x = x | (x >> 2);
x = x | (x >> 4);
x = x | (x >> 8);
x = x | (x >>16);
return 31 - glm::bitCount(~x);
}
int perf_int(std::size_t Count)
{
type<int, int> const Data[] =
{
{0x00000000, -1},
{0x00000001, 0},
{0x00000002, 1},
{0x00000003, 1},
{0x00000004, 2},
{0x00000005, 2},
{0x00000007, 2},
{0x00000008, 3},
{0x00000010, 4},
{0x00000020, 5},
{0x00000040, 6},
{0x00000080, 7},
{0x00000100, 8},
{0x00000200, 9},
{0x00000400, 10},
{0x00000800, 11},
{0x00001000, 12},
{0x00002000, 13},
{0x00004000, 14},
{0x00008000, 15},
{0x00010000, 16},
{0x00020000, 17},
{0x00040000, 18},
{0x00080000, 19},
{0x00100000, 20},
{0x00200000, 21},
{0x00400000, 22},
{0x00800000, 23},
{0x01000000, 24},
{0x02000000, 25},
{0x04000000, 26},
{0x08000000, 27},
{0x10000000, 28},
{0x20000000, 29},
{0x40000000, 30}
};
int Error(0);
std::clock_t Timestamps0 = std::clock();
for(std::size_t k = 0; k < Count; ++k)
for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<int, int>); ++i)
{
int Result = glm::findMSB(Data[i].Value);
Error += Data[i].Return == Result ? 0 : 1;
}
std::clock_t Timestamps1 = std::clock();
for(std::size_t k = 0; k < Count; ++k)
for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<int, int>); ++i)
{
int Result = findMSB_nlz1(Data[i].Value);
Error += Data[i].Return == Result ? 0 : 1;
}
std::clock_t Timestamps2 = std::clock();
for(std::size_t k = 0; k < Count; ++k)
for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<int, int>); ++i)
{
int Result = findMSB_nlz2(Data[i].Value);
Error += Data[i].Return == Result ? 0 : 1;
}
std::clock_t Timestamps3 = std::clock();
for(std::size_t k = 0; k < Count; ++k)
for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<int, int>); ++i)
{
int Result = findMSB_095(Data[i].Value);
Error += Data[i].Return == Result ? 0 : 1;
}
std::clock_t Timestamps4 = std::clock();
# if GLM_HAS_BITSCAN_WINDOWS
for(std::size_t k = 0; k < Count; ++k)
for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<int, int>); ++i)
{
int Result = findMSB_intrinsic(Data[i].Value);
Error += Data[i].Return == Result ? 0 : 1;
}
# endif//GLM_HAS_BITSCAN_WINDOWS
std::clock_t Timestamps5 = std::clock();
for(std::size_t k = 0; k < Count; ++k)
for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<int, int>); ++i)
{
int Result = findMSB_pop(Data[i].Value);
Error += Data[i].Return == Result ? 0 : 1;
}
std::clock_t Timestamps6 = std::clock();
# if GLM_ARCH & GLM_ARCH_AVX && GLM_COMPILER & GLM_COMPILER_VC
for(std::size_t k = 0; k < Count; ++k)
for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<int, int>); ++i)
{
int Result = findMSB_avx(Data[i].Value);
Error += Data[i].Return == Result ? 0 : 1;
}
# endif
std::clock_t Timestamps7 = std::clock();
std::printf("glm::findMSB: %d clocks\n", static_cast<unsigned int>(Timestamps1 - Timestamps0));
std::printf("findMSB - nlz1: %d clocks\n", static_cast<unsigned int>(Timestamps2 - Timestamps1));
std::printf("findMSB - nlz2: %d clocks\n", static_cast<unsigned int>(Timestamps3 - Timestamps2));
std::printf("findMSB - 0.9.5: %d clocks\n", static_cast<unsigned int>(Timestamps4 - Timestamps3));
# if GLM_HAS_BITSCAN_WINDOWS
std::printf("findMSB - intrinsics: %d clocks\n", static_cast<unsigned int>(Timestamps5 - Timestamps4));
# endif//GLM_HAS_BITSCAN_WINDOWS
std::printf("findMSB - pop: %d clocks\n", static_cast<unsigned int>(Timestamps6 - Timestamps5));
# if GLM_ARCH & GLM_ARCH_AVX && GLM_COMPILER & GLM_COMPILER_VC
std::printf("findMSB - avx tzcnt: %d clocks\n", static_cast<unsigned int>(Timestamps7 - Timestamps6));
# endif//GLM_ARCH & GLM_ARCH_AVX && GLM_PLATFORM & GLM_PLATFORM_WINDOWS
return Error;
}
int test_ivec4()
{
type<glm::ivec4, glm::ivec4> const Data[] =
{
{glm::ivec4(0x00000000), glm::ivec4(-1)},
{glm::ivec4(0x00000001), glm::ivec4( 0)},
{glm::ivec4(0x00000002), glm::ivec4( 1)},
{glm::ivec4(0x00000003), glm::ivec4( 1)},
{glm::ivec4(0x00000004), glm::ivec4( 2)},
{glm::ivec4(0x00000005), glm::ivec4( 2)},
{glm::ivec4(0x00000007), glm::ivec4( 2)},
{glm::ivec4(0x00000008), glm::ivec4( 3)},
{glm::ivec4(0x00000010), glm::ivec4( 4)},
{glm::ivec4(0x00000020), glm::ivec4( 5)},
{glm::ivec4(0x00000040), glm::ivec4( 6)},
{glm::ivec4(0x00000080), glm::ivec4( 7)},
{glm::ivec4(0x00000100), glm::ivec4( 8)},
{glm::ivec4(0x00000200), glm::ivec4( 9)},
{glm::ivec4(0x00000400), glm::ivec4(10)},
{glm::ivec4(0x00000800), glm::ivec4(11)},
{glm::ivec4(0x00001000), glm::ivec4(12)},
{glm::ivec4(0x00002000), glm::ivec4(13)},
{glm::ivec4(0x00004000), glm::ivec4(14)},
{glm::ivec4(0x00008000), glm::ivec4(15)},
{glm::ivec4(0x00010000), glm::ivec4(16)},
{glm::ivec4(0x00020000), glm::ivec4(17)},
{glm::ivec4(0x00040000), glm::ivec4(18)},
{glm::ivec4(0x00080000), glm::ivec4(19)},
{glm::ivec4(0x00100000), glm::ivec4(20)},
{glm::ivec4(0x00200000), glm::ivec4(21)},
{glm::ivec4(0x00400000), glm::ivec4(22)},
{glm::ivec4(0x00800000), glm::ivec4(23)},
{glm::ivec4(0x01000000), glm::ivec4(24)},
{glm::ivec4(0x02000000), glm::ivec4(25)},
{glm::ivec4(0x04000000), glm::ivec4(26)},
{glm::ivec4(0x08000000), glm::ivec4(27)},
{glm::ivec4(0x10000000), glm::ivec4(28)},
{glm::ivec4(0x20000000), glm::ivec4(29)},
{glm::ivec4(0x40000000), glm::ivec4(30)}
};
int Error(0);
for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<glm::ivec4, glm::ivec4>); ++i)
{
glm::ivec4 Result0 = glm::findMSB(Data[i].Value);
Error += glm::all(glm::equal(Data[i].Return, Result0)) ? 0 : 1;
}
return Error;
}
int test_int()
{
typedef type<glm::uint, int> entry;
entry const Data[] =
{
{0x00000000, -1},
{0x00000001, 0},
{0x00000002, 1},
{0x00000003, 1},
{0x00000004, 2},
{0x00000005, 2},
{0x00000007, 2},
{0x00000008, 3},
{0x00000010, 4},
{0x00000020, 5},
{0x00000040, 6},
{0x00000080, 7},
{0x00000100, 8},
{0x00000200, 9},
{0x00000400, 10},
{0x00000800, 11},
{0x00001000, 12},
{0x00002000, 13},
{0x00004000, 14},
{0x00008000, 15},
{0x00010000, 16},
{0x00020000, 17},
{0x00040000, 18},
{0x00080000, 19},
{0x00100000, 20},
{0x00200000, 21},
{0x00400000, 22},
{0x00800000, 23},
{0x01000000, 24},
{0x02000000, 25},
{0x04000000, 26},
{0x08000000, 27},
{0x10000000, 28},
{0x20000000, 29},
{0x40000000, 30}
};
int Error(0);
for(std::size_t i = 0; i < sizeof(Data) / sizeof(entry); ++i)
{
int Result0 = glm::findMSB(Data[i].Value);
Error += Data[i].Return == Result0 ? 0 : 1;
}
for(std::size_t i = 0; i < sizeof(Data) / sizeof(entry); ++i)
{
int Result0 = findMSB_nlz1(Data[i].Value);
Error += Data[i].Return == Result0 ? 0 : 1;
}
/*
for(std::size_t i = 0; i < sizeof(Data) / sizeof(entry); ++i)
{
int Result0 = findMSB_nlz2(Data[i].Value);
Error += Data[i].Return == Result0 ? 0 : 1;
}
*/
for(std::size_t i = 0; i < sizeof(Data) / sizeof(entry); ++i)
{
int Result0 = findMSB_095(Data[i].Value);
Error += Data[i].Return == Result0 ? 0 : 1;
}
# if GLM_HAS_BITSCAN_WINDOWS
for(std::size_t i = 0; i < sizeof(Data) / sizeof(entry); ++i)
{
int Result0 = findMSB_intrinsic(Data[i].Value);
Error += Data[i].Return == Result0 ? 0 : 1;
}
# endif//GLM_HAS_BITSCAN_WINDOWS
for(std::size_t i = 0; i < sizeof(Data) / sizeof(entry); ++i)
{
int Result0 = findMSB_pop(Data[i].Value);
Error += Data[i].Return == Result0 ? 0 : 1;
}
return Error;
}
int test()
{
int Error(0);
Error += test_ivec4();
Error += test_int();
return Error;
}
int perf(std::size_t Samples)
{
int Error(0);
Error += perf_int(Samples);
return Error;
}
}//findMSB
namespace findLSB
{
template <typename genType, typename retType>
struct type
{
genType Value;
retType Return;
};
typedef type<int, int> entry;
entry const DataI32[] =
{
{0x00000001, 0},
{0x00000003, 0},
{0x00000002, 1},
// {0x80000000, 31}, // Clang generates an error with this
{0x00010000, 16},
{0x7FFF0000, 16},
{0x7F000000, 24},
{0x7F00FF00, 8},
{0x00000000, -1}
};
# if GLM_HAS_BITSCAN_WINDOWS
template <typename genIUType>
GLM_FUNC_QUALIFIER int findLSB_intrinsic(genIUType Value)
{
GLM_STATIC_ASSERT(std::numeric_limits<genIUType>::is_integer, "'findLSB' only accept integer values");
if(Value == 0)
return -1;
unsigned long Result(0);
_BitScanForward(&Result, Value);
return int(Result);
}
# endif
template <typename genIUType>
GLM_FUNC_QUALIFIER int findLSB_095(genIUType Value)
{
GLM_STATIC_ASSERT(std::numeric_limits<genIUType>::is_integer, "'findLSB' only accept integer values");
if(Value == 0)
return -1;
genIUType Bit;
for(Bit = genIUType(0); !(Value & (1 << Bit)); ++Bit){}
return Bit;
}
template <typename genIUType>
GLM_FUNC_QUALIFIER int findLSB_ntz2(genIUType x)
{
if(x == 0)
return -1;
return glm::bitCount(~x & (x - static_cast<genIUType>(1)));
}
template <typename genIUType>
GLM_FUNC_QUALIFIER int findLSB_branchfree(genIUType x)
{
bool IsNull(x == 0);
int const Keep(!IsNull);
int const Discard(IsNull);
return static_cast<int>(glm::bitCount(~x & (x - static_cast<genIUType>(1)))) * Keep + Discard * -1;
}
int test_int()
{
int Error(0);
for(std::size_t i = 0; i < sizeof(DataI32) / sizeof(entry); ++i)
{
int Result = glm::findLSB(DataI32[i].Value);
Error += DataI32[i].Return == Result ? 0 : 1;
}
for(std::size_t i = 0; i < sizeof(DataI32) / sizeof(entry); ++i)
{
int Result = findLSB_095(DataI32[i].Value);
Error += DataI32[i].Return == Result ? 0 : 1;
}
# if GLM_HAS_BITSCAN_WINDOWS
for(std::size_t i = 0; i < sizeof(DataI32) / sizeof(entry); ++i)
{
int Result = findLSB_intrinsic(DataI32[i].Value);
Error += DataI32[i].Return == Result ? 0 : 1;
}
# endif
for(std::size_t i = 0; i < sizeof(DataI32) / sizeof(entry); ++i)
{
int Result = findLSB_ntz2(DataI32[i].Value);
Error += DataI32[i].Return == Result ? 0 : 1;
}
for(std::size_t i = 0; i < sizeof(DataI32) / sizeof(entry); ++i)
{
int Result = findLSB_branchfree(DataI32[i].Value);
Error += DataI32[i].Return == Result ? 0 : 1;
}
return Error;
}
int test()
{
int Error(0);
Error += test_int();
return Error;
}
int perf_int(std::size_t Count)
{
int Error(0);
std::clock_t Timestamps0 = std::clock();
for(std::size_t k = 0; k < Count; ++k)
for(std::size_t i = 0; i < sizeof(DataI32) / sizeof(entry); ++i)
{
int Result = glm::findLSB(DataI32[i].Value);
Error += DataI32[i].Return == Result ? 0 : 1;
}
std::clock_t Timestamps1 = std::clock();
for(std::size_t k = 0; k < Count; ++k)
for(std::size_t i = 0; i < sizeof(DataI32) / sizeof(entry); ++i)
{
int Result = findLSB_095(DataI32[i].Value);
Error += DataI32[i].Return == Result ? 0 : 1;
}
std::clock_t Timestamps2 = std::clock();
# if GLM_HAS_BITSCAN_WINDOWS
for(std::size_t k = 0; k < Count; ++k)
for(std::size_t i = 0; i < sizeof(DataI32) / sizeof(entry); ++i)
{
int Result = findLSB_intrinsic(DataI32[i].Value);
Error += DataI32[i].Return == Result ? 0 : 1;
}
# endif
std::clock_t Timestamps3 = std::clock();
for(std::size_t k = 0; k < Count; ++k)
for(std::size_t i = 0; i < sizeof(DataI32) / sizeof(entry); ++i)
{
int Result = findLSB_ntz2(DataI32[i].Value);
Error += DataI32[i].Return == Result ? 0 : 1;
}
std::clock_t Timestamps4 = std::clock();
for(std::size_t k = 0; k < Count; ++k)
for(std::size_t i = 0; i < sizeof(DataI32) / sizeof(entry); ++i)
{
int Result = findLSB_branchfree(DataI32[i].Value);
Error += DataI32[i].Return == Result ? 0 : 1;
}
std::clock_t Timestamps5 = std::clock();
std::printf("glm::findLSB: %d clocks\n", static_cast<unsigned int>(Timestamps1 - Timestamps0));
std::printf("findLSB - 0.9.5: %d clocks\n", static_cast<unsigned int>(Timestamps2 - Timestamps1));
# if GLM_HAS_BITSCAN_WINDOWS
std::printf("findLSB - intrinsics: %d clocks\n", static_cast<unsigned int>(Timestamps3 - Timestamps2));
# endif
std::printf("findLSB - ntz2: %d clocks\n", static_cast<unsigned int>(Timestamps4 - Timestamps3));
std::printf("findLSB - branchfree: %d clocks\n", static_cast<unsigned int>(Timestamps5 - Timestamps4));
return Error;
}
int perf(std::size_t Samples)
{
int Error(0);
Error += perf_int(Samples);
return Error;
}
}//findLSB
namespace uaddCarry
{
int test()
{
int Error(0);
{
glm::uint x = std::numeric_limits<glm::uint>::max();
glm::uint y = 0;
glm::uint Carry = 0;
glm::uint Result = glm::uaddCarry(x, y, Carry);
Error += Carry == 0 ? 0 : 1;
Error += Result == std::numeric_limits<glm::uint>::max() ? 0 : 1;
}
{
glm::uint x = std::numeric_limits<glm::uint>::max();
glm::uint y = 1;
glm::uint Carry = 0;
glm::uint Result = glm::uaddCarry(x, y, Carry);
Error += Carry == 1 ? 0 : 1;
Error += Result == 0 ? 0 : 1;
}
{
glm::uvec1 x(std::numeric_limits<glm::uint>::max());
glm::uvec1 y(0);
glm::uvec1 Carry(0);
glm::uvec1 Result(glm::uaddCarry(x, y, Carry));
Error += glm::all(glm::equal(Carry, glm::uvec1(0))) ? 0 : 1;
Error += glm::all(glm::equal(Result, glm::uvec1(std::numeric_limits<glm::uint>::max()))) ? 0 : 1;
}
{
glm::uvec1 x(std::numeric_limits<glm::uint>::max());
glm::uvec1 y(1);
glm::uvec1 Carry(0);
glm::uvec1 Result(glm::uaddCarry(x, y, Carry));
Error += glm::all(glm::equal(Carry, glm::uvec1(1))) ? 0 : 1;
Error += glm::all(glm::equal(Result, glm::uvec1(0))) ? 0 : 1;
}
return Error;
}
}//namespace uaddCarry
namespace usubBorrow
{
int test()
{
int Error(0);
{
glm::uint x = 16;
glm::uint y = 17;
glm::uint Borrow = 0;
glm::uint Result = glm::usubBorrow(x, y, Borrow);
Error += Borrow == 1 ? 0 : 1;
Error += Result == 1 ? 0 : 1;
}
{
glm::uvec1 x(16);
glm::uvec1 y(17);
glm::uvec1 Borrow(0);
glm::uvec1 Result(glm::usubBorrow(x, y, Borrow));
Error += glm::all(glm::equal(Borrow, glm::uvec1(1))) ? 0 : 1;
Error += glm::all(glm::equal(Result, glm::uvec1(1))) ? 0 : 1;
}
{
glm::uvec2 x(16);
glm::uvec2 y(17);
glm::uvec2 Borrow(0);
glm::uvec2 Result(glm::usubBorrow(x, y, Borrow));
Error += glm::all(glm::equal(Borrow, glm::uvec2(1))) ? 0 : 1;
Error += glm::all(glm::equal(Result, glm::uvec2(1))) ? 0 : 1;
}
{
glm::uvec3 x(16);
glm::uvec3 y(17);
glm::uvec3 Borrow(0);
glm::uvec3 Result(glm::usubBorrow(x, y, Borrow));
Error += glm::all(glm::equal(Borrow, glm::uvec3(1))) ? 0 : 1;
Error += glm::all(glm::equal(Result, glm::uvec3(1))) ? 0 : 1;
}
{
glm::uvec4 x(16);
glm::uvec4 y(17);
glm::uvec4 Borrow(0);
glm::uvec4 Result(glm::usubBorrow(x, y, Borrow));
Error += glm::all(glm::equal(Borrow, glm::uvec4(1))) ? 0 : 1;
Error += glm::all(glm::equal(Result, glm::uvec4(1))) ? 0 : 1;
}
return Error;
}
}//namespace usubBorrow
namespace umulExtended
{
int test()
{
int Error(0);
{
glm::uint x = 2;
glm::uint y = 3;
glm::uint msb = 0;
glm::uint lsb = 0;
glm::umulExtended(x, y, msb, lsb);
Error += msb == 0 ? 0 : 1;
Error += lsb == 6 ? 0 : 1;
}
{
glm::uvec1 x(2);
glm::uvec1 y(3);
glm::uvec1 msb(0);
glm::uvec1 lsb(0);
glm::umulExtended(x, y, msb, lsb);
Error += glm::all(glm::equal(msb, glm::uvec1(0))) ? 0 : 1;
Error += glm::all(glm::equal(lsb, glm::uvec1(6))) ? 0 : 1;
}
{
glm::uvec2 x(2);
glm::uvec2 y(3);
glm::uvec2 msb(0);
glm::uvec2 lsb(0);
glm::umulExtended(x, y, msb, lsb);
Error += glm::all(glm::equal(msb, glm::uvec2(0))) ? 0 : 1;
Error += glm::all(glm::equal(lsb, glm::uvec2(6))) ? 0 : 1;
}
{
glm::uvec3 x(2);
glm::uvec3 y(3);
glm::uvec3 msb(0);
glm::uvec3 lsb(0);
glm::umulExtended(x, y, msb, lsb);
Error += glm::all(glm::equal(msb, glm::uvec3(0))) ? 0 : 1;
Error += glm::all(glm::equal(lsb, glm::uvec3(6))) ? 0 : 1;
}
{
glm::uvec4 x(2);
glm::uvec4 y(3);
glm::uvec4 msb(0);
glm::uvec4 lsb(0);
glm::umulExtended(x, y, msb, lsb);
Error += glm::all(glm::equal(msb, glm::uvec4(0))) ? 0 : 1;
Error += glm::all(glm::equal(lsb, glm::uvec4(6))) ? 0 : 1;
}
return Error;
}
}//namespace umulExtended
namespace imulExtended
{
int test()
{
int Error(0);
{
int x = 2;
int y = 3;
int msb = 0;
int lsb = 0;
glm::imulExtended(x, y, msb, lsb);
Error += msb == 0 ? 0 : 1;
Error += lsb == 6 ? 0 : 1;
}
{
glm::ivec1 x(2);
glm::ivec1 y(3);
glm::ivec1 msb(0);
glm::ivec1 lsb(0);
glm::imulExtended(x, y, msb, lsb);
Error += glm::all(glm::equal(msb, glm::ivec1(0))) ? 0 : 1;
Error += glm::all(glm::equal(lsb, glm::ivec1(6))) ? 0 : 1;
}
{
glm::ivec2 x(2);
glm::ivec2 y(3);
glm::ivec2 msb(0);
glm::ivec2 lsb(0);
glm::imulExtended(x, y, msb, lsb);
Error += glm::all(glm::equal(msb, glm::ivec2(0))) ? 0 : 1;
Error += glm::all(glm::equal(lsb, glm::ivec2(6))) ? 0 : 1;
}
{
glm::ivec3 x(2);
glm::ivec3 y(3);
glm::ivec3 msb(0);
glm::ivec3 lsb(0);
glm::imulExtended(x, y, msb, lsb);
Error += glm::all(glm::equal(msb, glm::ivec3(0))) ? 0 : 1;
Error += glm::all(glm::equal(lsb, glm::ivec3(6))) ? 0 : 1;
}
{
glm::ivec4 x(2);
glm::ivec4 y(3);
glm::ivec4 msb(0);
glm::ivec4 lsb(0);
glm::imulExtended(x, y, msb, lsb);
Error += glm::all(glm::equal(msb, glm::ivec4(0))) ? 0 : 1;
Error += glm::all(glm::equal(lsb, glm::ivec4(6))) ? 0 : 1;
}
return Error;
}
}//namespace imulExtended
namespace bitCount
{
template <typename genType>
struct type
{
genType Value;
genType Return;
};
type<int> const DataI32[] =
{
{0x00000001, 1},
{0x00000003, 2},
{0x00000002, 1},
{0x7fffffff, 31},
{0x00000000, 0}
};
template <typename T>
inline int bitCount_if(T v)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_integer, "'bitCount' only accept integer values");
int Count(0);
for(T i = 0, n = static_cast<T>(sizeof(T) * 8); i < n; ++i)
{
if(v & static_cast<T>(1 << i))
++Count;
}
return Count;
}
template <typename T>
inline int bitCount_vec(T v)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_integer, "'bitCount' only accept integer values");
int Count(0);
for(T i = 0, n = static_cast<T>(sizeof(T) * 8); i < n; ++i)
{
Count += static_cast<int>((v >> i) & static_cast<T>(1));
}
return Count;
}
template <bool EXEC = false>
struct compute_bitfieldBitCountStep
{
template <typename T, glm::precision P, template <class, glm::precision> class vecType>
GLM_FUNC_QUALIFIER static vecType<T, P> call(vecType<T, P> const & v, T, T)
{
return v;
}
};
template <>
struct compute_bitfieldBitCountStep<true>
{
template <typename T, glm::precision P, template <class, glm::precision> class vecType>
GLM_FUNC_QUALIFIER static vecType<T, P> call(vecType<T, P> const & v, T Mask, T Shift)
{
return (v & Mask) + ((v >> Shift) & Mask);
}
};
template <typename T, glm::precision P, template <typename, glm::precision> class vecType>
GLM_FUNC_QUALIFIER vecType<int, P> bitCount_bitfield(vecType<T, P> const & v)
{
vecType<typename glm::detail::make_unsigned<T>::type, P> x(*reinterpret_cast<vecType<typename glm::detail::make_unsigned<T>::type, P> const *>(&v));
x = compute_bitfieldBitCountStep<sizeof(T) * 8 >= 2>::call(x, typename glm::detail::make_unsigned<T>::type(0x5555555555555555ull), typename glm::detail::make_unsigned<T>::type( 1));
x = compute_bitfieldBitCountStep<sizeof(T) * 8 >= 4>::call(x, typename glm::detail::make_unsigned<T>::type(0x3333333333333333ull), typename glm::detail::make_unsigned<T>::type( 2));
x = compute_bitfieldBitCountStep<sizeof(T) * 8 >= 8>::call(x, typename glm::detail::make_unsigned<T>::type(0x0F0F0F0F0F0F0F0Full), typename glm::detail::make_unsigned<T>::type( 4));
x = compute_bitfieldBitCountStep<sizeof(T) * 8 >= 16>::call(x, typename glm::detail::make_unsigned<T>::type(0x00FF00FF00FF00FFull), typename glm::detail::make_unsigned<T>::type( 8));
x = compute_bitfieldBitCountStep<sizeof(T) * 8 >= 32>::call(x, typename glm::detail::make_unsigned<T>::type(0x0000FFFF0000FFFFull), typename glm::detail::make_unsigned<T>::type(16));
x = compute_bitfieldBitCountStep<sizeof(T) * 8 >= 64>::call(x, typename glm::detail::make_unsigned<T>::type(0x00000000FFFFFFFFull), typename glm::detail::make_unsigned<T>::type(32));
return vecType<int, P>(x);
}
template <typename genType>
GLM_FUNC_QUALIFIER int bitCount_bitfield(genType x)
{
return bitCount_bitfield(glm::tvec1<genType, glm::defaultp>(x)).x;
}
int perf(std::size_t Size)
{
int Error(0);
std::vector<int> v;
v.resize(Size);
std::vector<glm::ivec4> w;
w.resize(Size);
std::clock_t TimestampsA = std::clock();
// bitCount - TimeIf
{
for(std::size_t i = 0, n = v.size(); i < n; ++i)
v[i] = bitCount_if(static_cast<int>(i));
}
std::clock_t TimestampsB = std::clock();
// bitCount - TimeVec
{
for(std::size_t i = 0, n = v.size(); i < n; ++i)
v[i] = bitCount_vec(i);
}
std::clock_t TimestampsC = std::clock();
// bitCount - TimeDefault
{
for(std::size_t i = 0, n = v.size(); i < n; ++i)
v[i] = glm::bitCount(i);
}
std::clock_t TimestampsD = std::clock();
// bitCount - TimeVec4
{
for(std::size_t i = 0, n = v.size(); i < n; ++i)
w[i] = glm::bitCount(glm::ivec4(static_cast<int>(i)));
}
std::clock_t TimestampsE = std::clock();
{
for(std::size_t i = 0, n = v.size(); i < n; ++i)
v[i] = bitCount_bitfield(static_cast<int>(i));
}
std::clock_t TimestampsF = std::clock();
std::printf("bitCount - TimeIf %d\n", static_cast<unsigned int>(TimestampsB - TimestampsA));
std::printf("bitCount - TimeVec %d\n", static_cast<unsigned int>(TimestampsC - TimestampsB));
std::printf("bitCount - TimeDefault %d\n", static_cast<unsigned int>(TimestampsD - TimestampsC));
std::printf("bitCount - TimeVec4 %d\n", static_cast<unsigned int>(TimestampsE - TimestampsD));
std::printf("bitCount - bitfield %d\n", static_cast<unsigned int>(TimestampsF - TimestampsE));
return Error;
}
int test()
{
int Error(0);
for(std::size_t i = 0, n = sizeof(DataI32) / sizeof(type<int>); i < n; ++i)
{
int ResultA = glm::bitCount(DataI32[i].Value);
int ResultB = bitCount_if(DataI32[i].Value);
int ResultC = bitCount_vec(DataI32[i].Value);
int ResultE = bitCount_bitfield(DataI32[i].Value);
Error += DataI32[i].Return == ResultA ? 0 : 1;
Error += DataI32[i].Return == ResultB ? 0 : 1;
Error += DataI32[i].Return == ResultC ? 0 : 1;
Error += DataI32[i].Return == ResultE ? 0 : 1;
assert(!Error);
}
return Error;
}
}//bitCount
int main()
{
int Error = 0;
Error += ::bitCount::test();
Error += ::bitfieldReverse::test();
Error += ::findMSB::test();
Error += ::findLSB::test();
Error += ::umulExtended::test();
Error += ::imulExtended::test();
Error += ::uaddCarry::test();
Error += ::usubBorrow::test();
Error += ::bitfieldInsert::test();
Error += ::bitfieldExtract::test();
# ifdef NDEBUG
std::size_t const Samples = 1000;
::bitCount::perf(Samples);
::bitfieldReverse::perf(Samples);
::findMSB::perf(Samples);
::findLSB::perf(Samples);
# endif
return Error;
}