blob: 89b126e23c9aa5714205defc8fc146fa54b2408e [file] [log] [blame]
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
* vim: set ts=8 sts=4 et sw=4 tw=99:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "jit/Bailouts.h"
#include "jit/JitCompartment.h"
#include "jit/JitFrames.h"
#include "jit/Linker.h"
#ifdef JS_ION_PERF
# include "jit/PerfSpewer.h"
#endif
#include "jit/arm64/SharedICHelpers-arm64.h"
#include "jit/VMFunctions.h"
#include "jit/MacroAssembler-inl.h"
using namespace js;
using namespace js::jit;
// All registers to save and restore. This includes the stack pointer, since we
// use the ability to reference register values on the stack by index.
static const LiveRegisterSet AllRegs =
LiveRegisterSet(GeneralRegisterSet(Registers::AllMask & ~(1 << 31 | 1 << 30 | 1 << 29| 1 << 28)),
FloatRegisterSet(FloatRegisters::AllMask));
/* This method generates a trampoline on ARM64 for a c++ function with
* the following signature:
* bool blah(void* code, int argc, Value* argv, JSObject* scopeChain, Value* vp)
* ...using standard AArch64 calling convention
*/
JitCode*
JitRuntime::generateEnterJIT(JSContext* cx, EnterJitType type)
{
MacroAssembler masm(cx);
const Register reg_code = IntArgReg0; // EnterJitData::jitcode.
const Register reg_argc = IntArgReg1; // EnterJitData::maxArgc.
const Register reg_argv = IntArgReg2; // EnterJitData::maxArgv.
const Register reg_osrFrame = IntArgReg3; // EnterJitData::osrFrame.
const Register reg_callee = IntArgReg4; // EnterJitData::calleeToken.
const Register reg_scope = IntArgReg5; // EnterJitData::scopeChain.
const Register reg_osrNStack = IntArgReg6; // EnterJitData::osrNumStackValues.
const Register reg_vp = IntArgReg7; // Address of EnterJitData::result.
MOZ_ASSERT(OsrFrameReg == IntArgReg3);
// During the pushes below, use the normal stack pointer.
masm.SetStackPointer64(sp);
// Save old frame pointer and return address; set new frame pointer.
masm.push(r29, r30);
masm.moveStackPtrTo(r29);
// Save callee-save integer registers.
// Also save x7 (reg_vp) and x30 (lr), for use later.
masm.push(r19, r20, r21, r22);
masm.push(r23, r24, r25, r26);
masm.push(r27, r28, r7, r30);
// Save callee-save floating-point registers.
// AArch64 ABI specifies that only the lower 64 bits must be saved.
masm.push(d8, d9, d10, d11);
masm.push(d12, d13, d14, d15);
#ifdef DEBUG
// Emit stack canaries.
masm.movePtr(ImmWord(0xdeadd00d), r23);
masm.movePtr(ImmWord(0xdeadd11d), r24);
masm.push(r23, r24);
#endif
// Common code below attempts to push single registers at a time,
// which breaks the stack pointer's 16-byte alignment requirement.
// Note that movePtr() is invalid because StackPointer is treated as xzr.
//
// FIXME: After testing, this entire function should be rewritten to not
// use the PseudoStackPointer: since the amount of data pushed is precalculated,
// we can just allocate the whole frame header at once and index off sp.
// This will save a significant number of instructions where Push() updates sp.
masm.Mov(PseudoStackPointer64, sp);
masm.SetStackPointer64(PseudoStackPointer64);
// Save the stack pointer at this point for Baseline OSR.
masm.moveStackPtrTo(BaselineFrameReg);
// Remember stack depth without padding and arguments.
masm.moveStackPtrTo(r19);
// If constructing, include newTarget in argument vector.
{
Label noNewTarget;
Imm32 constructingToken(CalleeToken_FunctionConstructing);
masm.branchTest32(Assembler::Zero, reg_callee, constructingToken, &noNewTarget);
masm.add32(Imm32(1), reg_argc);
masm.bind(&noNewTarget);
}
// JitFrameLayout is as follows (higher is higher in memory):
// N*8 - [ JS argument vector ] (base 16-byte aligned)
// 8 - numActualArgs
// 8 - calleeToken (16-byte aligned)
// 8 - frameDescriptor
// 8 - returnAddress (16-byte aligned, pushed by callee)
// Push the argument vector onto the stack.
// WARNING: destructively modifies reg_argv
{
vixl::UseScratchRegisterScope temps(&masm.asVIXL());
const ARMRegister tmp_argc = temps.AcquireX();
const ARMRegister tmp_sp = temps.AcquireX();
Label noArguments;
Label loopHead;
masm.movePtr(reg_argc, tmp_argc.asUnsized());
// sp -= 8
// Since we're using PostIndex Str below, this is necessary to avoid overwriting
// the SPS mark pushed above.
masm.subFromStackPtr(Imm32(8));
// sp -= 8 * argc
masm.Sub(PseudoStackPointer64, PseudoStackPointer64, Operand(tmp_argc, vixl::SXTX, 3));
// Give sp 16-byte alignment and sync stack pointers.
masm.andToStackPtr(Imm32(~0xff));
masm.moveStackPtrTo(tmp_sp.asUnsized());
masm.branchTestPtr(Assembler::Zero, reg_argc, reg_argc, &noArguments);
// Begin argument-pushing loop.
// This could be optimized using Ldp and Stp.
{
masm.bind(&loopHead);
// Load an argument from argv, then increment argv by 8.
masm.Ldr(x24, MemOperand(ARMRegister(reg_argv, 64), Operand(8), vixl::PostIndex));
// Store the argument to tmp_sp, then increment tmp_sp by 8.
masm.Str(x24, MemOperand(tmp_sp, Operand(8), vixl::PostIndex));
// Set the condition codes for |cmp tmp_argc, 2| (using the old value).
masm.Subs(tmp_argc, tmp_argc, Operand(1));
// Branch if arguments remain.
masm.B(&loopHead, vixl::Condition::ge);
}
masm.bind(&noArguments);
}
masm.checkStackAlignment();
// Push the number of actual arguments and the calleeToken.
// The result address is used to store the actual number of arguments
// without adding an argument to EnterJIT.
masm.unboxInt32(Address(reg_vp, 0x0), ip0);
masm.push(ip0, reg_callee);
masm.checkStackAlignment();
// Calculate the number of bytes pushed so far.
masm.subStackPtrFrom(r19);
// Push the frameDescriptor.
masm.makeFrameDescriptor(r19, JitFrame_Entry);
masm.Push(r19);
Label osrReturnPoint;
if (type == EnterJitBaseline) {
// Check for OSR.
Label notOsr;
masm.branchTestPtr(Assembler::Zero, OsrFrameReg, OsrFrameReg, &notOsr);
// Push return address and previous frame pointer.
masm.Adr(ScratchReg2_64, &osrReturnPoint);
masm.push(ScratchReg2, BaselineFrameReg);
// Reserve frame.
masm.subFromStackPtr(Imm32(BaselineFrame::Size()));
masm.moveStackPtrTo(BaselineFrameReg);
// Reserve space for locals and stack values.
masm.Lsl(w19, ARMRegister(reg_osrNStack, 32), 3); // w19 = num_stack_values * sizeof(Value).
masm.subFromStackPtr(r19);
// Enter exit frame.
masm.addPtr(Imm32(BaselineFrame::Size() + BaselineFrame::FramePointerOffset), r19);
masm.makeFrameDescriptor(r19, JitFrame_BaselineJS);
masm.asVIXL().Push(x19, xzr); // Push xzr for a fake return address.
// No GC things to mark: push a bare token.
masm.enterFakeExitFrame(ExitFrameLayoutBareToken);
masm.push(BaselineFrameReg, reg_code);
// Initialize the frame, including filling in the slots.
masm.setupUnalignedABICall(r19);
masm.passABIArg(BaselineFrameReg); // BaselineFrame.
masm.passABIArg(reg_osrFrame); // InterpreterFrame.
masm.passABIArg(reg_osrNStack);
masm.callWithABI(JS_FUNC_TO_DATA_PTR(void*, jit::InitBaselineFrameForOsr));
masm.pop(r19, BaselineFrameReg);
MOZ_ASSERT(r19 != ReturnReg);
masm.addToStackPtr(Imm32(ExitFrameLayout::SizeWithFooter()));
masm.addPtr(Imm32(BaselineFrame::Size()), BaselineFrameReg);
Label error;
masm.branchIfFalseBool(ReturnReg, &error);
masm.jump(r19);
// OOM: load error value, discard return address and previous frame
// pointer, and return.
masm.bind(&error);
masm.Add(masm.GetStackPointer64(), BaselineFrameReg64, Operand(2 * sizeof(uintptr_t)));
masm.syncStackPtr();
masm.moveValue(MagicValue(JS_ION_ERROR), JSReturnOperand);
masm.B(&osrReturnPoint);
masm.bind(&notOsr);
masm.movePtr(reg_scope, R1_);
}
// Call function.
// Since AArch64 doesn't have the pc register available, the callee must push lr.
masm.callJitNoProfiler(reg_code);
// Baseline OSR will return here.
if (type == EnterJitBaseline)
masm.bind(&osrReturnPoint);
// Return back to SP.
masm.Pop(r19);
masm.Add(masm.GetStackPointer64(), masm.GetStackPointer64(),
Operand(x19, vixl::LSR, FRAMESIZE_SHIFT));
masm.syncStackPtr();
masm.SetStackPointer64(sp);
#ifdef DEBUG
// Check that canaries placed on function entry are still present.
masm.pop(r24, r23);
Label x23OK, x24OK;
masm.branchPtr(Assembler::Equal, r23, ImmWord(0xdeadd00d), &x23OK);
masm.breakpoint();
masm.bind(&x23OK);
masm.branchPtr(Assembler::Equal, r24, ImmWord(0xdeadd11d), &x24OK);
masm.breakpoint();
masm.bind(&x24OK);
#endif
// Restore callee-save floating-point registers.
masm.pop(d15, d14, d13, d12);
masm.pop(d11, d10, d9, d8);
// Restore callee-save integer registers.
// Also restore x7 (reg_vp) and x30 (lr).
masm.pop(r30, r7, r28, r27);
masm.pop(r26, r25, r24, r23);
masm.pop(r22, r21, r20, r19);
// Store return value (in JSReturnReg = x2 to just-popped reg_vp).
masm.storeValue(JSReturnOperand, Address(reg_vp, 0));
// Restore old frame pointer.
masm.pop(r30, r29);
// Return using the value popped into x30.
masm.abiret();
Linker linker(masm);
JitCode* code = linker.newCode<NoGC>(cx, OTHER_CODE);
#ifdef JS_ION_PERF
writePerfSpewerJitCodeProfile(code, "EnterJIT");
#endif
return code;
}
JitCode*
JitRuntime::generateInvalidator(JSContext* cx)
{
MacroAssembler masm;
masm.push(r0, r1, r2, r3);
masm.PushRegsInMask(AllRegs);
masm.moveStackPtrTo(r0);
masm.Sub(x1, masm.GetStackPointer64(), Operand(sizeof(size_t)));
masm.Sub(x2, masm.GetStackPointer64(), Operand(sizeof(size_t) + sizeof(void*)));
masm.moveToStackPtr(r2);
masm.setupUnalignedABICall(r10);
masm.passABIArg(r0);
masm.passABIArg(r1);
masm.passABIArg(r2);
masm.callWithABI(JS_FUNC_TO_DATA_PTR(void*, InvalidationBailout));
masm.pop(r2, r1);
masm.Add(masm.GetStackPointer64(), masm.GetStackPointer64(), x1);
masm.Add(masm.GetStackPointer64(), masm.GetStackPointer64(),
Operand(sizeof(InvalidationBailoutStack)));
masm.syncStackPtr();
JitCode* bailoutTail = cx->runtime()->jitRuntime()->getBailoutTail();
masm.branch(bailoutTail);
Linker linker(masm);
return linker.newCode<NoGC>(cx, OTHER_CODE);
}
JitCode*
JitRuntime::generateArgumentsRectifier(JSContext* cx, void** returnAddrOut)
{
MacroAssembler masm;
// Save the return address for later.
masm.push(lr);
// Load the information that the rectifier needs from the stack.
masm.Ldr(w0, MemOperand(masm.GetStackPointer64(), RectifierFrameLayout::offsetOfNumActualArgs()));
masm.Ldr(x1, MemOperand(masm.GetStackPointer64(), RectifierFrameLayout::offsetOfCalleeToken()));
// Extract a JSFunction pointer from the callee token and keep the
// intermediary to avoid later recalculation.
masm.And(x5, x1, Operand(CalleeTokenMask));
// Get the arguments from the function object.
masm.Ldrh(x6, MemOperand(x5, JSFunction::offsetOfNargs()));
static_assert(CalleeToken_FunctionConstructing == 0x1, "Constructing must be low-order bit");
masm.And(x4, x1, Operand(CalleeToken_FunctionConstructing));
masm.Add(x7, x6, x4);
// Calculate the position that our arguments are at before sp gets modified.
MOZ_ASSERT(ArgumentsRectifierReg == r8, "x8 used for argc in Arguments Rectifier");
masm.Add(x3, masm.GetStackPointer64(), Operand(x8, vixl::LSL, 3));
masm.Add(x3, x3, Operand(sizeof(RectifierFrameLayout)));
// Pad to a multiple of 16 bytes. This neglects the |this| value,
// which will also be pushed, because the rest of the frame will
// round off that value. See pushes of |argc|, |callee| and |desc| below.
Label noPadding;
masm.Tbnz(x7, 0, &noPadding);
masm.asVIXL().Push(xzr);
masm.Add(x7, x7, Operand(1));
masm.bind(&noPadding);
{
Label notConstructing;
masm.Cbz(x4, &notConstructing);
// new.target lives at the end of the pushed args
// NB: The arg vector holder starts at the beginning of the last arg,
// add a value to get to argv[argc]
masm.loadPtr(Address(r3, sizeof(Value)), r4);
masm.Push(r4);
masm.bind(&notConstructing);
}
// Calculate the number of undefineds that need to be pushed.
masm.Sub(w2, w6, w8);
// Put an undefined in a register so it can be pushed.
masm.moveValue(UndefinedValue(), r4);
// Push undefined N times.
{
Label undefLoopTop;
masm.bind(&undefLoopTop);
masm.Push(r4);
masm.Subs(w2, w2, Operand(1));
masm.B(&undefLoopTop, Assembler::NonZero);
}
// Arguments copy loop. Copy for x8 >= 0 to include |this|.
{
Label copyLoopTop;
masm.bind(&copyLoopTop);
masm.Ldr(x4, MemOperand(x3, -sizeof(Value), vixl::PostIndex));
masm.Push(r4);
masm.Subs(x8, x8, Operand(1));
masm.B(&copyLoopTop, Assembler::NotSigned);
}
// Fix up the size of the stack frame. +1 accounts for |this|.
masm.Add(x6, x7, Operand(1));
masm.Lsl(x6, x6, 3);
// Make that into a frame descriptor.
masm.makeFrameDescriptor(r6, JitFrame_Rectifier);
masm.push(r0, // Number of actual arguments.
r1, // Callee token.
r6); // Frame descriptor.
// Load the address of the code that is getting called.
masm.Ldr(x3, MemOperand(x5, JSFunction::offsetOfNativeOrScript()));
masm.loadBaselineOrIonRaw(r3, r3, nullptr);
uint32_t returnOffset = masm.callJitNoProfiler(r3);
// Clean up!
// Get the size of the stack frame, and clean up the later fixed frame.
masm.Ldr(x4, MemOperand(masm.GetStackPointer64(), 24, vixl::PostIndex));
// Now that the size of the stack frame sans the fixed frame has been loaded,
// add that onto the stack pointer.
masm.Add(masm.GetStackPointer64(), masm.GetStackPointer64(),
Operand(x4, vixl::LSR, FRAMESIZE_SHIFT));
// Pop the return address from earlier and branch.
masm.ret();
Linker linker(masm);
JitCode* code = linker.newCode<NoGC>(cx, OTHER_CODE);
if (returnAddrOut)
*returnAddrOut = (void*) (code->raw() + returnOffset);
return code;
}
static void
PushBailoutFrame(MacroAssembler& masm, uint32_t frameClass, Register spArg)
{
// the stack should look like:
// [IonFrame]
// bailoutFrame.registersnapshot
// bailoutFrame.fpsnapshot
// bailoutFrame.snapshotOffset
// bailoutFrame.frameSize
// STEP 1a: Save our register sets to the stack so Bailout() can read
// everything.
// sp % 8 == 0
// We don't have to push everything, but this is likely easier.
// Setting regs_.
masm.subFromStackPtr(Imm32(Registers::TotalPhys * sizeof(void*)));
for (uint32_t i = 0; i < Registers::TotalPhys; i += 2) {
masm.Stp(ARMRegister::XRegFromCode(i),
ARMRegister::XRegFromCode(i + 1),
MemOperand(masm.GetStackPointer64(), i * sizeof(void*)));
}
// Since our datastructures for stack inspection are compile-time fixed,
// if there are only 16 double registers, then we need to reserve
// space on the stack for the missing 16.
masm.subFromStackPtr(Imm32(FloatRegisters::TotalPhys * sizeof(double)));
for (uint32_t i = 0; i < FloatRegisters::TotalPhys; i += 2) {
masm.Stp(ARMFPRegister::DRegFromCode(i),
ARMFPRegister::DRegFromCode(i + 1),
MemOperand(masm.GetStackPointer64(), i * sizeof(void*)));
}
// STEP 1b: Push both the "return address" of the function call (the address
// of the instruction after the call that we used to get here) as
// well as the callee token onto the stack. The return address is
// currently in r14. We will proceed by loading the callee token
// into a sacrificial register <= r14, then pushing both onto the
// stack.
// Now place the frameClass onto the stack, via a register.
masm.Mov(x9, frameClass);
// And onto the stack. Since the stack is full, we need to put this one past
// the end of the current stack. Sadly, the ABI says that we need to always
// point to the lowest place that has been written. The OS is free to do
// whatever it wants below sp.
masm.push(r30, r9);
masm.moveStackPtrTo(spArg);
}
static void
GenerateBailoutThunk(JSContext* cx, MacroAssembler& masm, uint32_t frameClass)
{
PushBailoutFrame(masm, frameClass, r0);
// SP % 8 == 4
// STEP 1c: Call the bailout function, giving a pointer to the
// structure we just blitted onto the stack.
// Make space for the BaselineBailoutInfo* outparam.
const int sizeOfBailoutInfo = sizeof(void*) * 2;
masm.reserveStack(sizeOfBailoutInfo);
masm.moveStackPtrTo(r1);
masm.setupUnalignedABICall(r2);
masm.passABIArg(r0);
masm.passABIArg(r1);
masm.callWithABI(JS_FUNC_TO_DATA_PTR(void*, Bailout));
masm.Ldr(x2, MemOperand(masm.GetStackPointer64(), 0));
masm.addToStackPtr(Imm32(sizeOfBailoutInfo));
static const uint32_t BailoutDataSize = sizeof(void*) * Registers::Total +
sizeof(double) * FloatRegisters::TotalPhys;
if (frameClass == NO_FRAME_SIZE_CLASS_ID) {
vixl::UseScratchRegisterScope temps(&masm.asVIXL());
const ARMRegister scratch64 = temps.AcquireX();
masm.Ldr(scratch64, MemOperand(masm.GetStackPointer64(), sizeof(uintptr_t)));
masm.addToStackPtr(Imm32(BailoutDataSize + 32));
masm.addToStackPtr(scratch64.asUnsized());
} else {
uint32_t frameSize = FrameSizeClass::FromClass(frameClass).frameSize();
masm.addToStackPtr(Imm32(frameSize + BailoutDataSize + sizeof(void*)));
}
// Jump to shared bailout tail. The BailoutInfo pointer has to be in r9.
JitCode* bailoutTail = cx->runtime()->jitRuntime()->getBailoutTail();
masm.branch(bailoutTail);
}
JitCode*
JitRuntime::generateBailoutTable(JSContext* cx, uint32_t frameClass)
{
// FIXME: Implement.
MacroAssembler masm;
masm.breakpoint();
Linker linker(masm);
return linker.newCode<NoGC>(cx, OTHER_CODE);
}
JitCode*
JitRuntime::generateBailoutHandler(JSContext* cx)
{
MacroAssembler masm(cx);
GenerateBailoutThunk(cx, masm, NO_FRAME_SIZE_CLASS_ID);
#ifdef JS_ION_PERF
writePerfSpewerJitCodeProfile(code, "BailoutHandler");
#endif
Linker linker(masm);
return linker.newCode<NoGC>(cx, OTHER_CODE);
}
JitCode*
JitRuntime::generateVMWrapper(JSContext* cx, const VMFunction& f)
{
MOZ_ASSERT(functionWrappers_);
MOZ_ASSERT(functionWrappers_->initialized());
VMWrapperMap::AddPtr p = functionWrappers_->lookupForAdd(&f);
if (p)
return p->value();
MacroAssembler masm(cx);
// Avoid conflicts with argument registers while discarding the result after
// the function call.
AllocatableGeneralRegisterSet regs(Register::Codes::WrapperMask);
// Wrapper register set is a superset of the Volatile register set.
JS_STATIC_ASSERT((Register::Codes::VolatileMask & ~Register::Codes::WrapperMask) == 0);
// Unlike on other platforms, it is the responsibility of the VM *callee* to
// push the return address, while the caller must ensure that the address
// is stored in lr on entry. This allows the VM wrapper to work with both direct
// calls and tail calls.
masm.push(lr);
// First argument is the JSContext.
Register reg_cx = IntArgReg0;
regs.take(reg_cx);
// Stack is:
// ... frame ...
// +12 [args]
// +8 descriptor
// +0 returnAddress (pushed by this function, caller sets as lr)
//
// We're aligned to an exit frame, so link it up.
masm.enterExitFrame(&f);
masm.loadJSContext(reg_cx);
// Save the current stack pointer as the base for copying arguments.
Register argsBase = InvalidReg;
if (f.explicitArgs) {
// argsBase can't be an argument register. Bad things would happen if
// the MoveResolver didn't throw an assertion failure first.
argsBase = r8;
regs.take(argsBase);
masm.Add(ARMRegister(argsBase, 64), masm.GetStackPointer64(),
Operand(ExitFrameLayout::SizeWithFooter()));
}
// Reserve space for any outparameter.
Register outReg = InvalidReg;
switch (f.outParam) {
case Type_Value:
outReg = regs.takeAny();
masm.reserveStack(sizeof(Value));
masm.moveStackPtrTo(outReg);
break;
case Type_Handle:
outReg = regs.takeAny();
masm.PushEmptyRooted(f.outParamRootType);
masm.moveStackPtrTo(outReg);
break;
case Type_Int32:
case Type_Bool:
outReg = regs.takeAny();
masm.reserveStack(sizeof(int64_t));
masm.moveStackPtrTo(outReg);
break;
case Type_Double:
outReg = regs.takeAny();
masm.reserveStack(sizeof(double));
masm.moveStackPtrTo(outReg);
break;
case Type_Pointer:
outReg = regs.takeAny();
masm.reserveStack(sizeof(uintptr_t));
masm.moveStackPtrTo(outReg);
break;
default:
MOZ_ASSERT(f.outParam == Type_Void);
break;
}
masm.setupUnalignedABICall(regs.getAny());
masm.passABIArg(reg_cx);
size_t argDisp = 0;
// Copy arguments.
for (uint32_t explicitArg = 0; explicitArg < f.explicitArgs; explicitArg++) {
MoveOperand from;
switch (f.argProperties(explicitArg)) {
case VMFunction::WordByValue:
masm.passABIArg(MoveOperand(argsBase, argDisp),
(f.argPassedInFloatReg(explicitArg) ? MoveOp::DOUBLE : MoveOp::GENERAL));
argDisp += sizeof(void*);
break;
case VMFunction::WordByRef:
masm.passABIArg(MoveOperand(argsBase, argDisp, MoveOperand::EFFECTIVE_ADDRESS),
MoveOp::GENERAL);
argDisp += sizeof(void*);
break;
case VMFunction::DoubleByValue:
case VMFunction::DoubleByRef:
MOZ_CRASH("NYI: AArch64 callVM should not be used with 128bit values.");
}
}
// Copy the semi-implicit outparam, if any.
// It is not a C++-abi outparam, which would get passed in the
// outparam register, but a real parameter to the function, which
// was stack-allocated above.
if (outReg != InvalidReg)
masm.passABIArg(outReg);
masm.callWithABI(f.wrapped);
// SP is used to transfer stack across call boundaries.
if (!masm.GetStackPointer64().Is(vixl::sp))
masm.Mov(masm.GetStackPointer64(), vixl::sp);
// Test for failure.
switch (f.failType()) {
case Type_Object:
masm.branchTestPtr(Assembler::Zero, r0, r0, masm.failureLabel());
break;
case Type_Bool:
masm.branchIfFalseBool(r0, masm.failureLabel());
break;
default:
MOZ_CRASH("unknown failure kind");
}
// Load the outparam and free any allocated stack.
switch (f.outParam) {
case Type_Value:
masm.Ldr(ARMRegister(JSReturnReg, 64), MemOperand(masm.GetStackPointer64()));
masm.freeStack(sizeof(Value));
break;
case Type_Handle:
masm.popRooted(f.outParamRootType, ReturnReg, JSReturnOperand);
break;
case Type_Int32:
masm.Ldr(ARMRegister(ReturnReg, 32), MemOperand(masm.GetStackPointer64()));
masm.freeStack(sizeof(int64_t));
break;
case Type_Bool:
masm.Ldrb(ARMRegister(ReturnReg, 32), MemOperand(masm.GetStackPointer64()));
masm.freeStack(sizeof(int64_t));
break;
case Type_Double:
MOZ_ASSERT(cx->runtime()->jitSupportsFloatingPoint);
masm.Ldr(ARMFPRegister(ReturnDoubleReg, 64), MemOperand(masm.GetStackPointer64()));
masm.freeStack(sizeof(double));
break;
case Type_Pointer:
masm.Ldr(ARMRegister(ReturnReg, 64), MemOperand(masm.GetStackPointer64()));
masm.freeStack(sizeof(uintptr_t));
break;
default:
MOZ_ASSERT(f.outParam == Type_Void);
break;
}
masm.leaveExitFrame();
masm.retn(Imm32(sizeof(ExitFrameLayout) +
f.explicitStackSlots() * sizeof(void*) +
f.extraValuesToPop * sizeof(Value)));
Linker linker(masm);
JitCode* wrapper = linker.newCode<NoGC>(cx, OTHER_CODE);
if (!wrapper)
return nullptr;
#ifdef JS_ION_PERF
writePerfSpewerJitCodeProfile(wrapper, "VMWrapper");
#endif
// linker.newCode may trigger a GC and sweep functionWrappers_ so we have to
// use relookupOrAdd instead of add.
if (!functionWrappers_->relookupOrAdd(p, &f, wrapper))
return nullptr;
return wrapper;
}
JitCode*
JitRuntime::generatePreBarrier(JSContext* cx, MIRType type)
{
MacroAssembler masm(cx);
LiveRegisterSet regs = LiveRegisterSet(GeneralRegisterSet(Registers::VolatileMask),
FloatRegisterSet(FloatRegisters::VolatileMask));
// Also preserve the return address.
regs.add(lr);
masm.PushRegsInMask(regs);
MOZ_ASSERT(PreBarrierReg == r1);
masm.movePtr(ImmPtr(cx->runtime()), r3);
masm.setupUnalignedABICall(r0);
masm.passABIArg(r3);
masm.passABIArg(PreBarrierReg);
masm.callWithABI(IonMarkFunction(type));
// Pop the volatile regs and restore LR.
masm.PopRegsInMask(regs);
masm.abiret();
Linker linker(masm);
return linker.newCode<NoGC>(cx, OTHER_CODE);
}
typedef bool (*HandleDebugTrapFn)(JSContext*, BaselineFrame*, uint8_t*, bool*);
static const VMFunction HandleDebugTrapInfo = FunctionInfo<HandleDebugTrapFn>(HandleDebugTrap);
JitCode*
JitRuntime::generateDebugTrapHandler(JSContext* cx)
{
MacroAssembler masm(cx);
#ifndef JS_USE_LINK_REGISTER
// The first value contains the return addres,
// which we pull into ICTailCallReg for tail calls.
masm.setFramePushed(sizeof(intptr_t));
#endif
Register scratch1 = r0;
Register scratch2 = r1;
// Load BaselineFrame pointer into scratch1.
masm.Sub(ARMRegister(scratch1, 64), BaselineFrameReg64, Operand(BaselineFrame::Size()));
// Enter a stub frame and call the HandleDebugTrap VM function. Ensure the
// stub frame has a nullptr ICStub pointer, since this pointer is marked
// during GC.
masm.movePtr(ImmPtr(nullptr), ICStubReg);
EmitBaselineEnterStubFrame(masm, scratch2);
JitCode* code = cx->runtime()->jitRuntime()->getVMWrapper(HandleDebugTrapInfo);
if (!code)
return nullptr;
masm.asVIXL().Push(vixl::lr, ARMRegister(scratch1, 64));
EmitBaselineCallVM(code, masm);
EmitBaselineLeaveStubFrame(masm);
// If the stub returns |true|, we have to perform a forced return (return
// from the JS frame). If the stub returns |false|, just return from the
// trap stub so that execution continues at the current pc.
Label forcedReturn;
masm.branchTest32(Assembler::NonZero, ReturnReg, ReturnReg, &forcedReturn);
masm.abiret();
masm.bind(&forcedReturn);
masm.loadValue(Address(BaselineFrameReg, BaselineFrame::reverseOffsetOfReturnValue()),
JSReturnOperand);
masm.Mov(masm.GetStackPointer64(), BaselineFrameReg64);
masm.pop(BaselineFrameReg, lr);
masm.syncStackPtr();
masm.abiret();
Linker linker(masm);
JitCode* codeDbg = linker.newCode<NoGC>(cx, OTHER_CODE);
#ifdef JS_ION_PERF
writePerfSpewerJitCodeProfile(codeDbg, "DebugTrapHandler");
#endif
return codeDbg;
}
JitCode*
JitRuntime::generateExceptionTailStub(JSContext* cx, void* handler)
{
MacroAssembler masm(cx);
masm.handleFailureWithHandlerTail(handler);
Linker linker(masm);
JitCode* code = linker.newCode<NoGC>(cx, OTHER_CODE);
#ifdef JS_ION_PERF
writePerfSpewerJitCodeProfile(code, "ExceptionTailStub");
#endif
return code;
}
JitCode*
JitRuntime::generateBailoutTailStub(JSContext* cx)
{
MacroAssembler masm(cx);
masm.generateBailoutTail(r1, r2);
Linker linker(masm);
JitCode* code = linker.newCode<NoGC>(cx, OTHER_CODE);
#ifdef JS_ION_PERF
writePerfSpewerJitCodeProfile(code, "BailoutTailStub");
#endif
return code;
}
JitCode*
JitRuntime::generateProfilerExitFrameTailStub(JSContext* cx)
{
MacroAssembler masm;
Register scratch1 = r8;
Register scratch2 = r9;
Register scratch3 = r10;
Register scratch4 = r11;
//
// The code generated below expects that the current stack pointer points
// to an Ion or Baseline frame, at the state it would be immediately
// before a ret(). Thus, after this stub's business is done, it executes
// a ret() and returns directly to the caller script, on behalf of the
// callee script that jumped to this code.
//
// Thus the expected stack is:
//
// StackPointer ----+
// v
// ..., ActualArgc, CalleeToken, Descriptor, ReturnAddr
// MEM-HI MEM-LOW
//
//
// The generated jitcode is responsible for overwriting the
// jitActivation->lastProfilingFrame field with a pointer to the previous
// Ion or Baseline jit-frame that was pushed before this one. It is also
// responsible for overwriting jitActivation->lastProfilingCallSite with
// the return address into that frame. The frame could either be an
// immediate "caller" frame, or it could be a frame in a previous
// JitActivation (if the current frame was entered from C++, and the C++
// was entered by some caller jit-frame further down the stack).
//
// So this jitcode is responsible for "walking up" the jit stack, finding
// the previous Ion or Baseline JS frame, and storing its address and the
// return address into the appropriate fields on the current jitActivation.
//
// There are a fixed number of different path types that can lead to the
// current frame, which is either a baseline or ion frame:
//
// <Baseline-Or-Ion>
// ^
// |
// ^--- Ion
// |
// ^--- Baseline Stub <---- Baseline
// |
// ^--- Argument Rectifier
// | ^
// | |
// | ^--- Ion
// | |
// | ^--- Baseline Stub <---- Baseline
// |
// ^--- Entry Frame (From C++)
//
Register actReg = scratch4;
AbsoluteAddress activationAddr(GetJitContext()->runtime->addressOfProfilingActivation());
masm.loadPtr(activationAddr, actReg);
Address lastProfilingFrame(actReg, JitActivation::offsetOfLastProfilingFrame());
Address lastProfilingCallSite(actReg, JitActivation::offsetOfLastProfilingCallSite());
#ifdef DEBUG
// Ensure that frame we are exiting is current lastProfilingFrame
{
masm.loadPtr(lastProfilingFrame, scratch1);
Label checkOk;
masm.branchPtr(Assembler::Equal, scratch1, ImmWord(0), &checkOk);
masm.branchStackPtr(Assembler::Equal, scratch1, &checkOk);
masm.assumeUnreachable("Mismatch between stored lastProfilingFrame and current stack pointer.");
masm.bind(&checkOk);
}
#endif
// Load the frame descriptor into |scratch1|, figure out what to do depending on its type.
masm.loadPtr(Address(masm.getStackPointer(), JitFrameLayout::offsetOfDescriptor()), scratch1);
// Going into the conditionals, we will have:
// FrameDescriptor.size in scratch1
// FrameDescriptor.type in scratch2
masm.and32(Imm32((1 << FRAMESIZE_SHIFT) - 1), scratch1, scratch2);
masm.rshiftPtr(Imm32(FRAMESIZE_SHIFT), scratch1);
// Handling of each case is dependent on FrameDescriptor.type
Label handle_IonJS;
Label handle_BaselineStub;
Label handle_Rectifier;
Label handle_IonAccessorIC;
Label handle_Entry;
Label end;
masm.branch32(Assembler::Equal, scratch2, Imm32(JitFrame_IonJS), &handle_IonJS);
masm.branch32(Assembler::Equal, scratch2, Imm32(JitFrame_BaselineJS), &handle_IonJS);
masm.branch32(Assembler::Equal, scratch2, Imm32(JitFrame_BaselineStub), &handle_BaselineStub);
masm.branch32(Assembler::Equal, scratch2, Imm32(JitFrame_Rectifier), &handle_Rectifier);
masm.branch32(Assembler::Equal, scratch2, Imm32(JitFrame_IonAccessorIC), &handle_IonAccessorIC);
masm.branch32(Assembler::Equal, scratch2, Imm32(JitFrame_Entry), &handle_Entry);
masm.assumeUnreachable("Invalid caller frame type when exiting from Ion frame.");
//
// JitFrame_IonJS
//
// Stack layout:
// ...
// Ion-Descriptor
// Prev-FP ---> Ion-ReturnAddr
// ... previous frame data ... |- Descriptor.Size
// ... arguments ... |
// ActualArgc |
// CalleeToken |- JitFrameLayout::Size()
// Descriptor |
// FP -----> ReturnAddr |
//
masm.bind(&handle_IonJS);
{
// |scratch1| contains Descriptor.size
// returning directly to an IonJS frame. Store return addr to frame
// in lastProfilingCallSite.
masm.loadPtr(Address(masm.getStackPointer(), JitFrameLayout::offsetOfReturnAddress()),
scratch2);
masm.storePtr(scratch2, lastProfilingCallSite);
// Store return frame in lastProfilingFrame.
// scratch2 := masm.getStackPointer() + Descriptor.size*1 + JitFrameLayout::Size();
masm.addPtr(masm.getStackPointer(), scratch1, scratch2);
masm.syncStackPtr();
masm.addPtr(Imm32(JitFrameLayout::Size()), scratch2, scratch2);
masm.storePtr(scratch2, lastProfilingFrame);
masm.ret();
}
//
// JitFrame_BaselineStub
//
// Look past the stub and store the frame pointer to
// the baselineJS frame prior to it.
//
// Stack layout:
// ...
// BL-Descriptor
// Prev-FP ---> BL-ReturnAddr
// +-----> BL-PrevFramePointer
// | ... BL-FrameData ...
// | BLStub-Descriptor
// | BLStub-ReturnAddr
// | BLStub-StubPointer |
// +------ BLStub-SavedFramePointer |- Descriptor.Size
// ... arguments ... |
// ActualArgc |
// CalleeToken |- JitFrameLayout::Size()
// Descriptor |
// FP -----> ReturnAddr |
//
// We take advantage of the fact that the stub frame saves the frame
// pointer pointing to the baseline frame, so a bunch of calculation can
// be avoided.
//
masm.bind(&handle_BaselineStub);
{
masm.addPtr(masm.getStackPointer(), scratch1, scratch3);
masm.syncStackPtr();
Address stubFrameReturnAddr(scratch3,
JitFrameLayout::Size() +
BaselineStubFrameLayout::offsetOfReturnAddress());
masm.loadPtr(stubFrameReturnAddr, scratch2);
masm.storePtr(scratch2, lastProfilingCallSite);
Address stubFrameSavedFramePtr(scratch3,
JitFrameLayout::Size() - (2 * sizeof(void*)));
masm.loadPtr(stubFrameSavedFramePtr, scratch2);
masm.addPtr(Imm32(sizeof(void*)), scratch2); // Skip past BL-PrevFramePtr.
masm.storePtr(scratch2, lastProfilingFrame);
masm.ret();
}
//
// JitFrame_Rectifier
//
// The rectifier frame can be preceded by either an IonJS or a
// BaselineStub frame.
//
// Stack layout if caller of rectifier was Ion:
//
// Ion-Descriptor
// Ion-ReturnAddr
// ... ion frame data ... |- Rect-Descriptor.Size
// < COMMON LAYOUT >
//
// Stack layout if caller of rectifier was Baseline:
//
// BL-Descriptor
// Prev-FP ---> BL-ReturnAddr
// +-----> BL-SavedFramePointer
// | ... baseline frame data ...
// | BLStub-Descriptor
// | BLStub-ReturnAddr
// | BLStub-StubPointer |
// +------ BLStub-SavedFramePointer |- Rect-Descriptor.Size
// ... args to rectifier ... |
// < COMMON LAYOUT >
//
// Common stack layout:
//
// ActualArgc |
// CalleeToken |- IonRectitiferFrameLayout::Size()
// Rect-Descriptor |
// Rect-ReturnAddr |
// ... rectifier data & args ... |- Descriptor.Size
// ActualArgc |
// CalleeToken |- JitFrameLayout::Size()
// Descriptor |
// FP -----> ReturnAddr |
//
masm.bind(&handle_Rectifier);
{
// scratch2 := StackPointer + Descriptor.size*1 + JitFrameLayout::Size();
masm.addPtr(masm.getStackPointer(), scratch1, scratch2);
masm.syncStackPtr();
masm.add32(Imm32(JitFrameLayout::Size()), scratch2);
masm.loadPtr(Address(scratch2, RectifierFrameLayout::offsetOfDescriptor()), scratch3);
masm.rshiftPtr(Imm32(FRAMESIZE_SHIFT), scratch3, scratch1);
masm.and32(Imm32((1 << FRAMETYPE_BITS) - 1), scratch3);
// Now |scratch1| contains Rect-Descriptor.Size
// and |scratch2| points to Rectifier frame
// and |scratch3| contains Rect-Descriptor.Type
// Check for either Ion or BaselineStub frame.
Label handle_Rectifier_BaselineStub;
masm.branch32(Assembler::NotEqual, scratch3, Imm32(JitFrame_IonJS),
&handle_Rectifier_BaselineStub);
// Handle Rectifier <- IonJS
// scratch3 := RectFrame[ReturnAddr]
masm.loadPtr(Address(scratch2, RectifierFrameLayout::offsetOfReturnAddress()), scratch3);
masm.storePtr(scratch3, lastProfilingCallSite);
// scratch3 := RectFrame + Rect-Descriptor.Size + RectifierFrameLayout::Size()
masm.addPtr(scratch2, scratch1, scratch3);
masm.add32(Imm32(RectifierFrameLayout::Size()), scratch3);
masm.storePtr(scratch3, lastProfilingFrame);
masm.ret();
// Handle Rectifier <- BaselineStub <- BaselineJS
masm.bind(&handle_Rectifier_BaselineStub);
#ifdef DEBUG
{
Label checkOk;
masm.branch32(Assembler::Equal, scratch3, Imm32(JitFrame_BaselineStub), &checkOk);
masm.assumeUnreachable("Unrecognized frame preceding baselineStub.");
masm.bind(&checkOk);
}
#endif
masm.addPtr(scratch2, scratch1, scratch3);
Address stubFrameReturnAddr(scratch3, RectifierFrameLayout::Size() +
BaselineStubFrameLayout::offsetOfReturnAddress());
masm.loadPtr(stubFrameReturnAddr, scratch2);
masm.storePtr(scratch2, lastProfilingCallSite);
Address stubFrameSavedFramePtr(scratch3,
RectifierFrameLayout::Size() - (2 * sizeof(void*)));
masm.loadPtr(stubFrameSavedFramePtr, scratch2);
masm.addPtr(Imm32(sizeof(void*)), scratch2);
masm.storePtr(scratch2, lastProfilingFrame);
masm.ret();
}
// JitFrame_IonAccessorIC
//
// The caller is always an IonJS frame.
//
// Ion-Descriptor
// Ion-ReturnAddr
// ... ion frame data ... |- AccFrame-Descriptor.Size
// StubCode |
// AccFrame-Descriptor |- IonAccessorICFrameLayout::Size()
// AccFrame-ReturnAddr |
// ... accessor frame data & args ... |- Descriptor.Size
// ActualArgc |
// CalleeToken |- JitFrameLayout::Size()
// Descriptor |
// FP -----> ReturnAddr |
masm.bind(&handle_IonAccessorIC);
{
// scratch2 := StackPointer + Descriptor.size + JitFrameLayout::Size()
masm.addPtr(masm.getStackPointer(), scratch1, scratch2);
masm.syncStackPtr();
masm.addPtr(Imm32(JitFrameLayout::Size()), scratch2);
// scratch3 := AccFrame-Descriptor.Size
masm.loadPtr(Address(scratch2, IonAccessorICFrameLayout::offsetOfDescriptor()), scratch3);
#ifdef DEBUG
// Assert previous frame is an IonJS frame.
masm.movePtr(scratch3, scratch1);
masm.and32(Imm32((1 << FRAMETYPE_BITS) - 1), scratch1);
{
Label checkOk;
masm.branch32(Assembler::Equal, scratch1, Imm32(JitFrame_IonJS), &checkOk);
masm.assumeUnreachable("IonAccessorIC frame must be preceded by IonJS frame");
masm.bind(&checkOk);
}
#endif
masm.rshiftPtr(Imm32(FRAMESIZE_SHIFT), scratch3);
// lastProfilingCallSite := AccFrame-ReturnAddr
masm.loadPtr(Address(scratch2, IonAccessorICFrameLayout::offsetOfReturnAddress()), scratch1);
masm.storePtr(scratch1, lastProfilingCallSite);
// lastProfilingFrame := AccessorFrame + AccFrame-Descriptor.Size +
// IonAccessorICFrameLayout::Size()
masm.addPtr(scratch2, scratch3, scratch1);
masm.addPtr(Imm32(IonAccessorICFrameLayout::Size()), scratch1);
masm.storePtr(scratch1, lastProfilingFrame);
masm.ret();
}
//
// JitFrame_Entry
//
// If at an entry frame, store null into both fields.
//
masm.bind(&handle_Entry);
{
masm.movePtr(ImmPtr(nullptr), scratch1);
masm.storePtr(scratch1, lastProfilingCallSite);
masm.storePtr(scratch1, lastProfilingFrame);
masm.ret();
}
Linker linker(masm);
AutoFlushICache afc("ProfilerExitFrameTailStub");
JitCode* code = linker.newCode<NoGC>(cx, OTHER_CODE);
#ifdef JS_ION_PERF
writePerfSpewerJitCodeProfile(code, "ProfilerExitFrameStub");
#endif
return code;
}