| /* |
| * QR Code generator library (C) |
| * |
| * Copyright (c) Project Nayuki. (MIT License) |
| * https://www.nayuki.io/page/qr-code-generator-library |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy of |
| * this software and associated documentation files (the "Software"), to deal in |
| * the Software without restriction, including without limitation the rights to |
| * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of |
| * the Software, and to permit persons to whom the Software is furnished to do so, |
| * subject to the following conditions: |
| * - The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * - The Software is provided "as is", without warranty of any kind, express or |
| * implied, including but not limited to the warranties of merchantability, |
| * fitness for a particular purpose and noninfringement. In no event shall the |
| * authors or copyright holders be liable for any claim, damages or other |
| * liability, whether in an action of contract, tort or otherwise, arising from, |
| * out of or in connection with the Software or the use or other dealings in the |
| * Software. |
| */ |
| |
| #include <assert.h> |
| #include <limits.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include "qrcodegen.h" |
| |
| #ifndef QRCODEGEN_TEST |
| #define testable static // Keep functions private |
| #else |
| // Expose private functions |
| #ifndef __cplusplus |
| #define testable |
| #else |
| // Needed for const variables because they are treated as implicitly 'static' in C++ |
| #define testable extern |
| #endif |
| #endif |
| |
| |
| /*---- Forward declarations for private functions ----*/ |
| |
| // Regarding all public and private functions defined in this source file: |
| // - They require all pointer/array arguments to be not null. |
| // - They only read input scalar/array arguments, write to output pointer/array |
| // arguments, and return scalar values; they are "pure" functions. |
| // - They don't read mutable global variables or write to any global variables. |
| // - They don't perform I/O, read the clock, print to console, etc. |
| // - They allocate a small and constant amount of stack memory. |
| // - They don't allocate or free any memory on the heap. |
| // - They don't recurse or mutually recurse. All the code |
| // could be inlined into the top-level public functions. |
| // - They run in at most quadratic time with respect to input arguments. |
| // Most functions run in linear time, and some in constant time. |
| // There are no unbounded loops or non-obvious termination conditions. |
| // - They are completely thread-safe if the caller does not give the |
| // same writable buffer to concurrent calls to these functions. |
| |
| testable void appendBitsToBuffer(unsigned int val, int numBits, uint8_t buffer[], int *bitLen); |
| |
| testable void appendErrorCorrection(uint8_t data[], int version, enum qrcodegen_Ecc ecl, uint8_t result[]); |
| testable int getNumDataCodewords(int version, enum qrcodegen_Ecc ecl); |
| testable int getNumRawDataModules(int version); |
| |
| testable void calcReedSolomonGenerator(int degree, uint8_t result[]); |
| testable void calcReedSolomonRemainder(const uint8_t data[], int dataLen, |
| const uint8_t generator[], int degree, uint8_t result[]); |
| testable uint8_t finiteFieldMultiply(uint8_t x, uint8_t y); |
| |
| testable void initializeFunctionModules(int version, uint8_t qrcode[]); |
| static void drawWhiteFunctionModules(uint8_t qrcode[], int version); |
| static void drawFormatBits(enum qrcodegen_Ecc ecl, enum qrcodegen_Mask mask, uint8_t qrcode[]); |
| testable int getAlignmentPatternPositions(int version, uint8_t result[7]); |
| static void fillRectangle(int left, int top, int width, int height, uint8_t qrcode[]); |
| |
| static void drawCodewords(const uint8_t data[], int dataLen, uint8_t qrcode[]); |
| static void applyMask(const uint8_t functionModules[], uint8_t qrcode[], enum qrcodegen_Mask mask); |
| static long getPenaltyScore(const uint8_t qrcode[]); |
| |
| testable bool getModule(const uint8_t qrcode[], int x, int y); |
| testable void setModule(uint8_t qrcode[], int x, int y, bool isBlack); |
| testable void setModuleBounded(uint8_t qrcode[], int x, int y, bool isBlack); |
| |
| testable int calcSegmentBitLength(enum qrcodegen_Mode mode, size_t numChars); |
| testable int getTotalBits(const struct qrcodegen_Segment segs[], size_t len, int version); |
| static int numCharCountBits(enum qrcodegen_Mode mode, int version); |
| |
| |
| |
| /*---- Private tables of constants ----*/ |
| |
| // For checking text and encoding segments. |
| static const char *ALPHANUMERIC_CHARSET = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ $%*+-./:"; |
| |
| // For generating error correction codes. |
| testable const int8_t ECC_CODEWORDS_PER_BLOCK[4][41] = { |
| // Version: (note that index 0 is for padding, and is set to an illegal value) |
| //0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 Error correction level |
| {-1, 7, 10, 15, 20, 26, 18, 20, 24, 30, 18, 20, 24, 26, 30, 22, 24, 28, 30, 28, 28, 28, 28, 30, 30, 26, 28, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30}, // Low |
| {-1, 10, 16, 26, 18, 24, 16, 18, 22, 22, 26, 30, 22, 22, 24, 24, 28, 28, 26, 26, 26, 26, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28}, // Medium |
| {-1, 13, 22, 18, 26, 18, 24, 18, 22, 20, 24, 28, 26, 24, 20, 30, 24, 28, 28, 26, 30, 28, 30, 30, 30, 30, 28, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30}, // Quartile |
| {-1, 17, 28, 22, 16, 22, 28, 26, 26, 24, 28, 24, 28, 22, 24, 24, 30, 28, 28, 26, 28, 30, 24, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30}, // High |
| }; |
| |
| // For generating error correction codes. |
| testable const int8_t NUM_ERROR_CORRECTION_BLOCKS[4][41] = { |
| // Version: (note that index 0 is for padding, and is set to an illegal value) |
| //0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 Error correction level |
| {-1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 4, 4, 4, 4, 4, 6, 6, 6, 6, 7, 8, 8, 9, 9, 10, 12, 12, 12, 13, 14, 15, 16, 17, 18, 19, 19, 20, 21, 22, 24, 25}, // Low |
| {-1, 1, 1, 1, 2, 2, 4, 4, 4, 5, 5, 5, 8, 9, 9, 10, 10, 11, 13, 14, 16, 17, 17, 18, 20, 21, 23, 25, 26, 28, 29, 31, 33, 35, 37, 38, 40, 43, 45, 47, 49}, // Medium |
| {-1, 1, 1, 2, 2, 4, 4, 6, 6, 8, 8, 8, 10, 12, 16, 12, 17, 16, 18, 21, 20, 23, 23, 25, 27, 29, 34, 34, 35, 38, 40, 43, 45, 48, 51, 53, 56, 59, 62, 65, 68}, // Quartile |
| {-1, 1, 1, 2, 4, 4, 4, 5, 6, 8, 8, 11, 11, 16, 16, 18, 16, 19, 21, 25, 25, 25, 34, 30, 32, 35, 37, 40, 42, 45, 48, 51, 54, 57, 60, 63, 66, 70, 74, 77, 81}, // High |
| }; |
| |
| // For automatic mask pattern selection. |
| static const int PENALTY_N1 = 3; |
| static const int PENALTY_N2 = 3; |
| static const int PENALTY_N3 = 40; |
| static const int PENALTY_N4 = 10; |
| |
| |
| |
| /*---- High-level QR Code encoding functions ----*/ |
| |
| // Public function - see documentation comment in header file. |
| bool qrcodegen_encodeText(const char *text, uint8_t tempBuffer[], uint8_t qrcode[], |
| enum qrcodegen_Ecc ecl, int minVersion, int maxVersion, enum qrcodegen_Mask mask, bool boostEcl) { |
| |
| size_t textLen = strlen(text); |
| if (textLen == 0) |
| return qrcodegen_encodeSegmentsAdvanced(NULL, 0, ecl, minVersion, maxVersion, mask, boostEcl, tempBuffer, qrcode); |
| size_t bufLen = qrcodegen_BUFFER_LEN_FOR_VERSION(maxVersion); |
| |
| struct qrcodegen_Segment seg; |
| if (qrcodegen_isNumeric(text)) { |
| if (qrcodegen_calcSegmentBufferSize(qrcodegen_Mode_NUMERIC, textLen) > bufLen) |
| goto fail; |
| seg = qrcodegen_makeNumeric(text, tempBuffer); |
| } else if (qrcodegen_isAlphanumeric(text)) { |
| if (qrcodegen_calcSegmentBufferSize(qrcodegen_Mode_ALPHANUMERIC, textLen) > bufLen) |
| goto fail; |
| seg = qrcodegen_makeAlphanumeric(text, tempBuffer); |
| } else { |
| if (textLen > bufLen) |
| goto fail; |
| for (size_t i = 0; i < textLen; i++) |
| tempBuffer[i] = (uint8_t)text[i]; |
| seg.mode = qrcodegen_Mode_BYTE; |
| seg.bitLength = calcSegmentBitLength(seg.mode, textLen); |
| if (seg.bitLength == -1) |
| goto fail; |
| seg.numChars = (int)textLen; |
| seg.data = tempBuffer; |
| } |
| return qrcodegen_encodeSegmentsAdvanced(&seg, 1, ecl, minVersion, maxVersion, mask, boostEcl, tempBuffer, qrcode); |
| |
| fail: |
| qrcode[0] = 0; // Set size to invalid value for safety |
| return false; |
| } |
| |
| |
| // Public function - see documentation comment in header file. |
| bool qrcodegen_encodeBinary(uint8_t dataAndTemp[], size_t dataLen, uint8_t qrcode[], |
| enum qrcodegen_Ecc ecl, int minVersion, int maxVersion, enum qrcodegen_Mask mask, bool boostEcl) { |
| |
| struct qrcodegen_Segment seg; |
| seg.mode = qrcodegen_Mode_BYTE; |
| seg.bitLength = calcSegmentBitLength(seg.mode, dataLen); |
| if (seg.bitLength == -1) { |
| qrcode[0] = 0; // Set size to invalid value for safety |
| return false; |
| } |
| seg.numChars = (int)dataLen; |
| seg.data = dataAndTemp; |
| return qrcodegen_encodeSegmentsAdvanced(&seg, 1, ecl, minVersion, maxVersion, mask, boostEcl, dataAndTemp, qrcode); |
| } |
| |
| |
| // Appends the given sequence of bits to the given byte-based bit buffer, increasing the bit length. |
| testable void appendBitsToBuffer(unsigned int val, int numBits, uint8_t buffer[], int *bitLen) { |
| assert(0 <= numBits && numBits <= 16 && (unsigned long)val >> numBits == 0); |
| for (int i = numBits - 1; i >= 0; i--, (*bitLen)++) |
| buffer[*bitLen >> 3] |= ((val >> i) & 1) << (7 - (*bitLen & 7)); |
| } |
| |
| |
| |
| /*---- Error correction code generation functions ----*/ |
| |
| // Appends error correction bytes to each block of the given data array, then interleaves bytes |
| // from the blocks and stores them in the result array. data[0 : rawCodewords - totalEcc] contains |
| // the input data. data[rawCodewords - totalEcc : rawCodewords] is used as a temporary work area |
| // and will be clobbered by this function. The final answer is stored in result[0 : rawCodewords]. |
| testable void appendErrorCorrection(uint8_t data[], int version, enum qrcodegen_Ecc ecl, uint8_t result[]) { |
| // Calculate parameter numbers |
| assert(0 <= (int)ecl && (int)ecl < 4 && qrcodegen_VERSION_MIN <= version && version <= qrcodegen_VERSION_MAX); |
| int numBlocks = NUM_ERROR_CORRECTION_BLOCKS[(int)ecl][version]; |
| int blockEccLen = ECC_CODEWORDS_PER_BLOCK[(int)ecl][version]; |
| int rawCodewords = getNumRawDataModules(version) / 8; |
| int dataLen = rawCodewords - blockEccLen * numBlocks; |
| int numShortBlocks = numBlocks - rawCodewords % numBlocks; |
| int shortBlockDataLen = rawCodewords / numBlocks - blockEccLen; |
| |
| // Split data into blocks and append ECC after all data |
| uint8_t generator[30]; |
| calcReedSolomonGenerator(blockEccLen, generator); |
| for (int i = 0, j = dataLen, k = 0; i < numBlocks; i++) { |
| int blockLen = shortBlockDataLen; |
| if (i >= numShortBlocks) |
| blockLen++; |
| calcReedSolomonRemainder(&data[k], blockLen, generator, blockEccLen, &data[j]); |
| j += blockEccLen; |
| k += blockLen; |
| } |
| |
| // Interleave (not concatenate) the bytes from every block into a single sequence |
| for (int i = 0, k = 0; i < numBlocks; i++) { |
| for (int j = 0, l = i; j < shortBlockDataLen; j++, k++, l += numBlocks) |
| result[l] = data[k]; |
| if (i >= numShortBlocks) |
| k++; |
| } |
| for (int i = numShortBlocks, k = (numShortBlocks + 1) * shortBlockDataLen, l = numBlocks * shortBlockDataLen; |
| i < numBlocks; i++, k += shortBlockDataLen + 1, l++) |
| result[l] = data[k]; |
| for (int i = 0, k = dataLen; i < numBlocks; i++) { |
| for (int j = 0, l = dataLen + i; j < blockEccLen; j++, k++, l += numBlocks) |
| result[l] = data[k]; |
| } |
| } |
| |
| |
| // Returns the number of 8-bit codewords that can be used for storing data (not ECC), |
| // for the given version number and error correction level. The result is in the range [9, 2956]. |
| testable int getNumDataCodewords(int version, enum qrcodegen_Ecc ecl) { |
| int v = version, e = (int)ecl; |
| assert(0 <= e && e < 4 && qrcodegen_VERSION_MIN <= v && v <= qrcodegen_VERSION_MAX); |
| return getNumRawDataModules(v) / 8 - ECC_CODEWORDS_PER_BLOCK[e][v] * NUM_ERROR_CORRECTION_BLOCKS[e][v]; |
| } |
| |
| |
| // Returns the number of data bits that can be stored in a QR Code of the given version number, after |
| // all function modules are excluded. This includes remainder bits, so it might not be a multiple of 8. |
| // The result is in the range [208, 29648]. This could be implemented as a 40-entry lookup table. |
| testable int getNumRawDataModules(int version) { |
| assert(qrcodegen_VERSION_MIN <= version && version <= qrcodegen_VERSION_MAX); |
| int result = (16 * version + 128) * version + 64; |
| if (version >= 2) { |
| int numAlign = version / 7 + 2; |
| result -= (25 * numAlign - 10) * numAlign - 55; |
| if (version >= 7) |
| result -= 18 * 2; // Subtract version information |
| } |
| return result; |
| } |
| |
| |
| |
| /*---- Reed-Solomon ECC generator functions ----*/ |
| |
| // Calculates the Reed-Solomon generator polynomial of the given degree, storing in result[0 : degree]. |
| testable void calcReedSolomonGenerator(int degree, uint8_t result[]) { |
| // Start with the monomial x^0 |
| assert(1 <= degree && degree <= 30); |
| memset(result, 0, degree * sizeof(result[0])); |
| result[degree - 1] = 1; |
| |
| // Compute the product polynomial (x - r^0) * (x - r^1) * (x - r^2) * ... * (x - r^{degree-1}), |
| // drop the highest term, and store the rest of the coefficients in order of descending powers. |
| // Note that r = 0x02, which is a generator element of this field GF(2^8/0x11D). |
| uint8_t root = 1; |
| for (int i = 0; i < degree; i++) { |
| // Multiply the current product by (x - r^i) |
| for (int j = 0; j < degree; j++) { |
| result[j] = finiteFieldMultiply(result[j], root); |
| if (j + 1 < degree) |
| result[j] ^= result[j + 1]; |
| } |
| root = finiteFieldMultiply(root, 0x02); |
| } |
| } |
| |
| |
| // Calculates the remainder of the polynomial data[0 : dataLen] when divided by the generator[0 : degree], where all |
| // polynomials are in big endian and the generator has an implicit leading 1 term, storing the result in result[0 : degree]. |
| testable void calcReedSolomonRemainder(const uint8_t data[], int dataLen, |
| const uint8_t generator[], int degree, uint8_t result[]) { |
| |
| // Perform polynomial division |
| assert(1 <= degree && degree <= 30); |
| memset(result, 0, degree * sizeof(result[0])); |
| for (int i = 0; i < dataLen; i++) { |
| uint8_t factor = data[i] ^ result[0]; |
| memmove(&result[0], &result[1], (degree - 1) * sizeof(result[0])); |
| result[degree - 1] = 0; |
| for (int j = 0; j < degree; j++) |
| result[j] ^= finiteFieldMultiply(generator[j], factor); |
| } |
| } |
| |
| |
| // Returns the product of the two given field elements modulo GF(2^8/0x11D). |
| // All inputs are valid. This could be implemented as a 256*256 lookup table. |
| testable uint8_t finiteFieldMultiply(uint8_t x, uint8_t y) { |
| // Russian peasant multiplication |
| uint8_t z = 0; |
| for (int i = 7; i >= 0; i--) { |
| z = (z << 1) ^ ((z >> 7) * 0x11D); |
| z ^= ((y >> i) & 1) * x; |
| } |
| return z; |
| } |
| |
| |
| |
| /*---- Drawing function modules ----*/ |
| |
| // Clears the given QR Code grid with white modules for the given |
| // version's size, then marks every function module as black. |
| testable void initializeFunctionModules(int version, uint8_t qrcode[]) { |
| // Initialize QR Code |
| int qrsize = version * 4 + 17; |
| memset(qrcode, 0, ((qrsize * qrsize + 7) / 8 + 1) * sizeof(qrcode[0])); |
| qrcode[0] = (uint8_t)qrsize; |
| |
| // Fill horizontal and vertical timing patterns |
| fillRectangle(6, 0, 1, qrsize, qrcode); |
| fillRectangle(0, 6, qrsize, 1, qrcode); |
| |
| // Fill 3 finder patterns (all corners except bottom right) and format bits |
| fillRectangle(0, 0, 9, 9, qrcode); |
| fillRectangle(qrsize - 8, 0, 8, 9, qrcode); |
| fillRectangle(0, qrsize - 8, 9, 8, qrcode); |
| |
| // Fill numerous alignment patterns |
| uint8_t alignPatPos[7] = {0}; |
| int numAlign = getAlignmentPatternPositions(version, alignPatPos); |
| for (int i = 0; i < numAlign; i++) { |
| for (int j = 0; j < numAlign; j++) { |
| if ((i == 0 && j == 0) || (i == 0 && j == numAlign - 1) || (i == numAlign - 1 && j == 0)) |
| continue; // Skip the three finder corners |
| else |
| fillRectangle(alignPatPos[i] - 2, alignPatPos[j] - 2, 5, 5, qrcode); |
| } |
| } |
| |
| // Fill version blocks |
| if (version >= 7) { |
| fillRectangle(qrsize - 11, 0, 3, 6, qrcode); |
| fillRectangle(0, qrsize - 11, 6, 3, qrcode); |
| } |
| } |
| |
| |
| // Draws white function modules and possibly some black modules onto the given QR Code, without changing |
| // non-function modules. This does not draw the format bits. This requires all function modules to be previously |
| // marked black (namely by initializeFunctionModules()), because this may skip redrawing black function modules. |
| static void drawWhiteFunctionModules(uint8_t qrcode[], int version) { |
| // Draw horizontal and vertical timing patterns |
| int qrsize = qrcodegen_getSize(qrcode); |
| for (int i = 7; i < qrsize - 7; i += 2) { |
| setModule(qrcode, 6, i, false); |
| setModule(qrcode, i, 6, false); |
| } |
| |
| // Draw 3 finder patterns (all corners except bottom right; overwrites some timing modules) |
| for (int i = -4; i <= 4; i++) { |
| for (int j = -4; j <= 4; j++) { |
| int dist = abs(i); |
| if (abs(j) > dist) |
| dist = abs(j); |
| if (dist == 2 || dist == 4) { |
| setModuleBounded(qrcode, 3 + j, 3 + i, false); |
| setModuleBounded(qrcode, qrsize - 4 + j, 3 + i, false); |
| setModuleBounded(qrcode, 3 + j, qrsize - 4 + i, false); |
| } |
| } |
| } |
| |
| // Draw numerous alignment patterns |
| uint8_t alignPatPos[7] = {0}; |
| int numAlign = getAlignmentPatternPositions(version, alignPatPos); |
| for (int i = 0; i < numAlign; i++) { |
| for (int j = 0; j < numAlign; j++) { |
| if ((i == 0 && j == 0) || (i == 0 && j == numAlign - 1) || (i == numAlign - 1 && j == 0)) |
| continue; // Skip the three finder corners |
| else { |
| for (int k = -1; k <= 1; k++) { |
| for (int l = -1; l <= 1; l++) |
| setModule(qrcode, alignPatPos[i] + l, alignPatPos[j] + k, k == 0 && l == 0); |
| } |
| } |
| } |
| } |
| |
| // Draw version blocks |
| if (version >= 7) { |
| // Calculate error correction code and pack bits |
| int rem = version; // version is uint6, in the range [7, 40] |
| for (int i = 0; i < 12; i++) |
| rem = (rem << 1) ^ ((rem >> 11) * 0x1F25); |
| long data = (long)version << 12 | rem; // uint18 |
| assert(data >> 18 == 0); |
| |
| // Draw two copies |
| for (int i = 0; i < 6; i++) { |
| for (int j = 0; j < 3; j++) { |
| int k = qrsize - 11 + j; |
| setModule(qrcode, k, i, (data & 1) != 0); |
| setModule(qrcode, i, k, (data & 1) != 0); |
| data >>= 1; |
| } |
| } |
| } |
| } |
| |
| |
| // Draws two copies of the format bits (with its own error correction code) based |
| // on the given mask and error correction level. This always draws all modules of |
| // the format bits, unlike drawWhiteFunctionModules() which might skip black modules. |
| static void drawFormatBits(enum qrcodegen_Ecc ecl, enum qrcodegen_Mask mask, uint8_t qrcode[]) { |
| // Calculate error correction code and pack bits |
| assert(0 <= (int)mask && (int)mask <= 7); |
| int data = -1; // Dummy value |
| switch (ecl) { |
| case qrcodegen_Ecc_LOW : data = 1; break; |
| case qrcodegen_Ecc_MEDIUM : data = 0; break; |
| case qrcodegen_Ecc_QUARTILE: data = 3; break; |
| case qrcodegen_Ecc_HIGH : data = 2; break; |
| default: assert(false); |
| } |
| data = data << 3 | (int)mask; // ecl-derived value is uint2, mask is uint3 |
| int rem = data; |
| for (int i = 0; i < 10; i++) |
| rem = (rem << 1) ^ ((rem >> 9) * 0x537); |
| data = data << 10 | rem; |
| data ^= 0x5412; // uint15 |
| assert(data >> 15 == 0); |
| |
| // Draw first copy |
| for (int i = 0; i <= 5; i++) |
| setModule(qrcode, 8, i, ((data >> i) & 1) != 0); |
| setModule(qrcode, 8, 7, ((data >> 6) & 1) != 0); |
| setModule(qrcode, 8, 8, ((data >> 7) & 1) != 0); |
| setModule(qrcode, 7, 8, ((data >> 8) & 1) != 0); |
| for (int i = 9; i < 15; i++) |
| setModule(qrcode, 14 - i, 8, ((data >> i) & 1) != 0); |
| |
| // Draw second copy |
| int qrsize = qrcodegen_getSize(qrcode); |
| for (int i = 0; i <= 7; i++) |
| setModule(qrcode, qrsize - 1 - i, 8, ((data >> i) & 1) != 0); |
| for (int i = 8; i < 15; i++) |
| setModule(qrcode, 8, qrsize - 15 + i, ((data >> i) & 1) != 0); |
| setModule(qrcode, 8, qrsize - 8, true); |
| } |
| |
| |
| // Calculates the positions of alignment patterns in ascending order for the given version number, |
| // storing them to the given array and returning an array length in the range [0, 7]. |
| testable int getAlignmentPatternPositions(int version, uint8_t result[7]) { |
| if (version == 1) |
| return 0; |
| int numAlign = version / 7 + 2; |
| int step; |
| if (version != 32) { |
| // ceil((size - 13) / (2*numAlign - 2)) * 2 |
| step = (version * 4 + numAlign * 2 + 1) / (2 * numAlign - 2) * 2; |
| } else // C-C-C-Combo breaker! |
| step = 26; |
| for (int i = numAlign - 1, pos = version * 4 + 10; i >= 1; i--, pos -= step) |
| result[i] = pos; |
| result[0] = 6; |
| return numAlign; |
| } |
| |
| |
| // Sets every pixel in the range [left : left + width] * [top : top + height] to black. |
| static void fillRectangle(int left, int top, int width, int height, uint8_t qrcode[]) { |
| for (int dy = 0; dy < height; dy++) { |
| for (int dx = 0; dx < width; dx++) |
| setModule(qrcode, left + dx, top + dy, true); |
| } |
| } |
| |
| |
| |
| /*---- Drawing data modules and masking ----*/ |
| |
| // Draws the raw codewords (including data and ECC) onto the given QR Code. This requires the initial state of |
| // the QR Code to be black at function modules and white at codeword modules (including unused remainder bits). |
| static void drawCodewords(const uint8_t data[], int dataLen, uint8_t qrcode[]) { |
| int qrsize = qrcodegen_getSize(qrcode); |
| int i = 0; // Bit index into the data |
| // Do the funny zigzag scan |
| for (int right = qrsize - 1; right >= 1; right -= 2) { // Index of right column in each column pair |
| if (right == 6) |
| right = 5; |
| for (int vert = 0; vert < qrsize; vert++) { // Vertical counter |
| for (int j = 0; j < 2; j++) { |
| int x = right - j; // Actual x coordinate |
| bool upward = ((right + 1) & 2) == 0; |
| int y = upward ? qrsize - 1 - vert : vert; // Actual y coordinate |
| if (!getModule(qrcode, x, y) && i < dataLen * 8) { |
| bool black = ((data[i >> 3] >> (7 - (i & 7))) & 1) != 0; |
| setModule(qrcode, x, y, black); |
| i++; |
| } |
| // If there are any remainder bits (0 to 7), they are already |
| // set to 0/false/white when the grid of modules was initialized |
| } |
| } |
| } |
| assert(i == dataLen * 8); |
| } |
| |
| |
| // XORs the data modules in this QR Code with the given mask pattern. Due to XOR's mathematical |
| // properties, calling applyMask(..., m) twice with the same value is equivalent to no change at all. |
| // This means it is possible to apply a mask, undo it, and try another mask. Note that a final |
| // well-formed QR Code symbol needs exactly one mask applied (not zero, not two, etc.). |
| static void applyMask(const uint8_t functionModules[], uint8_t qrcode[], enum qrcodegen_Mask mask) { |
| assert(0 <= (int)mask && (int)mask <= 7); // Disallows qrcodegen_Mask_AUTO |
| int qrsize = qrcodegen_getSize(qrcode); |
| for (int y = 0; y < qrsize; y++) { |
| for (int x = 0; x < qrsize; x++) { |
| if (getModule(functionModules, x, y)) |
| continue; |
| bool invert = false; // Dummy value |
| switch ((int)mask) { |
| case 0: invert = (x + y) % 2 == 0; break; |
| case 1: invert = y % 2 == 0; break; |
| case 2: invert = x % 3 == 0; break; |
| case 3: invert = (x + y) % 3 == 0; break; |
| case 4: invert = (x / 3 + y / 2) % 2 == 0; break; |
| case 5: invert = x * y % 2 + x * y % 3 == 0; break; |
| case 6: invert = (x * y % 2 + x * y % 3) % 2 == 0; break; |
| case 7: invert = ((x + y) % 2 + x * y % 3) % 2 == 0; break; |
| default: assert(false); |
| } |
| bool val = getModule(qrcode, x, y); |
| setModule(qrcode, x, y, val ^ invert); |
| } |
| } |
| } |
| |
| |
| // Calculates and returns the penalty score based on state of the given QR Code's current modules. |
| // This is used by the automatic mask choice algorithm to find the mask pattern that yields the lowest score. |
| static long getPenaltyScore(const uint8_t qrcode[]) { |
| int qrsize = qrcodegen_getSize(qrcode); |
| long result = 0; |
| |
| // Adjacent modules in row having same color |
| for (int y = 0; y < qrsize; y++) { |
| bool colorX = false; |
| for (int x = 0, runX = -1; x < qrsize; x++) { |
| if (x == 0 || getModule(qrcode, x, y) != colorX) { |
| colorX = getModule(qrcode, x, y); |
| runX = 1; |
| } else { |
| runX++; |
| if (runX == 5) |
| result += PENALTY_N1; |
| else if (runX > 5) |
| result++; |
| } |
| } |
| } |
| // Adjacent modules in column having same color |
| for (int x = 0; x < qrsize; x++) { |
| bool colorY = false; |
| for (int y = 0, runY = -1; y < qrsize; y++) { |
| if (y == 0 || getModule(qrcode, x, y) != colorY) { |
| colorY = getModule(qrcode, x, y); |
| runY = 1; |
| } else { |
| runY++; |
| if (runY == 5) |
| result += PENALTY_N1; |
| else if (runY > 5) |
| result++; |
| } |
| } |
| } |
| |
| // 2*2 blocks of modules having same color |
| for (int y = 0; y < qrsize - 1; y++) { |
| for (int x = 0; x < qrsize - 1; x++) { |
| bool color = getModule(qrcode, x, y); |
| if ( color == getModule(qrcode, x + 1, y) && |
| color == getModule(qrcode, x, y + 1) && |
| color == getModule(qrcode, x + 1, y + 1)) |
| result += PENALTY_N2; |
| } |
| } |
| |
| // Finder-like pattern in rows |
| for (int y = 0; y < qrsize; y++) { |
| for (int x = 0, bits = 0; x < qrsize; x++) { |
| bits = ((bits << 1) & 0x7FF) | (getModule(qrcode, x, y) ? 1 : 0); |
| if (x >= 10 && (bits == 0x05D || bits == 0x5D0)) // Needs 11 bits accumulated |
| result += PENALTY_N3; |
| } |
| } |
| // Finder-like pattern in columns |
| for (int x = 0; x < qrsize; x++) { |
| for (int y = 0, bits = 0; y < qrsize; y++) { |
| bits = ((bits << 1) & 0x7FF) | (getModule(qrcode, x, y) ? 1 : 0); |
| if (y >= 10 && (bits == 0x05D || bits == 0x5D0)) // Needs 11 bits accumulated |
| result += PENALTY_N3; |
| } |
| } |
| |
| // Balance of black and white modules |
| int black = 0; |
| for (int y = 0; y < qrsize; y++) { |
| for (int x = 0; x < qrsize; x++) { |
| if (getModule(qrcode, x, y)) |
| black++; |
| } |
| } |
| int total = qrsize * qrsize; |
| // Find smallest k such that (45-5k)% <= dark/total <= (55+5k)% |
| for (int k = 0; black*20L < (9L-k)*total || black*20L > (11L+k)*total; k++) |
| result += PENALTY_N4; |
| return result; |
| } |
| |
| |
| |
| /*---- Basic QR Code information ----*/ |
| |
| // Public function - see documentation comment in header file. |
| int qrcodegen_getSize(const uint8_t qrcode[]) { |
| assert(qrcode != NULL); |
| int result = qrcode[0]; |
| assert((qrcodegen_VERSION_MIN * 4 + 17) <= result |
| && result <= (qrcodegen_VERSION_MAX * 4 + 17)); |
| return result; |
| } |
| |
| |
| // Public function - see documentation comment in header file. |
| bool qrcodegen_getModule(const uint8_t qrcode[], int x, int y) { |
| assert(qrcode != NULL); |
| int qrsize = qrcode[0]; |
| return (0 <= x && x < qrsize && 0 <= y && y < qrsize) && getModule(qrcode, x, y); |
| } |
| |
| |
| // Gets the module at the given coordinates, which must be in bounds. |
| testable bool getModule(const uint8_t qrcode[], int x, int y) { |
| int qrsize = qrcode[0]; |
| assert(21 <= qrsize && qrsize <= 177 && 0 <= x && x < qrsize && 0 <= y && y < qrsize); |
| int index = y * qrsize + x; |
| int bitIndex = index & 7; |
| int byteIndex = (index >> 3) + 1; |
| return ((qrcode[byteIndex] >> bitIndex) & 1) != 0; |
| } |
| |
| |
| // Sets the module at the given coordinates, which must be in bounds. |
| testable void setModule(uint8_t qrcode[], int x, int y, bool isBlack) { |
| int qrsize = qrcode[0]; |
| assert(21 <= qrsize && qrsize <= 177 && 0 <= x && x < qrsize && 0 <= y && y < qrsize); |
| int index = y * qrsize + x; |
| int bitIndex = index & 7; |
| int byteIndex = (index >> 3) + 1; |
| if (isBlack) |
| qrcode[byteIndex] |= 1 << bitIndex; |
| else |
| qrcode[byteIndex] &= (1 << bitIndex) ^ 0xFF; |
| } |
| |
| |
| // Sets the module at the given coordinates, doing nothing if out of bounds. |
| testable void setModuleBounded(uint8_t qrcode[], int x, int y, bool isBlack) { |
| int qrsize = qrcode[0]; |
| if (0 <= x && x < qrsize && 0 <= y && y < qrsize) |
| setModule(qrcode, x, y, isBlack); |
| } |
| |
| |
| |
| /*---- Segment handling ----*/ |
| |
| // Public function - see documentation comment in header file. |
| bool qrcodegen_isAlphanumeric(const char *text) { |
| assert(text != NULL); |
| for (; *text != '\0'; text++) { |
| if (strchr(ALPHANUMERIC_CHARSET, *text) == NULL) |
| return false; |
| } |
| return true; |
| } |
| |
| |
| // Public function - see documentation comment in header file. |
| bool qrcodegen_isNumeric(const char *text) { |
| assert(text != NULL); |
| for (; *text != '\0'; text++) { |
| if (*text < '0' || *text > '9') |
| return false; |
| } |
| return true; |
| } |
| |
| |
| // Public function - see documentation comment in header file. |
| size_t qrcodegen_calcSegmentBufferSize(enum qrcodegen_Mode mode, size_t numChars) { |
| int temp = calcSegmentBitLength(mode, numChars); |
| if (temp == -1) |
| return SIZE_MAX; |
| assert(0 <= temp && temp <= INT16_MAX); |
| return ((size_t)temp + 7) / 8; |
| } |
| |
| |
| // Returns the number of data bits needed to represent a segment |
| // containing the given number of characters using the given mode. Notes: |
| // - Returns -1 on failure, i.e. numChars > INT16_MAX or |
| // the number of needed bits exceeds INT16_MAX (i.e. 32767). |
| // - Otherwise, all valid results are in the range [0, INT16_MAX]. |
| // - For byte mode, numChars measures the number of bytes, not Unicode code points. |
| // - For ECI mode, numChars must be 0, and the worst-case number of bits is returned. |
| // An actual ECI segment can have shorter data. For non-ECI modes, the result is exact. |
| testable int calcSegmentBitLength(enum qrcodegen_Mode mode, size_t numChars) { |
| const int LIMIT = INT16_MAX; // Can be configured as high as INT_MAX |
| if (numChars > (unsigned int)LIMIT) |
| return -1; |
| int n = (int)numChars; |
| |
| int result = -2; |
| if (mode == qrcodegen_Mode_NUMERIC) { |
| // n * 3 + ceil(n / 3) |
| if (n > LIMIT / 3) |
| goto overflow; |
| result = n * 3; |
| int temp = n / 3 + (n % 3 == 0 ? 0 : 1); |
| if (temp > LIMIT - result) |
| goto overflow; |
| result += temp; |
| } else if (mode == qrcodegen_Mode_ALPHANUMERIC) { |
| // n * 5 + ceil(n / 2) |
| if (n > LIMIT / 5) |
| goto overflow; |
| result = n * 5; |
| int temp = n / 2 + n % 2; |
| if (temp > LIMIT - result) |
| goto overflow; |
| result += temp; |
| } else if (mode == qrcodegen_Mode_BYTE) { |
| if (n > LIMIT / 8) |
| goto overflow; |
| result = n * 8; |
| } else if (mode == qrcodegen_Mode_KANJI) { |
| if (n > LIMIT / 13) |
| goto overflow; |
| result = n * 13; |
| } else if (mode == qrcodegen_Mode_ECI && numChars == 0) |
| result = 3 * 8; |
| assert(0 <= result && result <= LIMIT); |
| return result; |
| overflow: |
| return -1; |
| } |
| |
| |
| // Public function - see documentation comment in header file. |
| struct qrcodegen_Segment qrcodegen_makeBytes(const uint8_t data[], size_t len, uint8_t buf[]) { |
| assert(data != NULL || len == 0); |
| struct qrcodegen_Segment result; |
| result.mode = qrcodegen_Mode_BYTE; |
| result.bitLength = calcSegmentBitLength(result.mode, len); |
| assert(result.bitLength != -1); |
| result.numChars = (int)len; |
| if (len > 0) |
| memcpy(buf, data, len * sizeof(buf[0])); |
| result.data = buf; |
| return result; |
| } |
| |
| |
| // Public function - see documentation comment in header file. |
| struct qrcodegen_Segment qrcodegen_makeNumeric(const char *digits, uint8_t buf[]) { |
| assert(digits != NULL); |
| struct qrcodegen_Segment result; |
| size_t len = strlen(digits); |
| result.mode = qrcodegen_Mode_NUMERIC; |
| int bitLen = calcSegmentBitLength(result.mode, len); |
| assert(bitLen != -1); |
| result.numChars = (int)len; |
| if (bitLen > 0) |
| memset(buf, 0, ((size_t)bitLen + 7) / 8 * sizeof(buf[0])); |
| result.bitLength = 0; |
| |
| unsigned int accumData = 0; |
| int accumCount = 0; |
| for (; *digits != '\0'; digits++) { |
| char c = *digits; |
| assert('0' <= c && c <= '9'); |
| accumData = accumData * 10 + (c - '0'); |
| accumCount++; |
| if (accumCount == 3) { |
| appendBitsToBuffer(accumData, 10, buf, &result.bitLength); |
| accumData = 0; |
| accumCount = 0; |
| } |
| } |
| if (accumCount > 0) // 1 or 2 digits remaining |
| appendBitsToBuffer(accumData, accumCount * 3 + 1, buf, &result.bitLength); |
| assert(result.bitLength == bitLen); |
| result.data = buf; |
| return result; |
| } |
| |
| |
| // Public function - see documentation comment in header file. |
| struct qrcodegen_Segment qrcodegen_makeAlphanumeric(const char *text, uint8_t buf[]) { |
| assert(text != NULL); |
| struct qrcodegen_Segment result; |
| size_t len = strlen(text); |
| result.mode = qrcodegen_Mode_ALPHANUMERIC; |
| int bitLen = calcSegmentBitLength(result.mode, len); |
| assert(bitLen != -1); |
| result.numChars = (int)len; |
| if (bitLen > 0) |
| memset(buf, 0, ((size_t)bitLen + 7) / 8 * sizeof(buf[0])); |
| result.bitLength = 0; |
| |
| unsigned int accumData = 0; |
| int accumCount = 0; |
| for (; *text != '\0'; text++) { |
| const char *temp = strchr(ALPHANUMERIC_CHARSET, *text); |
| assert(temp != NULL); |
| accumData = accumData * 45 + (temp - ALPHANUMERIC_CHARSET); |
| accumCount++; |
| if (accumCount == 2) { |
| appendBitsToBuffer(accumData, 11, buf, &result.bitLength); |
| accumData = 0; |
| accumCount = 0; |
| } |
| } |
| if (accumCount > 0) // 1 character remaining |
| appendBitsToBuffer(accumData, 6, buf, &result.bitLength); |
| assert(result.bitLength == bitLen); |
| result.data = buf; |
| return result; |
| } |
| |
| |
| // Public function - see documentation comment in header file. |
| struct qrcodegen_Segment qrcodegen_makeEci(long assignVal, uint8_t buf[]) { |
| struct qrcodegen_Segment result; |
| result.mode = qrcodegen_Mode_ECI; |
| result.numChars = 0; |
| result.bitLength = 0; |
| if (0 <= assignVal && assignVal < (1 << 7)) { |
| memset(buf, 0, 1 * sizeof(buf[0])); |
| appendBitsToBuffer(assignVal, 8, buf, &result.bitLength); |
| } else if ((1 << 7) <= assignVal && assignVal < (1 << 14)) { |
| memset(buf, 0, 2 * sizeof(buf[0])); |
| appendBitsToBuffer(2, 2, buf, &result.bitLength); |
| appendBitsToBuffer(assignVal, 14, buf, &result.bitLength); |
| } else if ((1 << 14) <= assignVal && assignVal < 1000000L) { |
| memset(buf, 0, 3 * sizeof(buf[0])); |
| appendBitsToBuffer(6, 3, buf, &result.bitLength); |
| appendBitsToBuffer(assignVal >> 10, 11, buf, &result.bitLength); |
| appendBitsToBuffer(assignVal & 0x3FF, 10, buf, &result.bitLength); |
| } else |
| assert(false); |
| result.data = buf; |
| return result; |
| } |
| |
| |
| // Public function - see documentation comment in header file. |
| bool qrcodegen_encodeSegments(const struct qrcodegen_Segment segs[], size_t len, |
| enum qrcodegen_Ecc ecl, uint8_t tempBuffer[], uint8_t qrcode[]) { |
| return qrcodegen_encodeSegmentsAdvanced(segs, len, ecl, |
| qrcodegen_VERSION_MIN, qrcodegen_VERSION_MAX, -1, true, tempBuffer, qrcode); |
| } |
| |
| |
| // Public function - see documentation comment in header file. |
| bool qrcodegen_encodeSegmentsAdvanced(const struct qrcodegen_Segment segs[], size_t len, enum qrcodegen_Ecc ecl, |
| int minVersion, int maxVersion, int mask, bool boostEcl, uint8_t tempBuffer[], uint8_t qrcode[]) { |
| assert(segs != NULL || len == 0); |
| assert(qrcodegen_VERSION_MIN <= minVersion && minVersion <= maxVersion && maxVersion <= qrcodegen_VERSION_MAX); |
| assert(0 <= (int)ecl && (int)ecl <= 3 && -1 <= (int)mask && (int)mask <= 7); |
| |
| // Find the minimal version number to use |
| int version, dataUsedBits; |
| for (version = minVersion; ; version++) { |
| int dataCapacityBits = getNumDataCodewords(version, ecl) * 8; // Number of data bits available |
| dataUsedBits = getTotalBits(segs, len, version); |
| if (dataUsedBits != -1 && dataUsedBits <= dataCapacityBits) |
| break; // This version number is found to be suitable |
| if (version >= maxVersion) { // All versions in the range could not fit the given data |
| qrcode[0] = 0; // Set size to invalid value for safety |
| return false; |
| } |
| } |
| assert(dataUsedBits != -1); |
| |
| // Increase the error correction level while the data still fits in the current version number |
| for (int i = (int)qrcodegen_Ecc_MEDIUM; i <= (int)qrcodegen_Ecc_HIGH; i++) { |
| if (boostEcl && dataUsedBits <= getNumDataCodewords(version, (enum qrcodegen_Ecc)i) * 8) |
| ecl = (enum qrcodegen_Ecc)i; |
| } |
| |
| // Create the data bit string by concatenating all segments |
| int dataCapacityBits = getNumDataCodewords(version, ecl) * 8; |
| memset(qrcode, 0, qrcodegen_BUFFER_LEN_FOR_VERSION(version) * sizeof(qrcode[0])); |
| int bitLen = 0; |
| for (size_t i = 0; i < len; i++) { |
| const struct qrcodegen_Segment *seg = &segs[i]; |
| unsigned int modeBits = 0; // Dummy value |
| switch (seg->mode) { |
| case qrcodegen_Mode_NUMERIC : modeBits = 0x1; break; |
| case qrcodegen_Mode_ALPHANUMERIC: modeBits = 0x2; break; |
| case qrcodegen_Mode_BYTE : modeBits = 0x4; break; |
| case qrcodegen_Mode_KANJI : modeBits = 0x8; break; |
| case qrcodegen_Mode_ECI : modeBits = 0x7; break; |
| default: assert(false); |
| } |
| appendBitsToBuffer(modeBits, 4, qrcode, &bitLen); |
| appendBitsToBuffer(seg->numChars, numCharCountBits(seg->mode, version), qrcode, &bitLen); |
| for (int j = 0; j < seg->bitLength; j++) |
| appendBitsToBuffer((seg->data[j >> 3] >> (7 - (j & 7))) & 1, 1, qrcode, &bitLen); |
| } |
| |
| // Add terminator and pad up to a byte if applicable |
| int terminatorBits = dataCapacityBits - bitLen; |
| if (terminatorBits > 4) |
| terminatorBits = 4; |
| appendBitsToBuffer(0, terminatorBits, qrcode, &bitLen); |
| appendBitsToBuffer(0, (8 - bitLen % 8) % 8, qrcode, &bitLen); |
| |
| // Pad with alternate bytes until data capacity is reached |
| for (uint8_t padByte = 0xEC; bitLen < dataCapacityBits; padByte ^= 0xEC ^ 0x11) |
| appendBitsToBuffer(padByte, 8, qrcode, &bitLen); |
| assert(bitLen % 8 == 0); |
| |
| // Draw function and data codeword modules |
| appendErrorCorrection(qrcode, version, ecl, tempBuffer); |
| initializeFunctionModules(version, qrcode); |
| drawCodewords(tempBuffer, getNumRawDataModules(version) / 8, qrcode); |
| drawWhiteFunctionModules(qrcode, version); |
| initializeFunctionModules(version, tempBuffer); |
| |
| // Handle masking |
| if (mask == qrcodegen_Mask_AUTO) { // Automatically choose best mask |
| long minPenalty = LONG_MAX; |
| for (int i = 0; i < 8; i++) { |
| drawFormatBits(ecl, (enum qrcodegen_Mask)i, qrcode); |
| applyMask(tempBuffer, qrcode, (enum qrcodegen_Mask)i); |
| long penalty = getPenaltyScore(qrcode); |
| if (penalty < minPenalty) { |
| mask = (enum qrcodegen_Mask)i; |
| minPenalty = penalty; |
| } |
| applyMask(tempBuffer, qrcode, (enum qrcodegen_Mask)i); // Undoes the mask due to XOR |
| } |
| } |
| assert(0 <= (int)mask && (int)mask <= 7); |
| drawFormatBits(ecl, mask, qrcode); |
| applyMask(tempBuffer, qrcode, mask); |
| return true; |
| } |
| |
| |
| // Returns the number of bits needed to encode the given list of segments at the given version. |
| // The result is in the range [0, 32767] if successful. Otherwise, -1 is returned if any segment |
| // has more characters than allowed by that segment's mode's character count field at the version, |
| // or if the actual answer exceeds INT16_MAX. |
| testable int getTotalBits(const struct qrcodegen_Segment segs[], size_t len, int version) { |
| assert(segs != NULL || len == 0); |
| assert(qrcodegen_VERSION_MIN <= version && version <= qrcodegen_VERSION_MAX); |
| int result = 0; |
| for (size_t i = 0; i < len; i++) { |
| int numChars = segs[i].numChars; |
| int bitLength = segs[i].bitLength; |
| assert(0 <= numChars && numChars <= INT16_MAX); |
| assert(0 <= bitLength && bitLength <= INT16_MAX); |
| int ccbits = numCharCountBits(segs[i].mode, version); |
| assert(0 <= ccbits && ccbits <= 16); |
| // Fail if segment length value doesn't fit in the length field's bit-width |
| if (numChars >= (1L << ccbits)) |
| return -1; |
| long temp = 4L + ccbits + bitLength; |
| if (temp > INT16_MAX - result) |
| return -1; |
| result += temp; |
| } |
| assert(0 <= result && result <= INT16_MAX); |
| return result; |
| } |
| |
| |
| // Returns the bit width of the segment character count field for the |
| // given mode at the given version number. The result is in the range [0, 16]. |
| static int numCharCountBits(enum qrcodegen_Mode mode, int version) { |
| assert(qrcodegen_VERSION_MIN <= version && version <= qrcodegen_VERSION_MAX); |
| int i = -1; // Dummy value |
| if ( 1 <= version && version <= 9) i = 0; |
| else if (10 <= version && version <= 26) i = 1; |
| else if (27 <= version && version <= 40) i = 2; |
| else assert(false); |
| |
| switch (mode) { |
| case qrcodegen_Mode_NUMERIC : { static const int temp[] = {10, 12, 14}; return temp[i]; } |
| case qrcodegen_Mode_ALPHANUMERIC: { static const int temp[] = { 9, 11, 13}; return temp[i]; } |
| case qrcodegen_Mode_BYTE : { static const int temp[] = { 8, 16, 16}; return temp[i]; } |
| case qrcodegen_Mode_KANJI : { static const int temp[] = { 8, 10, 12}; return temp[i]; } |
| case qrcodegen_Mode_ECI : return 0; |
| default: assert(false); |
| } |
| return -1; // Dummy value |
| } |