| #include <glm/matrix.hpp> |
| #include <glm/gtc/matrix_transform.hpp> |
| #include <glm/gtc/ulp.hpp> |
| #include <glm/gtc/epsilon.hpp> |
| #include <vector> |
| #include <ctime> |
| #include <cstdio> |
| |
| using namespace glm; |
| |
| int test_matrixCompMult() |
| { |
| int Error(0); |
| |
| { |
| mat2 m(0, 1, 2, 3); |
| mat2 n = matrixCompMult(m, m); |
| Error += n == mat2(0, 1, 4, 9) ? 0 : 1; |
| } |
| |
| { |
| mat2x3 m(0, 1, 2, 3, 4, 5); |
| mat2x3 n = matrixCompMult(m, m); |
| Error += n == mat2x3(0, 1, 4, 9, 16, 25) ? 0 : 1; |
| } |
| |
| { |
| mat2x4 m(0, 1, 2, 3, 4, 5, 6, 7); |
| mat2x4 n = matrixCompMult(m, m); |
| Error += n == mat2x4(0, 1, 4, 9, 16, 25, 36, 49) ? 0 : 1; |
| } |
| |
| { |
| mat3 m(0, 1, 2, 3, 4, 5, 6, 7, 8); |
| mat3 n = matrixCompMult(m, m); |
| Error += n == mat3(0, 1, 4, 9, 16, 25, 36, 49, 64) ? 0 : 1; |
| } |
| |
| { |
| mat3x2 m(0, 1, 2, 3, 4, 5); |
| mat3x2 n = matrixCompMult(m, m); |
| Error += n == mat3x2(0, 1, 4, 9, 16, 25) ? 0 : 1; |
| } |
| |
| { |
| mat3x4 m(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11); |
| mat3x4 n = matrixCompMult(m, m); |
| Error += n == mat3x4(0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121) ? 0 : 1; |
| } |
| |
| { |
| mat4 m(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15); |
| mat4 n = matrixCompMult(m, m); |
| Error += n == mat4(0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225) ? 0 : 1; |
| } |
| |
| { |
| mat4x2 m(0, 1, 2, 3, 4, 5, 6, 7); |
| mat4x2 n = matrixCompMult(m, m); |
| Error += n == mat4x2(0, 1, 4, 9, 16, 25, 36, 49) ? 0 : 1; |
| } |
| |
| { |
| mat4x3 m(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11); |
| mat4x3 n = matrixCompMult(m, m); |
| Error += n == mat4x3(0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121) ? 0 : 1; |
| } |
| |
| return Error; |
| } |
| |
| int test_outerProduct() |
| { |
| { glm::mat2 m = glm::outerProduct(glm::vec2(1.0f), glm::vec2(1.0f)); } |
| { glm::mat3 m = glm::outerProduct(glm::vec3(1.0f), glm::vec3(1.0f)); } |
| { glm::mat4 m = glm::outerProduct(glm::vec4(1.0f), glm::vec4(1.0f)); } |
| |
| { glm::mat2x3 m = glm::outerProduct(glm::vec3(1.0f), glm::vec2(1.0f)); } |
| { glm::mat2x4 m = glm::outerProduct(glm::vec4(1.0f), glm::vec2(1.0f)); } |
| |
| { glm::mat3x2 m = glm::outerProduct(glm::vec2(1.0f), glm::vec3(1.0f)); } |
| { glm::mat3x4 m = glm::outerProduct(glm::vec4(1.0f), glm::vec3(1.0f)); } |
| |
| { glm::mat4x2 m = glm::outerProduct(glm::vec2(1.0f), glm::vec4(1.0f)); } |
| { glm::mat4x3 m = glm::outerProduct(glm::vec3(1.0f), glm::vec4(1.0f)); } |
| |
| return 0; |
| } |
| |
| int test_transpose() |
| { |
| int Error(0); |
| |
| { |
| mat2 m(0, 1, 2, 3); |
| mat2 t = transpose(m); |
| Error += t == mat2(0, 2, 1, 3) ? 0 : 1; |
| } |
| |
| { |
| mat2x3 m(0, 1, 2, 3, 4, 5); |
| mat3x2 t = transpose(m); |
| Error += t == mat3x2(0, 3, 1, 4, 2, 5) ? 0 : 1; |
| } |
| |
| { |
| mat2x4 m(0, 1, 2, 3, 4, 5, 6, 7); |
| mat4x2 t = transpose(m); |
| Error += t == mat4x2(0, 4, 1, 5, 2, 6, 3, 7) ? 0 : 1; |
| } |
| |
| { |
| mat3 m(0, 1, 2, 3, 4, 5, 6, 7, 8); |
| mat3 t = transpose(m); |
| Error += t == mat3(0, 3, 6, 1, 4, 7, 2, 5, 8) ? 0 : 1; |
| } |
| |
| { |
| mat3x2 m(0, 1, 2, 3, 4, 5); |
| mat2x3 t = transpose(m); |
| Error += t == mat2x3(0, 2, 4, 1, 3, 5) ? 0 : 1; |
| } |
| |
| { |
| mat3x4 m(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11); |
| mat4x3 t = transpose(m); |
| Error += t == mat4x3(0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11) ? 0 : 1; |
| } |
| |
| { |
| mat4 m(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15); |
| mat4 t = transpose(m); |
| Error += t == mat4(0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15) ? 0 : 1; |
| } |
| |
| { |
| mat4x2 m(0, 1, 2, 3, 4, 5, 6, 7); |
| mat2x4 t = transpose(m); |
| Error += t == mat2x4(0, 2, 4, 6, 1, 3, 5, 7) ? 0 : 1; |
| } |
| |
| { |
| mat4x3 m(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11); |
| mat3x4 t = transpose(m); |
| Error += t == mat3x4(0, 3, 6, 9, 1, 4, 7, 10, 2, 5, 8, 11) ? 0 : 1; |
| } |
| |
| return Error; |
| } |
| |
| int test_determinant() |
| { |
| |
| |
| return 0; |
| } |
| |
| int test_inverse() |
| { |
| int Failed(0); |
| |
| glm::mat4x4 A4x4( |
| glm::vec4(1, 0, 1, 0), |
| glm::vec4(0, 1, 0, 0), |
| glm::vec4(0, 0, 1, 0), |
| glm::vec4(0, 0, 0, 1)); |
| glm::mat4x4 B4x4 = inverse(A4x4); |
| glm::mat4x4 I4x4 = A4x4 * B4x4; |
| Failed += I4x4 == glm::mat4x4(1) ? 0 : 1; |
| |
| glm::mat3x3 A3x3( |
| glm::vec3(1, 0, 1), |
| glm::vec3(0, 1, 0), |
| glm::vec3(0, 0, 1)); |
| glm::mat3x3 B3x3 = glm::inverse(A3x3); |
| glm::mat3x3 I3x3 = A3x3 * B3x3; |
| Failed += I3x3 == glm::mat3x3(1) ? 0 : 1; |
| |
| glm::mat2x2 A2x2( |
| glm::vec2(1, 1), |
| glm::vec2(0, 1)); |
| glm::mat2x2 B2x2 = glm::inverse(A2x2); |
| glm::mat2x2 I2x2 = A2x2 * B2x2; |
| Failed += I2x2 == glm::mat2x2(1) ? 0 : 1; |
| |
| return Failed; |
| } |
| |
| int test_inverse_simd() |
| { |
| int Error = 0; |
| |
| glm::mat4x4 const Identity(1); |
| |
| glm::mat4x4 const A4x4( |
| glm::vec4(1, 0, 1, 0), |
| glm::vec4(0, 1, 0, 0), |
| glm::vec4(0, 0, 1, 0), |
| glm::vec4(0, 0, 0, 1)); |
| glm::mat4x4 const B4x4 = glm::inverse(A4x4); |
| glm::mat4x4 const I4x4 = A4x4 * B4x4; |
| |
| Error += glm::all(glm::epsilonEqual(I4x4[0], Identity[0], 0.001f)) ? 0 : 1; |
| Error += glm::all(glm::epsilonEqual(I4x4[1], Identity[1], 0.001f)) ? 0 : 1; |
| Error += glm::all(glm::epsilonEqual(I4x4[2], Identity[2], 0.001f)) ? 0 : 1; |
| Error += glm::all(glm::epsilonEqual(I4x4[3], Identity[3], 0.001f)) ? 0 : 1; |
| |
| return Error; |
| } |
| |
| template <typename VEC3, typename MAT4> |
| int test_inverse_perf(std::size_t Count, std::size_t Instance, char const * Message) |
| { |
| std::vector<MAT4> TestInputs; |
| TestInputs.resize(Count); |
| std::vector<MAT4> TestOutputs; |
| TestOutputs.resize(TestInputs.size()); |
| |
| VEC3 Axis(glm::normalize(VEC3(1.0f, 2.0f, 3.0f))); |
| |
| for(std::size_t i = 0; i < TestInputs.size(); ++i) |
| { |
| typename MAT4::value_type f = static_cast<typename MAT4::value_type>(i + Instance) * typename MAT4::value_type(0.1) + typename MAT4::value_type(0.1); |
| TestInputs[i] = glm::rotate(glm::translate(MAT4(1), Axis * f), f, Axis); |
| //TestInputs[i] = glm::translate(MAT4(1), Axis * f); |
| } |
| |
| std::clock_t StartTime = std::clock(); |
| |
| for(std::size_t i = 0; i < TestInputs.size(); ++i) |
| TestOutputs[i] = glm::inverse(TestInputs[i]); |
| |
| std::clock_t EndTime = std::clock(); |
| |
| for(std::size_t i = 0; i < TestInputs.size(); ++i) |
| TestOutputs[i] = TestOutputs[i] * TestInputs[i]; |
| |
| typename MAT4::value_type Diff(0); |
| for(std::size_t Entry = 0; Entry < TestOutputs.size(); ++Entry) |
| { |
| MAT4 i(1.0); |
| MAT4 m(TestOutputs[Entry]); |
| for(glm::length_t y = 0; y < m.length(); ++y) |
| for(glm::length_t x = 0; x < m[y].length(); ++x) |
| Diff = glm::max(m[y][x], i[y][x]); |
| } |
| |
| //glm::uint Ulp = 0; |
| //Ulp = glm::max(glm::float_distance(*Dst, *Src), Ulp); |
| |
| printf("inverse<%s>(%f): %lu\n", Message, Diff, EndTime - StartTime); |
| |
| return 0; |
| } |
| |
| int main() |
| { |
| int Error(0); |
| Error += test_matrixCompMult(); |
| Error += test_outerProduct(); |
| Error += test_transpose(); |
| Error += test_determinant(); |
| Error += test_inverse(); |
| Error += test_inverse_simd(); |
| |
| # ifdef NDEBUG |
| std::size_t const Samples(1000); |
| for(std::size_t i = 0; i < 1; ++i) |
| { |
| Error += test_inverse_perf<glm::vec3, glm::mat4>(Samples, i, "mat4"); |
| Error += test_inverse_perf<glm::dvec3, glm::dmat4>(Samples, i, "dmat4"); |
| } |
| # endif//NDEBUG |
| |
| return Error; |
| } |
| |