|  | /* | 
|  | * jcarith.c | 
|  | * | 
|  | * This file was part of the Independent JPEG Group's software: | 
|  | * Developed 1997-2009 by Guido Vollbeding. | 
|  | * libjpeg-turbo Modifications: | 
|  | * Copyright (C) 2015, 2018, D. R. Commander. | 
|  | * For conditions of distribution and use, see the accompanying README.ijg | 
|  | * file. | 
|  | * | 
|  | * This file contains portable arithmetic entropy encoding routines for JPEG | 
|  | * (implementing the ISO/IEC IS 10918-1 and CCITT Recommendation ITU-T T.81). | 
|  | * | 
|  | * Both sequential and progressive modes are supported in this single module. | 
|  | * | 
|  | * Suspension is not currently supported in this module. | 
|  | */ | 
|  |  | 
|  | #define JPEG_INTERNALS | 
|  | #include "jinclude.h" | 
|  | #include "jpeglib.h" | 
|  |  | 
|  |  | 
|  | /* Expanded entropy encoder object for arithmetic encoding. */ | 
|  |  | 
|  | typedef struct { | 
|  | struct jpeg_entropy_encoder pub; /* public fields */ | 
|  |  | 
|  | JLONG c; /* C register, base of coding interval, layout as in sec. D.1.3 */ | 
|  | JLONG a;               /* A register, normalized size of coding interval */ | 
|  | JLONG sc;        /* counter for stacked 0xFF values which might overflow */ | 
|  | JLONG zc;          /* counter for pending 0x00 output values which might * | 
|  | * be discarded at the end ("Pacman" termination) */ | 
|  | int ct;  /* bit shift counter, determines when next byte will be written */ | 
|  | int buffer;                /* buffer for most recent output byte != 0xFF */ | 
|  |  | 
|  | int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ | 
|  | int dc_context[MAX_COMPS_IN_SCAN]; /* context index for DC conditioning */ | 
|  |  | 
|  | unsigned int restarts_to_go;  /* MCUs left in this restart interval */ | 
|  | int next_restart_num;         /* next restart number to write (0-7) */ | 
|  |  | 
|  | /* Pointers to statistics areas (these workspaces have image lifespan) */ | 
|  | unsigned char *dc_stats[NUM_ARITH_TBLS]; | 
|  | unsigned char *ac_stats[NUM_ARITH_TBLS]; | 
|  |  | 
|  | /* Statistics bin for coding with fixed probability 0.5 */ | 
|  | unsigned char fixed_bin[4]; | 
|  | } arith_entropy_encoder; | 
|  |  | 
|  | typedef arith_entropy_encoder *arith_entropy_ptr; | 
|  |  | 
|  | /* The following two definitions specify the allocation chunk size | 
|  | * for the statistics area. | 
|  | * According to sections F.1.4.4.1.3 and F.1.4.4.2, we need at least | 
|  | * 49 statistics bins for DC, and 245 statistics bins for AC coding. | 
|  | * | 
|  | * We use a compact representation with 1 byte per statistics bin, | 
|  | * thus the numbers directly represent byte sizes. | 
|  | * This 1 byte per statistics bin contains the meaning of the MPS | 
|  | * (more probable symbol) in the highest bit (mask 0x80), and the | 
|  | * index into the probability estimation state machine table | 
|  | * in the lower bits (mask 0x7F). | 
|  | */ | 
|  |  | 
|  | #define DC_STAT_BINS  64 | 
|  | #define AC_STAT_BINS  256 | 
|  |  | 
|  | /* NOTE: Uncomment the following #define if you want to use the | 
|  | * given formula for calculating the AC conditioning parameter Kx | 
|  | * for spectral selection progressive coding in section G.1.3.2 | 
|  | * of the spec (Kx = Kmin + SRL (8 + Se - Kmin) 4). | 
|  | * Although the spec and P&M authors claim that this "has proven | 
|  | * to give good results for 8 bit precision samples", I'm not | 
|  | * convinced yet that this is really beneficial. | 
|  | * Early tests gave only very marginal compression enhancements | 
|  | * (a few - around 5 or so - bytes even for very large files), | 
|  | * which would turn out rather negative if we'd suppress the | 
|  | * DAC (Define Arithmetic Conditioning) marker segments for | 
|  | * the default parameters in the future. | 
|  | * Note that currently the marker writing module emits 12-byte | 
|  | * DAC segments for a full-component scan in a color image. | 
|  | * This is not worth worrying about IMHO. However, since the | 
|  | * spec defines the default values to be used if the tables | 
|  | * are omitted (unlike Huffman tables, which are required | 
|  | * anyway), one might optimize this behaviour in the future, | 
|  | * and then it would be disadvantageous to use custom tables if | 
|  | * they don't provide sufficient gain to exceed the DAC size. | 
|  | * | 
|  | * On the other hand, I'd consider it as a reasonable result | 
|  | * that the conditioning has no significant influence on the | 
|  | * compression performance. This means that the basic | 
|  | * statistical model is already rather stable. | 
|  | * | 
|  | * Thus, at the moment, we use the default conditioning values | 
|  | * anyway, and do not use the custom formula. | 
|  | * | 
|  | #define CALCULATE_SPECTRAL_CONDITIONING | 
|  | */ | 
|  |  | 
|  | /* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than JLONG. | 
|  | * We assume that int right shift is unsigned if JLONG right shift is, | 
|  | * which should be safe. | 
|  | */ | 
|  |  | 
|  | #ifdef RIGHT_SHIFT_IS_UNSIGNED | 
|  | #define ISHIFT_TEMPS    int ishift_temp; | 
|  | #define IRIGHT_SHIFT(x, shft) \ | 
|  | ((ishift_temp = (x)) < 0 ? \ | 
|  | (ishift_temp >> (shft)) | ((~0) << (16 - (shft))) : \ | 
|  | (ishift_temp >> (shft))) | 
|  | #else | 
|  | #define ISHIFT_TEMPS | 
|  | #define IRIGHT_SHIFT(x, shft)   ((x) >> (shft)) | 
|  | #endif | 
|  |  | 
|  |  | 
|  | LOCAL(void) | 
|  | emit_byte(int val, j_compress_ptr cinfo) | 
|  | /* Write next output byte; we do not support suspension in this module. */ | 
|  | { | 
|  | struct jpeg_destination_mgr *dest = cinfo->dest; | 
|  |  | 
|  | *dest->next_output_byte++ = (JOCTET)val; | 
|  | if (--dest->free_in_buffer == 0) | 
|  | if (!(*dest->empty_output_buffer) (cinfo)) | 
|  | ERREXIT(cinfo, JERR_CANT_SUSPEND); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Finish up at the end of an arithmetic-compressed scan. | 
|  | */ | 
|  |  | 
|  | METHODDEF(void) | 
|  | finish_pass(j_compress_ptr cinfo) | 
|  | { | 
|  | arith_entropy_ptr e = (arith_entropy_ptr)cinfo->entropy; | 
|  | JLONG temp; | 
|  |  | 
|  | /* Section D.1.8: Termination of encoding */ | 
|  |  | 
|  | /* Find the e->c in the coding interval with the largest | 
|  | * number of trailing zero bits */ | 
|  | if ((temp = (e->a - 1 + e->c) & 0xFFFF0000UL) < e->c) | 
|  | e->c = temp + 0x8000L; | 
|  | else | 
|  | e->c = temp; | 
|  | /* Send remaining bytes to output */ | 
|  | e->c <<= e->ct; | 
|  | if (e->c & 0xF8000000UL) { | 
|  | /* One final overflow has to be handled */ | 
|  | if (e->buffer >= 0) { | 
|  | if (e->zc) | 
|  | do emit_byte(0x00, cinfo); | 
|  | while (--e->zc); | 
|  | emit_byte(e->buffer + 1, cinfo); | 
|  | if (e->buffer + 1 == 0xFF) | 
|  | emit_byte(0x00, cinfo); | 
|  | } | 
|  | e->zc += e->sc;  /* carry-over converts stacked 0xFF bytes to 0x00 */ | 
|  | e->sc = 0; | 
|  | } else { | 
|  | if (e->buffer == 0) | 
|  | ++e->zc; | 
|  | else if (e->buffer >= 0) { | 
|  | if (e->zc) | 
|  | do emit_byte(0x00, cinfo); | 
|  | while (--e->zc); | 
|  | emit_byte(e->buffer, cinfo); | 
|  | } | 
|  | if (e->sc) { | 
|  | if (e->zc) | 
|  | do emit_byte(0x00, cinfo); | 
|  | while (--e->zc); | 
|  | do { | 
|  | emit_byte(0xFF, cinfo); | 
|  | emit_byte(0x00, cinfo); | 
|  | } while (--e->sc); | 
|  | } | 
|  | } | 
|  | /* Output final bytes only if they are not 0x00 */ | 
|  | if (e->c & 0x7FFF800L) { | 
|  | if (e->zc)  /* output final pending zero bytes */ | 
|  | do emit_byte(0x00, cinfo); | 
|  | while (--e->zc); | 
|  | emit_byte((e->c >> 19) & 0xFF, cinfo); | 
|  | if (((e->c >> 19) & 0xFF) == 0xFF) | 
|  | emit_byte(0x00, cinfo); | 
|  | if (e->c & 0x7F800L) { | 
|  | emit_byte((e->c >> 11) & 0xFF, cinfo); | 
|  | if (((e->c >> 11) & 0xFF) == 0xFF) | 
|  | emit_byte(0x00, cinfo); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * The core arithmetic encoding routine (common in JPEG and JBIG). | 
|  | * This needs to go as fast as possible. | 
|  | * Machine-dependent optimization facilities | 
|  | * are not utilized in this portable implementation. | 
|  | * However, this code should be fairly efficient and | 
|  | * may be a good base for further optimizations anyway. | 
|  | * | 
|  | * Parameter 'val' to be encoded may be 0 or 1 (binary decision). | 
|  | * | 
|  | * Note: I've added full "Pacman" termination support to the | 
|  | * byte output routines, which is equivalent to the optional | 
|  | * Discard_final_zeros procedure (Figure D.15) in the spec. | 
|  | * Thus, we always produce the shortest possible output | 
|  | * stream compliant to the spec (no trailing zero bytes, | 
|  | * except for FF stuffing). | 
|  | * | 
|  | * I've also introduced a new scheme for accessing | 
|  | * the probability estimation state machine table, | 
|  | * derived from Markus Kuhn's JBIG implementation. | 
|  | */ | 
|  |  | 
|  | LOCAL(void) | 
|  | arith_encode(j_compress_ptr cinfo, unsigned char *st, int val) | 
|  | { | 
|  | register arith_entropy_ptr e = (arith_entropy_ptr)cinfo->entropy; | 
|  | register unsigned char nl, nm; | 
|  | register JLONG qe, temp; | 
|  | register int sv; | 
|  |  | 
|  | /* Fetch values from our compact representation of Table D.2: | 
|  | * Qe values and probability estimation state machine | 
|  | */ | 
|  | sv = *st; | 
|  | qe = jpeg_aritab[sv & 0x7F];  /* => Qe_Value */ | 
|  | nl = qe & 0xFF;  qe >>= 8;    /* Next_Index_LPS + Switch_MPS */ | 
|  | nm = qe & 0xFF;  qe >>= 8;    /* Next_Index_MPS */ | 
|  |  | 
|  | /* Encode & estimation procedures per sections D.1.4 & D.1.5 */ | 
|  | e->a -= qe; | 
|  | if (val != (sv >> 7)) { | 
|  | /* Encode the less probable symbol */ | 
|  | if (e->a >= qe) { | 
|  | /* If the interval size (qe) for the less probable symbol (LPS) | 
|  | * is larger than the interval size for the MPS, then exchange | 
|  | * the two symbols for coding efficiency, otherwise code the LPS | 
|  | * as usual: */ | 
|  | e->c += e->a; | 
|  | e->a = qe; | 
|  | } | 
|  | *st = (sv & 0x80) ^ nl;     /* Estimate_after_LPS */ | 
|  | } else { | 
|  | /* Encode the more probable symbol */ | 
|  | if (e->a >= 0x8000L) | 
|  | return;  /* A >= 0x8000 -> ready, no renormalization required */ | 
|  | if (e->a < qe) { | 
|  | /* If the interval size (qe) for the less probable symbol (LPS) | 
|  | * is larger than the interval size for the MPS, then exchange | 
|  | * the two symbols for coding efficiency: */ | 
|  | e->c += e->a; | 
|  | e->a = qe; | 
|  | } | 
|  | *st = (sv & 0x80) ^ nm;     /* Estimate_after_MPS */ | 
|  | } | 
|  |  | 
|  | /* Renormalization & data output per section D.1.6 */ | 
|  | do { | 
|  | e->a <<= 1; | 
|  | e->c <<= 1; | 
|  | if (--e->ct == 0) { | 
|  | /* Another byte is ready for output */ | 
|  | temp = e->c >> 19; | 
|  | if (temp > 0xFF) { | 
|  | /* Handle overflow over all stacked 0xFF bytes */ | 
|  | if (e->buffer >= 0) { | 
|  | if (e->zc) | 
|  | do emit_byte(0x00, cinfo); | 
|  | while (--e->zc); | 
|  | emit_byte(e->buffer + 1, cinfo); | 
|  | if (e->buffer + 1 == 0xFF) | 
|  | emit_byte(0x00, cinfo); | 
|  | } | 
|  | e->zc += e->sc;  /* carry-over converts stacked 0xFF bytes to 0x00 */ | 
|  | e->sc = 0; | 
|  | /* Note: The 3 spacer bits in the C register guarantee | 
|  | * that the new buffer byte can't be 0xFF here | 
|  | * (see page 160 in the P&M JPEG book). */ | 
|  | e->buffer = temp & 0xFF;  /* new output byte, might overflow later */ | 
|  | } else if (temp == 0xFF) { | 
|  | ++e->sc;  /* stack 0xFF byte (which might overflow later) */ | 
|  | } else { | 
|  | /* Output all stacked 0xFF bytes, they will not overflow any more */ | 
|  | if (e->buffer == 0) | 
|  | ++e->zc; | 
|  | else if (e->buffer >= 0) { | 
|  | if (e->zc) | 
|  | do emit_byte(0x00, cinfo); | 
|  | while (--e->zc); | 
|  | emit_byte(e->buffer, cinfo); | 
|  | } | 
|  | if (e->sc) { | 
|  | if (e->zc) | 
|  | do emit_byte(0x00, cinfo); | 
|  | while (--e->zc); | 
|  | do { | 
|  | emit_byte(0xFF, cinfo); | 
|  | emit_byte(0x00, cinfo); | 
|  | } while (--e->sc); | 
|  | } | 
|  | e->buffer = temp & 0xFF;  /* new output byte (can still overflow) */ | 
|  | } | 
|  | e->c &= 0x7FFFFL; | 
|  | e->ct += 8; | 
|  | } | 
|  | } while (e->a < 0x8000L); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Emit a restart marker & resynchronize predictions. | 
|  | */ | 
|  |  | 
|  | LOCAL(void) | 
|  | emit_restart(j_compress_ptr cinfo, int restart_num) | 
|  | { | 
|  | arith_entropy_ptr entropy = (arith_entropy_ptr)cinfo->entropy; | 
|  | int ci; | 
|  | jpeg_component_info *compptr; | 
|  |  | 
|  | finish_pass(cinfo); | 
|  |  | 
|  | emit_byte(0xFF, cinfo); | 
|  | emit_byte(JPEG_RST0 + restart_num, cinfo); | 
|  |  | 
|  | /* Re-initialize statistics areas */ | 
|  | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | 
|  | compptr = cinfo->cur_comp_info[ci]; | 
|  | /* DC needs no table for refinement scan */ | 
|  | if (cinfo->progressive_mode == 0 || (cinfo->Ss == 0 && cinfo->Ah == 0)) { | 
|  | MEMZERO(entropy->dc_stats[compptr->dc_tbl_no], DC_STAT_BINS); | 
|  | /* Reset DC predictions to 0 */ | 
|  | entropy->last_dc_val[ci] = 0; | 
|  | entropy->dc_context[ci] = 0; | 
|  | } | 
|  | /* AC needs no table when not present */ | 
|  | if (cinfo->progressive_mode == 0 || cinfo->Se) { | 
|  | MEMZERO(entropy->ac_stats[compptr->ac_tbl_no], AC_STAT_BINS); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Reset arithmetic encoding variables */ | 
|  | entropy->c = 0; | 
|  | entropy->a = 0x10000L; | 
|  | entropy->sc = 0; | 
|  | entropy->zc = 0; | 
|  | entropy->ct = 11; | 
|  | entropy->buffer = -1;  /* empty */ | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * MCU encoding for DC initial scan (either spectral selection, | 
|  | * or first pass of successive approximation). | 
|  | */ | 
|  |  | 
|  | METHODDEF(boolean) | 
|  | encode_mcu_DC_first(j_compress_ptr cinfo, JBLOCKROW *MCU_data) | 
|  | { | 
|  | arith_entropy_ptr entropy = (arith_entropy_ptr)cinfo->entropy; | 
|  | JBLOCKROW block; | 
|  | unsigned char *st; | 
|  | int blkn, ci, tbl; | 
|  | int v, v2, m; | 
|  | ISHIFT_TEMPS | 
|  |  | 
|  | /* Emit restart marker if needed */ | 
|  | if (cinfo->restart_interval) { | 
|  | if (entropy->restarts_to_go == 0) { | 
|  | emit_restart(cinfo, entropy->next_restart_num); | 
|  | entropy->restarts_to_go = cinfo->restart_interval; | 
|  | entropy->next_restart_num++; | 
|  | entropy->next_restart_num &= 7; | 
|  | } | 
|  | entropy->restarts_to_go--; | 
|  | } | 
|  |  | 
|  | /* Encode the MCU data blocks */ | 
|  | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { | 
|  | block = MCU_data[blkn]; | 
|  | ci = cinfo->MCU_membership[blkn]; | 
|  | tbl = cinfo->cur_comp_info[ci]->dc_tbl_no; | 
|  |  | 
|  | /* Compute the DC value after the required point transform by Al. | 
|  | * This is simply an arithmetic right shift. | 
|  | */ | 
|  | m = IRIGHT_SHIFT((int)((*block)[0]), cinfo->Al); | 
|  |  | 
|  | /* Sections F.1.4.1 & F.1.4.4.1: Encoding of DC coefficients */ | 
|  |  | 
|  | /* Table F.4: Point to statistics bin S0 for DC coefficient coding */ | 
|  | st = entropy->dc_stats[tbl] + entropy->dc_context[ci]; | 
|  |  | 
|  | /* Figure F.4: Encode_DC_DIFF */ | 
|  | if ((v = m - entropy->last_dc_val[ci]) == 0) { | 
|  | arith_encode(cinfo, st, 0); | 
|  | entropy->dc_context[ci] = 0;      /* zero diff category */ | 
|  | } else { | 
|  | entropy->last_dc_val[ci] = m; | 
|  | arith_encode(cinfo, st, 1); | 
|  | /* Figure F.6: Encoding nonzero value v */ | 
|  | /* Figure F.7: Encoding the sign of v */ | 
|  | if (v > 0) { | 
|  | arith_encode(cinfo, st + 1, 0); /* Table F.4: SS = S0 + 1 */ | 
|  | st += 2;                        /* Table F.4: SP = S0 + 2 */ | 
|  | entropy->dc_context[ci] = 4;    /* small positive diff category */ | 
|  | } else { | 
|  | v = -v; | 
|  | arith_encode(cinfo, st + 1, 1); /* Table F.4: SS = S0 + 1 */ | 
|  | st += 3;                        /* Table F.4: SN = S0 + 3 */ | 
|  | entropy->dc_context[ci] = 8;    /* small negative diff category */ | 
|  | } | 
|  | /* Figure F.8: Encoding the magnitude category of v */ | 
|  | m = 0; | 
|  | if (v -= 1) { | 
|  | arith_encode(cinfo, st, 1); | 
|  | m = 1; | 
|  | v2 = v; | 
|  | st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */ | 
|  | while (v2 >>= 1) { | 
|  | arith_encode(cinfo, st, 1); | 
|  | m <<= 1; | 
|  | st += 1; | 
|  | } | 
|  | } | 
|  | arith_encode(cinfo, st, 0); | 
|  | /* Section F.1.4.4.1.2: Establish dc_context conditioning category */ | 
|  | if (m < (int)((1L << cinfo->arith_dc_L[tbl]) >> 1)) | 
|  | entropy->dc_context[ci] = 0;    /* zero diff category */ | 
|  | else if (m > (int)((1L << cinfo->arith_dc_U[tbl]) >> 1)) | 
|  | entropy->dc_context[ci] += 8;   /* large diff category */ | 
|  | /* Figure F.9: Encoding the magnitude bit pattern of v */ | 
|  | st += 14; | 
|  | while (m >>= 1) | 
|  | arith_encode(cinfo, st, (m & v) ? 1 : 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | return TRUE; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * MCU encoding for AC initial scan (either spectral selection, | 
|  | * or first pass of successive approximation). | 
|  | */ | 
|  |  | 
|  | METHODDEF(boolean) | 
|  | encode_mcu_AC_first(j_compress_ptr cinfo, JBLOCKROW *MCU_data) | 
|  | { | 
|  | arith_entropy_ptr entropy = (arith_entropy_ptr)cinfo->entropy; | 
|  | JBLOCKROW block; | 
|  | unsigned char *st; | 
|  | int tbl, k, ke; | 
|  | int v, v2, m; | 
|  |  | 
|  | /* Emit restart marker if needed */ | 
|  | if (cinfo->restart_interval) { | 
|  | if (entropy->restarts_to_go == 0) { | 
|  | emit_restart(cinfo, entropy->next_restart_num); | 
|  | entropy->restarts_to_go = cinfo->restart_interval; | 
|  | entropy->next_restart_num++; | 
|  | entropy->next_restart_num &= 7; | 
|  | } | 
|  | entropy->restarts_to_go--; | 
|  | } | 
|  |  | 
|  | /* Encode the MCU data block */ | 
|  | block = MCU_data[0]; | 
|  | tbl = cinfo->cur_comp_info[0]->ac_tbl_no; | 
|  |  | 
|  | /* Sections F.1.4.2 & F.1.4.4.2: Encoding of AC coefficients */ | 
|  |  | 
|  | /* Establish EOB (end-of-block) index */ | 
|  | for (ke = cinfo->Se; ke > 0; ke--) | 
|  | /* We must apply the point transform by Al.  For AC coefficients this | 
|  | * is an integer division with rounding towards 0.  To do this portably | 
|  | * in C, we shift after obtaining the absolute value. | 
|  | */ | 
|  | if ((v = (*block)[jpeg_natural_order[ke]]) >= 0) { | 
|  | if (v >>= cinfo->Al) break; | 
|  | } else { | 
|  | v = -v; | 
|  | if (v >>= cinfo->Al) break; | 
|  | } | 
|  |  | 
|  | /* Figure F.5: Encode_AC_Coefficients */ | 
|  | for (k = cinfo->Ss; k <= ke; k++) { | 
|  | st = entropy->ac_stats[tbl] + 3 * (k - 1); | 
|  | arith_encode(cinfo, st, 0);         /* EOB decision */ | 
|  | for (;;) { | 
|  | if ((v = (*block)[jpeg_natural_order[k]]) >= 0) { | 
|  | if (v >>= cinfo->Al) { | 
|  | arith_encode(cinfo, st + 1, 1); | 
|  | arith_encode(cinfo, entropy->fixed_bin, 0); | 
|  | break; | 
|  | } | 
|  | } else { | 
|  | v = -v; | 
|  | if (v >>= cinfo->Al) { | 
|  | arith_encode(cinfo, st + 1, 1); | 
|  | arith_encode(cinfo, entropy->fixed_bin, 1); | 
|  | break; | 
|  | } | 
|  | } | 
|  | arith_encode(cinfo, st + 1, 0);  st += 3;  k++; | 
|  | } | 
|  | st += 2; | 
|  | /* Figure F.8: Encoding the magnitude category of v */ | 
|  | m = 0; | 
|  | if (v -= 1) { | 
|  | arith_encode(cinfo, st, 1); | 
|  | m = 1; | 
|  | v2 = v; | 
|  | if (v2 >>= 1) { | 
|  | arith_encode(cinfo, st, 1); | 
|  | m <<= 1; | 
|  | st = entropy->ac_stats[tbl] + | 
|  | (k <= cinfo->arith_ac_K[tbl] ? 189 : 217); | 
|  | while (v2 >>= 1) { | 
|  | arith_encode(cinfo, st, 1); | 
|  | m <<= 1; | 
|  | st += 1; | 
|  | } | 
|  | } | 
|  | } | 
|  | arith_encode(cinfo, st, 0); | 
|  | /* Figure F.9: Encoding the magnitude bit pattern of v */ | 
|  | st += 14; | 
|  | while (m >>= 1) | 
|  | arith_encode(cinfo, st, (m & v) ? 1 : 0); | 
|  | } | 
|  | /* Encode EOB decision only if k <= cinfo->Se */ | 
|  | if (k <= cinfo->Se) { | 
|  | st = entropy->ac_stats[tbl] + 3 * (k - 1); | 
|  | arith_encode(cinfo, st, 1); | 
|  | } | 
|  |  | 
|  | return TRUE; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * MCU encoding for DC successive approximation refinement scan. | 
|  | */ | 
|  |  | 
|  | METHODDEF(boolean) | 
|  | encode_mcu_DC_refine(j_compress_ptr cinfo, JBLOCKROW *MCU_data) | 
|  | { | 
|  | arith_entropy_ptr entropy = (arith_entropy_ptr)cinfo->entropy; | 
|  | unsigned char *st; | 
|  | int Al, blkn; | 
|  |  | 
|  | /* Emit restart marker if needed */ | 
|  | if (cinfo->restart_interval) { | 
|  | if (entropy->restarts_to_go == 0) { | 
|  | emit_restart(cinfo, entropy->next_restart_num); | 
|  | entropy->restarts_to_go = cinfo->restart_interval; | 
|  | entropy->next_restart_num++; | 
|  | entropy->next_restart_num &= 7; | 
|  | } | 
|  | entropy->restarts_to_go--; | 
|  | } | 
|  |  | 
|  | st = entropy->fixed_bin;      /* use fixed probability estimation */ | 
|  | Al = cinfo->Al; | 
|  |  | 
|  | /* Encode the MCU data blocks */ | 
|  | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { | 
|  | /* We simply emit the Al'th bit of the DC coefficient value. */ | 
|  | arith_encode(cinfo, st, (MCU_data[blkn][0][0] >> Al) & 1); | 
|  | } | 
|  |  | 
|  | return TRUE; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * MCU encoding for AC successive approximation refinement scan. | 
|  | */ | 
|  |  | 
|  | METHODDEF(boolean) | 
|  | encode_mcu_AC_refine(j_compress_ptr cinfo, JBLOCKROW *MCU_data) | 
|  | { | 
|  | arith_entropy_ptr entropy = (arith_entropy_ptr)cinfo->entropy; | 
|  | JBLOCKROW block; | 
|  | unsigned char *st; | 
|  | int tbl, k, ke, kex; | 
|  | int v; | 
|  |  | 
|  | /* Emit restart marker if needed */ | 
|  | if (cinfo->restart_interval) { | 
|  | if (entropy->restarts_to_go == 0) { | 
|  | emit_restart(cinfo, entropy->next_restart_num); | 
|  | entropy->restarts_to_go = cinfo->restart_interval; | 
|  | entropy->next_restart_num++; | 
|  | entropy->next_restart_num &= 7; | 
|  | } | 
|  | entropy->restarts_to_go--; | 
|  | } | 
|  |  | 
|  | /* Encode the MCU data block */ | 
|  | block = MCU_data[0]; | 
|  | tbl = cinfo->cur_comp_info[0]->ac_tbl_no; | 
|  |  | 
|  | /* Section G.1.3.3: Encoding of AC coefficients */ | 
|  |  | 
|  | /* Establish EOB (end-of-block) index */ | 
|  | for (ke = cinfo->Se; ke > 0; ke--) | 
|  | /* We must apply the point transform by Al.  For AC coefficients this | 
|  | * is an integer division with rounding towards 0.  To do this portably | 
|  | * in C, we shift after obtaining the absolute value. | 
|  | */ | 
|  | if ((v = (*block)[jpeg_natural_order[ke]]) >= 0) { | 
|  | if (v >>= cinfo->Al) break; | 
|  | } else { | 
|  | v = -v; | 
|  | if (v >>= cinfo->Al) break; | 
|  | } | 
|  |  | 
|  | /* Establish EOBx (previous stage end-of-block) index */ | 
|  | for (kex = ke; kex > 0; kex--) | 
|  | if ((v = (*block)[jpeg_natural_order[kex]]) >= 0) { | 
|  | if (v >>= cinfo->Ah) break; | 
|  | } else { | 
|  | v = -v; | 
|  | if (v >>= cinfo->Ah) break; | 
|  | } | 
|  |  | 
|  | /* Figure G.10: Encode_AC_Coefficients_SA */ | 
|  | for (k = cinfo->Ss; k <= ke; k++) { | 
|  | st = entropy->ac_stats[tbl] + 3 * (k - 1); | 
|  | if (k > kex) | 
|  | arith_encode(cinfo, st, 0);       /* EOB decision */ | 
|  | for (;;) { | 
|  | if ((v = (*block)[jpeg_natural_order[k]]) >= 0) { | 
|  | if (v >>= cinfo->Al) { | 
|  | if (v >> 1)                   /* previously nonzero coef */ | 
|  | arith_encode(cinfo, st + 2, (v & 1)); | 
|  | else {                        /* newly nonzero coef */ | 
|  | arith_encode(cinfo, st + 1, 1); | 
|  | arith_encode(cinfo, entropy->fixed_bin, 0); | 
|  | } | 
|  | break; | 
|  | } | 
|  | } else { | 
|  | v = -v; | 
|  | if (v >>= cinfo->Al) { | 
|  | if (v >> 1)                   /* previously nonzero coef */ | 
|  | arith_encode(cinfo, st + 2, (v & 1)); | 
|  | else {                        /* newly nonzero coef */ | 
|  | arith_encode(cinfo, st + 1, 1); | 
|  | arith_encode(cinfo, entropy->fixed_bin, 1); | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  | arith_encode(cinfo, st + 1, 0);  st += 3;  k++; | 
|  | } | 
|  | } | 
|  | /* Encode EOB decision only if k <= cinfo->Se */ | 
|  | if (k <= cinfo->Se) { | 
|  | st = entropy->ac_stats[tbl] + 3 * (k - 1); | 
|  | arith_encode(cinfo, st, 1); | 
|  | } | 
|  |  | 
|  | return TRUE; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Encode and output one MCU's worth of arithmetic-compressed coefficients. | 
|  | */ | 
|  |  | 
|  | METHODDEF(boolean) | 
|  | encode_mcu(j_compress_ptr cinfo, JBLOCKROW *MCU_data) | 
|  | { | 
|  | arith_entropy_ptr entropy = (arith_entropy_ptr)cinfo->entropy; | 
|  | jpeg_component_info *compptr; | 
|  | JBLOCKROW block; | 
|  | unsigned char *st; | 
|  | int blkn, ci, tbl, k, ke; | 
|  | int v, v2, m; | 
|  |  | 
|  | /* Emit restart marker if needed */ | 
|  | if (cinfo->restart_interval) { | 
|  | if (entropy->restarts_to_go == 0) { | 
|  | emit_restart(cinfo, entropy->next_restart_num); | 
|  | entropy->restarts_to_go = cinfo->restart_interval; | 
|  | entropy->next_restart_num++; | 
|  | entropy->next_restart_num &= 7; | 
|  | } | 
|  | entropy->restarts_to_go--; | 
|  | } | 
|  |  | 
|  | /* Encode the MCU data blocks */ | 
|  | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { | 
|  | block = MCU_data[blkn]; | 
|  | ci = cinfo->MCU_membership[blkn]; | 
|  | compptr = cinfo->cur_comp_info[ci]; | 
|  |  | 
|  | /* Sections F.1.4.1 & F.1.4.4.1: Encoding of DC coefficients */ | 
|  |  | 
|  | tbl = compptr->dc_tbl_no; | 
|  |  | 
|  | /* Table F.4: Point to statistics bin S0 for DC coefficient coding */ | 
|  | st = entropy->dc_stats[tbl] + entropy->dc_context[ci]; | 
|  |  | 
|  | /* Figure F.4: Encode_DC_DIFF */ | 
|  | if ((v = (*block)[0] - entropy->last_dc_val[ci]) == 0) { | 
|  | arith_encode(cinfo, st, 0); | 
|  | entropy->dc_context[ci] = 0;      /* zero diff category */ | 
|  | } else { | 
|  | entropy->last_dc_val[ci] = (*block)[0]; | 
|  | arith_encode(cinfo, st, 1); | 
|  | /* Figure F.6: Encoding nonzero value v */ | 
|  | /* Figure F.7: Encoding the sign of v */ | 
|  | if (v > 0) { | 
|  | arith_encode(cinfo, st + 1, 0); /* Table F.4: SS = S0 + 1 */ | 
|  | st += 2;                        /* Table F.4: SP = S0 + 2 */ | 
|  | entropy->dc_context[ci] = 4;    /* small positive diff category */ | 
|  | } else { | 
|  | v = -v; | 
|  | arith_encode(cinfo, st + 1, 1); /* Table F.4: SS = S0 + 1 */ | 
|  | st += 3;                        /* Table F.4: SN = S0 + 3 */ | 
|  | entropy->dc_context[ci] = 8;    /* small negative diff category */ | 
|  | } | 
|  | /* Figure F.8: Encoding the magnitude category of v */ | 
|  | m = 0; | 
|  | if (v -= 1) { | 
|  | arith_encode(cinfo, st, 1); | 
|  | m = 1; | 
|  | v2 = v; | 
|  | st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */ | 
|  | while (v2 >>= 1) { | 
|  | arith_encode(cinfo, st, 1); | 
|  | m <<= 1; | 
|  | st += 1; | 
|  | } | 
|  | } | 
|  | arith_encode(cinfo, st, 0); | 
|  | /* Section F.1.4.4.1.2: Establish dc_context conditioning category */ | 
|  | if (m < (int)((1L << cinfo->arith_dc_L[tbl]) >> 1)) | 
|  | entropy->dc_context[ci] = 0;    /* zero diff category */ | 
|  | else if (m > (int)((1L << cinfo->arith_dc_U[tbl]) >> 1)) | 
|  | entropy->dc_context[ci] += 8;   /* large diff category */ | 
|  | /* Figure F.9: Encoding the magnitude bit pattern of v */ | 
|  | st += 14; | 
|  | while (m >>= 1) | 
|  | arith_encode(cinfo, st, (m & v) ? 1 : 0); | 
|  | } | 
|  |  | 
|  | /* Sections F.1.4.2 & F.1.4.4.2: Encoding of AC coefficients */ | 
|  |  | 
|  | tbl = compptr->ac_tbl_no; | 
|  |  | 
|  | /* Establish EOB (end-of-block) index */ | 
|  | for (ke = DCTSIZE2 - 1; ke > 0; ke--) | 
|  | if ((*block)[jpeg_natural_order[ke]]) break; | 
|  |  | 
|  | /* Figure F.5: Encode_AC_Coefficients */ | 
|  | for (k = 1; k <= ke; k++) { | 
|  | st = entropy->ac_stats[tbl] + 3 * (k - 1); | 
|  | arith_encode(cinfo, st, 0);       /* EOB decision */ | 
|  | while ((v = (*block)[jpeg_natural_order[k]]) == 0) { | 
|  | arith_encode(cinfo, st + 1, 0);  st += 3;  k++; | 
|  | } | 
|  | arith_encode(cinfo, st + 1, 1); | 
|  | /* Figure F.6: Encoding nonzero value v */ | 
|  | /* Figure F.7: Encoding the sign of v */ | 
|  | if (v > 0) { | 
|  | arith_encode(cinfo, entropy->fixed_bin, 0); | 
|  | } else { | 
|  | v = -v; | 
|  | arith_encode(cinfo, entropy->fixed_bin, 1); | 
|  | } | 
|  | st += 2; | 
|  | /* Figure F.8: Encoding the magnitude category of v */ | 
|  | m = 0; | 
|  | if (v -= 1) { | 
|  | arith_encode(cinfo, st, 1); | 
|  | m = 1; | 
|  | v2 = v; | 
|  | if (v2 >>= 1) { | 
|  | arith_encode(cinfo, st, 1); | 
|  | m <<= 1; | 
|  | st = entropy->ac_stats[tbl] + | 
|  | (k <= cinfo->arith_ac_K[tbl] ? 189 : 217); | 
|  | while (v2 >>= 1) { | 
|  | arith_encode(cinfo, st, 1); | 
|  | m <<= 1; | 
|  | st += 1; | 
|  | } | 
|  | } | 
|  | } | 
|  | arith_encode(cinfo, st, 0); | 
|  | /* Figure F.9: Encoding the magnitude bit pattern of v */ | 
|  | st += 14; | 
|  | while (m >>= 1) | 
|  | arith_encode(cinfo, st, (m & v) ? 1 : 0); | 
|  | } | 
|  | /* Encode EOB decision only if k <= DCTSIZE2 - 1 */ | 
|  | if (k <= DCTSIZE2 - 1) { | 
|  | st = entropy->ac_stats[tbl] + 3 * (k - 1); | 
|  | arith_encode(cinfo, st, 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | return TRUE; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Initialize for an arithmetic-compressed scan. | 
|  | */ | 
|  |  | 
|  | METHODDEF(void) | 
|  | start_pass(j_compress_ptr cinfo, boolean gather_statistics) | 
|  | { | 
|  | arith_entropy_ptr entropy = (arith_entropy_ptr)cinfo->entropy; | 
|  | int ci, tbl; | 
|  | jpeg_component_info *compptr; | 
|  |  | 
|  | if (gather_statistics) | 
|  | /* Make sure to avoid that in the master control logic! | 
|  | * We are fully adaptive here and need no extra | 
|  | * statistics gathering pass! | 
|  | */ | 
|  | ERREXIT(cinfo, JERR_NOT_COMPILED); | 
|  |  | 
|  | /* We assume jcmaster.c already validated the progressive scan parameters. */ | 
|  |  | 
|  | /* Select execution routines */ | 
|  | if (cinfo->progressive_mode) { | 
|  | if (cinfo->Ah == 0) { | 
|  | if (cinfo->Ss == 0) | 
|  | entropy->pub.encode_mcu = encode_mcu_DC_first; | 
|  | else | 
|  | entropy->pub.encode_mcu = encode_mcu_AC_first; | 
|  | } else { | 
|  | if (cinfo->Ss == 0) | 
|  | entropy->pub.encode_mcu = encode_mcu_DC_refine; | 
|  | else | 
|  | entropy->pub.encode_mcu = encode_mcu_AC_refine; | 
|  | } | 
|  | } else | 
|  | entropy->pub.encode_mcu = encode_mcu; | 
|  |  | 
|  | /* Allocate & initialize requested statistics areas */ | 
|  | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | 
|  | compptr = cinfo->cur_comp_info[ci]; | 
|  | /* DC needs no table for refinement scan */ | 
|  | if (cinfo->progressive_mode == 0 || (cinfo->Ss == 0 && cinfo->Ah == 0)) { | 
|  | tbl = compptr->dc_tbl_no; | 
|  | if (tbl < 0 || tbl >= NUM_ARITH_TBLS) | 
|  | ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl); | 
|  | if (entropy->dc_stats[tbl] == NULL) | 
|  | entropy->dc_stats[tbl] = (unsigned char *)(*cinfo->mem->alloc_small) | 
|  | ((j_common_ptr)cinfo, JPOOL_IMAGE, DC_STAT_BINS); | 
|  | MEMZERO(entropy->dc_stats[tbl], DC_STAT_BINS); | 
|  | /* Initialize DC predictions to 0 */ | 
|  | entropy->last_dc_val[ci] = 0; | 
|  | entropy->dc_context[ci] = 0; | 
|  | } | 
|  | /* AC needs no table when not present */ | 
|  | if (cinfo->progressive_mode == 0 || cinfo->Se) { | 
|  | tbl = compptr->ac_tbl_no; | 
|  | if (tbl < 0 || tbl >= NUM_ARITH_TBLS) | 
|  | ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl); | 
|  | if (entropy->ac_stats[tbl] == NULL) | 
|  | entropy->ac_stats[tbl] = (unsigned char *)(*cinfo->mem->alloc_small) | 
|  | ((j_common_ptr)cinfo, JPOOL_IMAGE, AC_STAT_BINS); | 
|  | MEMZERO(entropy->ac_stats[tbl], AC_STAT_BINS); | 
|  | #ifdef CALCULATE_SPECTRAL_CONDITIONING | 
|  | if (cinfo->progressive_mode) | 
|  | /* Section G.1.3.2: Set appropriate arithmetic conditioning value Kx */ | 
|  | cinfo->arith_ac_K[tbl] = cinfo->Ss + | 
|  | ((8 + cinfo->Se - cinfo->Ss) >> 4); | 
|  | #endif | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Initialize arithmetic encoding variables */ | 
|  | entropy->c = 0; | 
|  | entropy->a = 0x10000L; | 
|  | entropy->sc = 0; | 
|  | entropy->zc = 0; | 
|  | entropy->ct = 11; | 
|  | entropy->buffer = -1;  /* empty */ | 
|  |  | 
|  | /* Initialize restart stuff */ | 
|  | entropy->restarts_to_go = cinfo->restart_interval; | 
|  | entropy->next_restart_num = 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Module initialization routine for arithmetic entropy encoding. | 
|  | */ | 
|  |  | 
|  | GLOBAL(void) | 
|  | jinit_arith_encoder(j_compress_ptr cinfo) | 
|  | { | 
|  | arith_entropy_ptr entropy; | 
|  | int i; | 
|  |  | 
|  | entropy = (arith_entropy_ptr) | 
|  | (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, | 
|  | sizeof(arith_entropy_encoder)); | 
|  | cinfo->entropy = (struct jpeg_entropy_encoder *)entropy; | 
|  | entropy->pub.start_pass = start_pass; | 
|  | entropy->pub.finish_pass = finish_pass; | 
|  |  | 
|  | /* Mark tables unallocated */ | 
|  | for (i = 0; i < NUM_ARITH_TBLS; i++) { | 
|  | entropy->dc_stats[i] = NULL; | 
|  | entropy->ac_stats[i] = NULL; | 
|  | } | 
|  |  | 
|  | /* Initialize index for fixed probability estimation */ | 
|  | entropy->fixed_bin[0] = 113; | 
|  | } |