blob: f13a9b2d7e1f6d3ff591998b5593523a0d698f01 [file] [log] [blame]
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
* vim: set ts=8 sts=4 et sw=4 tw=99:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "jit/mips64/Assembler-mips64.h"
#include "mozilla/DebugOnly.h"
using mozilla::DebugOnly;
using namespace js;
using namespace js::jit;
ABIArgGenerator::ABIArgGenerator()
: usedArgSlots_(0),
firstArgFloat(false),
current_()
{}
ABIArg
ABIArgGenerator::next(MIRType type)
{
switch (type) {
case MIRType_Int32:
case MIRType_Pointer: {
Register destReg;
if (GetIntArgReg(usedArgSlots_, &destReg))
current_ = ABIArg(destReg);
else
current_ = ABIArg(GetArgStackDisp(usedArgSlots_));
usedArgSlots_++;
break;
}
case MIRType_Float32:
case MIRType_Double: {
FloatRegister destFReg;
FloatRegister::ContentType contentType;
if (!usedArgSlots_)
firstArgFloat = true;
contentType = (type == MIRType_Double) ?
FloatRegisters::Double : FloatRegisters::Single;
if (GetFloatArgReg(usedArgSlots_, &destFReg))
current_ = ABIArg(FloatRegister(destFReg.id(), contentType));
else
current_ = ABIArg(GetArgStackDisp(usedArgSlots_));
usedArgSlots_++;
break;
}
default:
MOZ_CRASH("Unexpected argument type");
}
return current_;
}
const Register ABIArgGenerator::NonArgReturnReg0 = t0;
const Register ABIArgGenerator::NonArgReturnReg1 = t1;
const Register ABIArgGenerator::NonArg_VolatileReg = v0;
const Register ABIArgGenerator::NonReturn_VolatileReg0 = a0;
const Register ABIArgGenerator::NonReturn_VolatileReg1 = a1;
uint32_t
js::jit::RT(FloatRegister r)
{
MOZ_ASSERT(r.id() < FloatRegisters::TotalPhys);
return r.id() << RTShift;
}
uint32_t
js::jit::RD(FloatRegister r)
{
MOZ_ASSERT(r.id() < FloatRegisters::TotalPhys);
return r.id() << RDShift;
}
uint32_t
js::jit::SA(FloatRegister r)
{
MOZ_ASSERT(r.id() < FloatRegisters::TotalPhys);
return r.id() << SAShift;
}
// Used to patch jumps created by MacroAssemblerMIPS64Compat::jumpWithPatch.
void
jit::PatchJump(CodeLocationJump& jump_, CodeLocationLabel label, ReprotectCode reprotect)
{
Instruction* inst = (Instruction*)jump_.raw();
// Six instructions used in load 64-bit imm.
MaybeAutoWritableJitCode awjc(inst, 6 * sizeof(uint32_t), reprotect);
Assembler::UpdateLoad64Value(inst, (uint64_t)label.raw());
AutoFlushICache::flush(uintptr_t(inst), 6 * sizeof(uint32_t));
}
// For more infromation about backedges look at comment in
// MacroAssemblerMIPS64Compat::backedgeJump()
void
jit::PatchBackedge(CodeLocationJump& jump, CodeLocationLabel label,
JitRuntime::BackedgeTarget target)
{
uintptr_t sourceAddr = (uintptr_t)jump.raw();
uintptr_t targetAddr = (uintptr_t)label.raw();
InstImm* branch = (InstImm*)jump.raw();
MOZ_ASSERT(branch->extractOpcode() == (uint32_t(op_beq) >> OpcodeShift));
if (BOffImm16::IsInRange(targetAddr - sourceAddr)) {
branch->setBOffImm16(BOffImm16(targetAddr - sourceAddr));
} else {
if (target == JitRuntime::BackedgeLoopHeader) {
Instruction* inst = &branch[1];
Assembler::UpdateLoad64Value(inst, targetAddr);
// Jump to first ori. The lui will be executed in delay slot.
branch->setBOffImm16(BOffImm16(2 * sizeof(uint32_t)));
} else {
Instruction* inst = &branch[6];
Assembler::UpdateLoad64Value(inst, targetAddr);
// Jump to first ori of interrupt loop.
branch->setBOffImm16(BOffImm16(6 * sizeof(uint32_t)));
}
}
}
void
Assembler::executableCopy(uint8_t* buffer)
{
MOZ_ASSERT(isFinished);
m_buffer.executableCopy(buffer);
// Patch all long jumps during code copy.
for (size_t i = 0; i < longJumps_.length(); i++) {
Instruction* inst = (Instruction*) ((uintptr_t)buffer + longJumps_[i]);
uint64_t value = Assembler::ExtractLoad64Value(inst);
Assembler::UpdateLoad64Value(inst, (uint64_t)buffer + value);
}
AutoFlushICache::setRange(uintptr_t(buffer), m_buffer.size());
}
uintptr_t
Assembler::GetPointer(uint8_t* instPtr)
{
Instruction* inst = (Instruction*)instPtr;
return Assembler::ExtractLoad64Value(inst);
}
static JitCode *
CodeFromJump(Instruction* jump)
{
uint8_t* target = (uint8_t*)Assembler::ExtractLoad64Value(jump);
return JitCode::FromExecutable(target);
}
void
Assembler::TraceJumpRelocations(JSTracer* trc, JitCode* code, CompactBufferReader& reader)
{
while (reader.more()) {
JitCode* child = CodeFromJump((Instruction*)(code->raw() + reader.readUnsigned()));
TraceManuallyBarrieredEdge(trc, &child, "rel32");
}
}
static void
TraceOneDataRelocation(JSTracer* trc, Instruction* inst)
{
void* ptr = (void*)Assembler::ExtractLoad64Value(inst);
void* prior = ptr;
// All pointers on MIPS64 will have the top bits cleared. If those bits
// are not cleared, this must be a Value.
uintptr_t word = reinterpret_cast<uintptr_t>(ptr);
if (word >> JSVAL_TAG_SHIFT) {
jsval_layout layout;
layout.asBits = word;
Value v = IMPL_TO_JSVAL(layout);
TraceManuallyBarrieredEdge(trc, &v, "ion-masm-value");
ptr = (void*)JSVAL_TO_IMPL(v).asBits;
} else {
// No barrier needed since these are constants.
TraceManuallyBarrieredGenericPointerEdge(trc, reinterpret_cast<gc::Cell**>(&ptr),
"ion-masm-ptr");
}
if (ptr != prior) {
Assembler::UpdateLoad64Value(inst, uint64_t(ptr));
AutoFlushICache::flush(uintptr_t(inst), 6 * sizeof(uint32_t));
}
}
static void
TraceDataRelocations(JSTracer* trc, uint8_t* buffer, CompactBufferReader& reader)
{
while (reader.more()) {
size_t offset = reader.readUnsigned();
Instruction* inst = (Instruction*)(buffer + offset);
TraceOneDataRelocation(trc, inst);
}
}
static void
TraceDataRelocations(JSTracer* trc, MIPSBuffer* buffer, CompactBufferReader& reader)
{
while (reader.more()) {
BufferOffset bo (reader.readUnsigned());
MIPSBuffer::AssemblerBufferInstIterator iter(bo, buffer);
TraceOneDataRelocation(trc, iter.cur());
}
}
void
Assembler::TraceDataRelocations(JSTracer* trc, JitCode* code, CompactBufferReader& reader)
{
::TraceDataRelocations(trc, code->raw(), reader);
}
void
Assembler::trace(JSTracer* trc)
{
for (size_t i = 0; i < jumps_.length(); i++) {
RelativePatch& rp = jumps_[i];
if (rp.kind == Relocation::JITCODE) {
JitCode* code = JitCode::FromExecutable((uint8_t*)rp.target);
TraceManuallyBarrieredEdge(trc, &code, "masmrel32");
MOZ_ASSERT(code == JitCode::FromExecutable((uint8_t*)rp.target));
}
}
if (dataRelocations_.length()) {
CompactBufferReader reader(dataRelocations_);
::TraceDataRelocations(trc, &m_buffer, reader);
}
}
void
Assembler::Bind(uint8_t* rawCode, CodeOffset* label, const void* address)
{
if (label->bound()) {
intptr_t offset = label->offset();
Instruction* inst = (Instruction*) (rawCode + offset);
Assembler::UpdateLoad64Value(inst, (uint64_t)address);
}
}
void
Assembler::bind(InstImm* inst, uintptr_t branch, uintptr_t target)
{
int64_t offset = target - branch;
InstImm inst_bgezal = InstImm(op_regimm, zero, rt_bgezal, BOffImm16(0));
InstImm inst_beq = InstImm(op_beq, zero, zero, BOffImm16(0));
// If encoded offset is 4, then the jump must be short
if (BOffImm16(inst[0]).decode() == 4) {
MOZ_ASSERT(BOffImm16::IsInRange(offset));
inst[0].setBOffImm16(BOffImm16(offset));
inst[1].makeNop();
return;
}
// Generate the long jump for calls because return address has to be the
// address after the reserved block.
if (inst[0].encode() == inst_bgezal.encode()) {
addLongJump(BufferOffset(branch));
Assembler::WriteLoad64Instructions(inst, ScratchRegister, target);
inst[4] = InstReg(op_special, ScratchRegister, zero, ra, ff_jalr).encode();
// There is 1 nop after this.
return;
}
if (BOffImm16::IsInRange(offset)) {
#ifdef _MIPS_ARCH_LOONGSON3A
// Don't skip trailing nops can imporve performance
// on Loongson3 platform.
bool skipNops = false;
#else
bool skipNops = (inst[0].encode() != inst_bgezal.encode() &&
inst[0].encode() != inst_beq.encode());
#endif
inst[0].setBOffImm16(BOffImm16(offset));
inst[1].makeNop();
if (skipNops) {
inst[2] = InstImm(op_regimm, zero, rt_bgez, BOffImm16(5 * sizeof(uint32_t))).encode();
// There are 4 nops after this
}
return;
}
if (inst[0].encode() == inst_beq.encode()) {
// Handle long unconditional jump.
addLongJump(BufferOffset(branch));
Assembler::WriteLoad64Instructions(inst, ScratchRegister, target);
inst[4] = InstReg(op_special, ScratchRegister, zero, zero, ff_jr).encode();
// There is 1 nop after this.
} else {
// Handle long conditional jump.
inst[0] = invertBranch(inst[0], BOffImm16(7 * sizeof(uint32_t)));
// No need for a "nop" here because we can clobber scratch.
addLongJump(BufferOffset(branch + sizeof(uint32_t)));
Assembler::WriteLoad64Instructions(&inst[1], ScratchRegister, target);
inst[5] = InstReg(op_special, ScratchRegister, zero, zero, ff_jr).encode();
// There is 1 nop after this.
}
}
void
Assembler::bind(RepatchLabel* label)
{
BufferOffset dest = nextOffset();
if (label->used() && !oom()) {
// If the label has a use, then change this use to refer to
// the bound label;
BufferOffset b(label->offset());
InstImm* inst1 = (InstImm*)editSrc(b);
// If first instruction is branch, then this is a loop backedge.
if (inst1->extractOpcode() == ((uint32_t)op_beq >> OpcodeShift)) {
// Backedges are short jumps when bound, but can become long
// when patched.
uint64_t offset = dest.getOffset() - label->offset();
MOZ_ASSERT(BOffImm16::IsInRange(offset));
inst1->setBOffImm16(BOffImm16(offset));
} else {
Assembler::UpdateLoad64Value(inst1, dest.getOffset());
}
}
label->bind(dest.getOffset());
}
uint32_t
Assembler::PatchWrite_NearCallSize()
{
// Load an address needs 4 instructions, and a jump with a delay slot.
return (4 + 2) * sizeof(uint32_t);
}
void
Assembler::PatchWrite_NearCall(CodeLocationLabel start, CodeLocationLabel toCall)
{
Instruction* inst = (Instruction*) start.raw();
uint8_t* dest = toCall.raw();
// Overwrite whatever instruction used to be here with a call.
// Always use long jump for two reasons:
// - Jump has to be the same size because of PatchWrite_NearCallSize.
// - Return address has to be at the end of replaced block.
// Short jump wouldn't be more efficient.
Assembler::WriteLoad64Instructions(inst, ScratchRegister, (uint64_t)dest);
inst[4] = InstReg(op_special, ScratchRegister, zero, ra, ff_jalr);
inst[5] = InstNOP();
// Ensure everyone sees the code that was just written into memory.
AutoFlushICache::flush(uintptr_t(inst), PatchWrite_NearCallSize());
}
uint64_t
Assembler::ExtractLoad64Value(Instruction* inst0)
{
InstImm* i0 = (InstImm*) inst0;
InstImm* i1 = (InstImm*) i0->next();
InstReg* i2 = (InstReg*) i1->next();
InstImm* i3 = (InstImm*) i2->next();
InstImm* i5 = (InstImm*) i3->next()->next();
MOZ_ASSERT(i0->extractOpcode() == ((uint32_t)op_lui >> OpcodeShift));
MOZ_ASSERT(i1->extractOpcode() == ((uint32_t)op_ori >> OpcodeShift));
MOZ_ASSERT(i3->extractOpcode() == ((uint32_t)op_ori >> OpcodeShift));
if ((i2->extractOpcode() == ((uint32_t)op_special >> OpcodeShift)) &&
(i2->extractFunctionField() == ff_dsrl32))
{
uint64_t value = (uint64_t(i0->extractImm16Value()) << 32) |
(uint64_t(i1->extractImm16Value()) << 16) |
uint64_t(i3->extractImm16Value());
return uint64_t((int64_t(value) <<16) >> 16);
}
MOZ_ASSERT(i5->extractOpcode() == ((uint32_t)op_ori >> OpcodeShift));
uint64_t value = (uint64_t(i0->extractImm16Value()) << 48) |
(uint64_t(i1->extractImm16Value()) << 32) |
(uint64_t(i3->extractImm16Value()) << 16) |
uint64_t(i5->extractImm16Value());
return value;
}
void
Assembler::UpdateLoad64Value(Instruction* inst0, uint64_t value)
{
InstImm* i0 = (InstImm*) inst0;
InstImm* i1 = (InstImm*) i0->next();
InstReg* i2 = (InstReg*) i1->next();
InstImm* i3 = (InstImm*) i2->next();
InstImm* i5 = (InstImm*) i3->next()->next();
MOZ_ASSERT(i0->extractOpcode() == ((uint32_t)op_lui >> OpcodeShift));
MOZ_ASSERT(i1->extractOpcode() == ((uint32_t)op_ori >> OpcodeShift));
MOZ_ASSERT(i3->extractOpcode() == ((uint32_t)op_ori >> OpcodeShift));
if ((i2->extractOpcode() == ((uint32_t)op_special >> OpcodeShift)) &&
(i2->extractFunctionField() == ff_dsrl32))
{
i0->setImm16(Imm16::Lower(Imm32(value >> 32)));
i1->setImm16(Imm16::Upper(Imm32(value)));
i3->setImm16(Imm16::Lower(Imm32(value)));
return;
}
MOZ_ASSERT(i5->extractOpcode() == ((uint32_t)op_ori >> OpcodeShift));
i0->setImm16(Imm16::Upper(Imm32(value >> 32)));
i1->setImm16(Imm16::Lower(Imm32(value >> 32)));
i3->setImm16(Imm16::Upper(Imm32(value)));
i5->setImm16(Imm16::Lower(Imm32(value)));
}
void
Assembler::WriteLoad64Instructions(Instruction* inst0, Register reg, uint64_t value)
{
Instruction* inst1 = inst0->next();
Instruction* inst2 = inst1->next();
Instruction* inst3 = inst2->next();
*inst0 = InstImm(op_lui, zero, reg, Imm16::Lower(Imm32(value >> 32)));
*inst1 = InstImm(op_ori, reg, reg, Imm16::Upper(Imm32(value)));
*inst2 = InstReg(op_special, rs_one, reg, reg, 48 - 32, ff_dsrl32);
*inst3 = InstImm(op_ori, reg, reg, Imm16::Lower(Imm32(value)));
}
void
Assembler::PatchDataWithValueCheck(CodeLocationLabel label, ImmPtr newValue,
ImmPtr expectedValue)
{
PatchDataWithValueCheck(label, PatchedImmPtr(newValue.value),
PatchedImmPtr(expectedValue.value));
}
void
Assembler::PatchDataWithValueCheck(CodeLocationLabel label, PatchedImmPtr newValue,
PatchedImmPtr expectedValue)
{
Instruction* inst = (Instruction*) label.raw();
// Extract old Value
DebugOnly<uint64_t> value = Assembler::ExtractLoad64Value(inst);
MOZ_ASSERT(value == uint64_t(expectedValue.value));
// Replace with new value
Assembler::UpdateLoad64Value(inst, uint64_t(newValue.value));
AutoFlushICache::flush(uintptr_t(inst), 6 * sizeof(uint32_t));
}
void
Assembler::PatchInstructionImmediate(uint8_t* code, PatchedImmPtr imm)
{
InstImm* inst = (InstImm*)code;
Assembler::UpdateLoad64Value(inst, (uint64_t)imm.value);
}
uint64_t
Assembler::ExtractInstructionImmediate(uint8_t* code)
{
InstImm* inst = (InstImm*)code;
return Assembler::ExtractLoad64Value(inst);
}
void
Assembler::ToggleCall(CodeLocationLabel inst_, bool enabled)
{
Instruction* inst = (Instruction*)inst_.raw();
InstImm* i0 = (InstImm*) inst;
InstImm* i1 = (InstImm*) i0->next();
InstImm* i3 = (InstImm*) i1->next()->next();
Instruction* i4 = (Instruction*) i3->next();
MOZ_ASSERT(i0->extractOpcode() == ((uint32_t)op_lui >> OpcodeShift));
MOZ_ASSERT(i1->extractOpcode() == ((uint32_t)op_ori >> OpcodeShift));
MOZ_ASSERT(i3->extractOpcode() == ((uint32_t)op_ori >> OpcodeShift));
if (enabled) {
MOZ_ASSERT(i4->extractOpcode() != ((uint32_t)op_lui >> OpcodeShift));
InstReg jalr = InstReg(op_special, ScratchRegister, zero, ra, ff_jalr);
*i4 = jalr;
} else {
InstNOP nop;
*i4 = nop;
}
AutoFlushICache::flush(uintptr_t(i4), sizeof(uint32_t));
}
void
Assembler::UpdateBoundsCheck(uint64_t heapSize, Instruction* inst)
{
// Replace with new value
Assembler::UpdateLoad64Value(inst, heapSize);
}