blob: 7db673c6d4b6dd89c9ec1690a420c40b0424c18f [file] [log] [blame]
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
* vim: set ts=8 sts=4 et sw=4 tw=99:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "jit/Disassembler.h"
#include "jit/x86-shared/Encoding-x86-shared.h"
using namespace js;
using namespace js::jit;
using namespace js::jit::X86Encoding;
using namespace js::jit::Disassembler;
MOZ_COLD static bool REX_W(uint8_t rex) { return (rex >> 3) & 0x1; }
MOZ_COLD static bool REX_R(uint8_t rex) { return (rex >> 2) & 0x1; }
MOZ_COLD static bool REX_X(uint8_t rex) { return (rex >> 1) & 0x1; }
MOZ_COLD static bool REX_B(uint8_t rex) { return (rex >> 0) & 0x1; }
MOZ_COLD static uint8_t
MakeREXFlags(bool w, bool r, bool x, bool b)
{
uint8_t rex = (w << 3) | (r << 2) | (x << 1) | (b << 0);
MOZ_RELEASE_ASSERT(REX_W(rex) == w);
MOZ_RELEASE_ASSERT(REX_R(rex) == r);
MOZ_RELEASE_ASSERT(REX_X(rex) == x);
MOZ_RELEASE_ASSERT(REX_B(rex) == b);
return rex;
}
MOZ_COLD static ModRmMode
ModRM_Mode(uint8_t modrm)
{
return ModRmMode((modrm >> 6) & 0x3);
}
MOZ_COLD static uint8_t
ModRM_Reg(uint8_t modrm)
{
return (modrm >> 3) & 0x7;
}
MOZ_COLD static uint8_t
ModRM_RM(uint8_t modrm)
{
return (modrm >> 0) & 0x7;
}
MOZ_COLD static bool
ModRM_hasSIB(uint8_t modrm)
{
return ModRM_Mode(modrm) != ModRmRegister && ModRM_RM(modrm) == hasSib;
}
MOZ_COLD static bool
ModRM_hasDisp8(uint8_t modrm)
{
return ModRM_Mode(modrm) == ModRmMemoryDisp8;
}
MOZ_COLD static bool
ModRM_hasRIP(uint8_t modrm)
{
#ifdef JS_CODEGEN_X64
return ModRM_Mode(modrm) == ModRmMemoryNoDisp && ModRM_RM(modrm) == noBase;
#else
return false;
#endif
}
MOZ_COLD static bool
ModRM_hasDisp32(uint8_t modrm)
{
return ModRM_Mode(modrm) == ModRmMemoryDisp32 ||
ModRM_hasRIP(modrm);
}
MOZ_COLD static uint8_t
SIB_SS(uint8_t sib)
{
return (sib >> 6) & 0x3;
}
MOZ_COLD static uint8_t
SIB_Index(uint8_t sib)
{
return (sib >> 3) & 0x7;
}
MOZ_COLD static uint8_t
SIB_Base(uint8_t sib)
{
return (sib >> 0) & 0x7;
}
MOZ_COLD static bool
SIB_hasRIP(uint8_t sib)
{
return SIB_Base(sib) == noBase && SIB_Index(sib) == noIndex;
}
MOZ_COLD static bool
HasRIP(uint8_t modrm, uint8_t sib, uint8_t rex)
{
return ModRM_hasRIP(modrm) && SIB_hasRIP(sib);
}
MOZ_COLD static bool
HasDisp8(uint8_t modrm)
{
return ModRM_hasDisp8(modrm);
}
MOZ_COLD static bool
HasDisp32(uint8_t modrm, uint8_t sib)
{
return ModRM_hasDisp32(modrm) ||
(SIB_Base(sib) == noBase &&
SIB_Index(sib) == noIndex &&
ModRM_Mode(modrm) == ModRmMemoryNoDisp);
}
MOZ_COLD static uint32_t
Reg(uint8_t modrm, uint8_t sib, uint8_t rex)
{
return ModRM_Reg(modrm) | (REX_R(rex) << 3);
}
MOZ_COLD static bool
HasBase(uint8_t modrm, uint8_t sib)
{
return !ModRM_hasSIB(modrm) ||
SIB_Base(sib) != noBase ||
SIB_Index(sib) != noIndex ||
ModRM_Mode(modrm) != ModRmMemoryNoDisp;
}
MOZ_COLD static RegisterID
DecodeBase(uint8_t modrm, uint8_t sib, uint8_t rex)
{
return HasBase(modrm, sib)
? RegisterID((ModRM_hasSIB(modrm) ? SIB_Base(sib) : ModRM_RM(modrm)) | (REX_B(rex) << 3))
: invalid_reg;
}
MOZ_COLD static RegisterID
DecodeIndex(uint8_t modrm, uint8_t sib, uint8_t rex)
{
RegisterID index = RegisterID(SIB_Index(sib) | (REX_X(rex) << 3));
return ModRM_hasSIB(modrm) && index != noIndex ? index : invalid_reg;
}
MOZ_COLD static uint32_t
DecodeScale(uint8_t modrm, uint8_t sib, uint8_t rex)
{
return ModRM_hasSIB(modrm) ? SIB_SS(sib) : 0;
}
#define PackOpcode(op0, op1, op2) ((op0) | ((op1) << 8) | ((op2) << 16))
#define Pack2ByteOpcode(op1) PackOpcode(OP_2BYTE_ESCAPE, op1, 0)
#define Pack3ByteOpcode(op1, op2) PackOpcode(OP_2BYTE_ESCAPE, op1, op2)
uint8_t*
js::jit::Disassembler::DisassembleHeapAccess(uint8_t* ptr, HeapAccess* access)
{
VexOperandType type = VEX_PS;
uint32_t opcode = OP_HLT;
uint8_t modrm = 0;
uint8_t sib = 0;
uint8_t rex = 0;
int32_t disp = 0;
int32_t imm = 0;
bool haveImm = false;
int opsize = 4;
// Legacy prefixes
switch (*ptr) {
case PRE_LOCK:
case PRE_PREDICT_BRANCH_NOT_TAKEN: // (obsolete), aka %cs
case 0x3E: // aka predict-branch-taken (obsolete)
case 0x36: // %ss
case 0x26: // %es
case 0x64: // %fs
case 0x65: // %gs
case 0x67: // address-size override
MOZ_CRASH("Unable to disassemble instruction");
case PRE_SSE_F2: // aka REPNZ/REPNE
type = VEX_SD;
ptr++;
break;
case PRE_SSE_F3: // aka REP/REPE/REPZ
type = VEX_SS;
ptr++;
break;
case PRE_SSE_66: // aka PRE_OPERAND_SIZE
type = VEX_PD;
opsize = 2;
ptr++;
break;
default:
break;
}
// REX and VEX prefixes
{
int x = 0, b = 0, m = 1, w = 0;
int r, l, p;
switch (*ptr) {
#ifdef JS_CODEGEN_X64
case PRE_REX | 0x0: case PRE_REX | 0x1: case PRE_REX | 0x2: case PRE_REX | 0x3:
case PRE_REX | 0x4: case PRE_REX | 0x5: case PRE_REX | 0x6: case PRE_REX | 0x7:
case PRE_REX | 0x8: case PRE_REX | 0x9: case PRE_REX | 0xa: case PRE_REX | 0xb:
case PRE_REX | 0xc: case PRE_REX | 0xd: case PRE_REX | 0xe: case PRE_REX | 0xf:
rex = *ptr++ & 0xf;
goto rex_done;
#endif
case PRE_VEX_C4: {
if (type != VEX_PS)
MOZ_CRASH("Unable to disassemble instruction");
++ptr;
uint8_t c4a = *ptr++ ^ 0xe0;
uint8_t c4b = *ptr++ ^ 0x78;
r = (c4a >> 7) & 0x1;
x = (c4a >> 6) & 0x1;
b = (c4a >> 5) & 0x1;
m = (c4a >> 0) & 0x1f;
w = (c4b >> 7) & 0x1;
l = (c4b >> 2) & 0x1;
p = (c4b >> 0) & 0x3;
break;
}
case PRE_VEX_C5: {
if (type != VEX_PS)
MOZ_CRASH("Unable to disassemble instruction");
++ptr;
uint8_t c5 = *ptr++ ^ 0xf8;
r = (c5 >> 7) & 0x1;
l = (c5 >> 2) & 0x1;
p = (c5 >> 0) & 0x3;
break;
}
default:
goto rex_done;
}
type = VexOperandType(p);
rex = MakeREXFlags(w, r, x, b);
switch (m) {
case 0x1:
opcode = Pack2ByteOpcode(*ptr++);
goto opcode_done;
case 0x2:
opcode = Pack3ByteOpcode(ESCAPE_38, *ptr++);
goto opcode_done;
case 0x3:
opcode = Pack3ByteOpcode(ESCAPE_3A, *ptr++);
goto opcode_done;
default:
MOZ_CRASH("Unable to disassemble instruction");
}
if (l != 0) // 256-bit SIMD
MOZ_CRASH("Unable to disassemble instruction");
}
rex_done:;
if (REX_W(rex))
opsize = 8;
// Opcode.
opcode = *ptr++;
switch (opcode) {
#ifdef JS_CODEGEN_X64
case OP_PUSH_EAX + 0: case OP_PUSH_EAX + 1: case OP_PUSH_EAX + 2: case OP_PUSH_EAX + 3:
case OP_PUSH_EAX + 4: case OP_PUSH_EAX + 5: case OP_PUSH_EAX + 6: case OP_PUSH_EAX + 7:
case OP_POP_EAX + 0: case OP_POP_EAX + 1: case OP_POP_EAX + 2: case OP_POP_EAX + 3:
case OP_POP_EAX + 4: case OP_POP_EAX + 5: case OP_POP_EAX + 6: case OP_POP_EAX + 7:
case OP_PUSH_Iz:
case OP_PUSH_Ib:
opsize = 8;
break;
#endif
case OP_2BYTE_ESCAPE:
opcode |= *ptr << 8;
switch (*ptr++) {
case ESCAPE_38:
case ESCAPE_3A:
opcode |= *ptr++ << 16;
break;
default:
break;
}
break;
default:
break;
}
opcode_done:;
// ModR/M
modrm = *ptr++;
// SIB
if (ModRM_hasSIB(modrm))
sib = *ptr++;
// Address Displacement
if (HasDisp8(modrm)) {
disp = int8_t(*ptr++);
} else if (HasDisp32(modrm, sib)) {
memcpy(&disp, ptr, sizeof(int32_t));
ptr += sizeof(int32_t);
}
// Immediate operand
switch (opcode) {
case OP_PUSH_Ib:
case OP_IMUL_GvEvIb:
case OP_GROUP1_EbIb:
case OP_GROUP1_EvIb:
case OP_TEST_EAXIb:
case OP_GROUP2_EvIb:
case OP_GROUP11_EvIb:
case OP_GROUP3_EbIb:
case Pack2ByteOpcode(OP2_PSHUFD_VdqWdqIb):
case Pack2ByteOpcode(OP2_PSLLD_UdqIb): // aka OP2_PSRAD_UdqIb, aka OP2_PSRLD_UdqIb
case Pack2ByteOpcode(OP2_PEXTRW_GdUdIb):
case Pack2ByteOpcode(OP2_SHUFPS_VpsWpsIb):
case Pack3ByteOpcode(ESCAPE_3A, OP3_PEXTRD_EdVdqIb):
case Pack3ByteOpcode(ESCAPE_3A, OP3_BLENDPS_VpsWpsIb):
case Pack3ByteOpcode(ESCAPE_3A, OP3_PINSRD_VdqEdIb):
// 8-bit signed immediate
imm = int8_t(*ptr++);
haveImm = true;
break;
case OP_RET_Iz:
// 16-bit unsigned immediate
memcpy(&imm, ptr, sizeof(int16_t));
ptr += sizeof(int16_t);
haveImm = true;
break;
case OP_ADD_EAXIv:
case OP_OR_EAXIv:
case OP_AND_EAXIv:
case OP_SUB_EAXIv:
case OP_XOR_EAXIv:
case OP_CMP_EAXIv:
case OP_PUSH_Iz:
case OP_IMUL_GvEvIz:
case OP_GROUP1_EvIz:
case OP_TEST_EAXIv:
case OP_MOV_EAXIv:
case OP_GROUP3_EvIz:
// 32-bit signed immediate
memcpy(&imm, ptr, sizeof(int32_t));
ptr += sizeof(int32_t);
haveImm = true;
break;
case OP_GROUP11_EvIz:
// opsize-sized signed immediate
memcpy(&imm, ptr, opsize);
imm = (imm << (32 - opsize * 8)) >> (32 - opsize * 8);
ptr += opsize;
haveImm = true;
break;
default:
break;
}
// Interpret the opcode.
if (HasRIP(modrm, sib, rex))
MOZ_CRASH("Unable to disassemble instruction");
size_t memSize = 0;
OtherOperand otherOperand(imm);
HeapAccess::Kind kind = HeapAccess::Unknown;
RegisterID gpr(RegisterID(Reg(modrm, sib, rex)));
XMMRegisterID xmm(XMMRegisterID(Reg(modrm, sib, rex)));
ComplexAddress addr(disp,
DecodeBase(modrm, sib, rex),
DecodeIndex(modrm, sib, rex),
DecodeScale(modrm, sib, rex));
switch (opcode) {
case OP_GROUP11_EvIb:
if (gpr != RegisterID(GROUP11_MOV))
MOZ_CRASH("Unable to disassemble instruction");
MOZ_RELEASE_ASSERT(haveImm);
memSize = 1;
kind = HeapAccess::Store;
break;
case OP_GROUP11_EvIz:
if (gpr != RegisterID(GROUP11_MOV))
MOZ_CRASH("Unable to disassemble instruction");
MOZ_RELEASE_ASSERT(haveImm);
memSize = opsize;
kind = HeapAccess::Store;
break;
case OP_MOV_GvEv:
MOZ_RELEASE_ASSERT(!haveImm);
otherOperand = OtherOperand(gpr);
memSize = opsize;
kind = HeapAccess::Load;
break;
case OP_MOV_GvEb:
MOZ_RELEASE_ASSERT(!haveImm);
otherOperand = OtherOperand(gpr);
memSize = 1;
kind = HeapAccess::Load;
break;
case OP_MOV_EvGv:
if (!haveImm)
otherOperand = OtherOperand(gpr);
memSize = opsize;
kind = HeapAccess::Store;
break;
case OP_MOV_EbGv:
if (!haveImm)
otherOperand = OtherOperand(gpr);
memSize = 1;
kind = HeapAccess::Store;
break;
case Pack2ByteOpcode(OP2_MOVZX_GvEb):
MOZ_RELEASE_ASSERT(!haveImm);
otherOperand = OtherOperand(gpr);
memSize = 1;
kind = HeapAccess::Load;
break;
case Pack2ByteOpcode(OP2_MOVZX_GvEw):
MOZ_RELEASE_ASSERT(!haveImm);
otherOperand = OtherOperand(gpr);
memSize = 2;
kind = HeapAccess::Load;
break;
case Pack2ByteOpcode(OP2_MOVSX_GvEb):
MOZ_RELEASE_ASSERT(!haveImm);
otherOperand = OtherOperand(gpr);
memSize = 1;
kind = HeapAccess::LoadSext32;
break;
case Pack2ByteOpcode(OP2_MOVSX_GvEw):
MOZ_RELEASE_ASSERT(!haveImm);
otherOperand = OtherOperand(gpr);
memSize = 2;
kind = HeapAccess::LoadSext32;
break;
case Pack2ByteOpcode(OP2_MOVDQ_VdqWdq): // aka OP2_MOVDQ_VsdWsd
case Pack2ByteOpcode(OP2_MOVAPS_VsdWsd):
MOZ_RELEASE_ASSERT(!haveImm);
otherOperand = OtherOperand(xmm);
memSize = 16;
kind = HeapAccess::Load;
break;
case Pack2ByteOpcode(OP2_MOVSD_VsdWsd): // aka OP2_MOVPS_VpsWps
MOZ_RELEASE_ASSERT(!haveImm);
otherOperand = OtherOperand(xmm);
switch (type) {
case VEX_SS: memSize = 4; break;
case VEX_SD: memSize = 8; break;
case VEX_PS:
case VEX_PD: memSize = 16; break;
default: MOZ_CRASH("Unexpected VEX type");
}
kind = HeapAccess::Load;
break;
case Pack2ByteOpcode(OP2_MOVDQ_WdqVdq):
MOZ_RELEASE_ASSERT(!haveImm);
otherOperand = OtherOperand(xmm);
memSize = 16;
kind = HeapAccess::Store;
break;
case Pack2ByteOpcode(OP2_MOVSD_WsdVsd): // aka OP2_MOVPS_WpsVps
MOZ_RELEASE_ASSERT(!haveImm);
otherOperand = OtherOperand(xmm);
switch (type) {
case VEX_SS: memSize = 4; break;
case VEX_SD: memSize = 8; break;
case VEX_PS:
case VEX_PD: memSize = 16; break;
default: MOZ_CRASH("Unexpected VEX type");
}
kind = HeapAccess::Store;
break;
case Pack2ByteOpcode(OP2_MOVD_VdEd):
MOZ_RELEASE_ASSERT(!haveImm);
otherOperand = OtherOperand(xmm);
switch (type) {
case VEX_PD: memSize = 4; break;
default: MOZ_CRASH("Unexpected VEX type");
}
kind = HeapAccess::Load;
break;
case Pack2ByteOpcode(OP2_MOVQ_WdVd):
MOZ_RELEASE_ASSERT(!haveImm);
otherOperand = OtherOperand(xmm);
switch (type) {
case VEX_PD: memSize = 8; break;
default: MOZ_CRASH("Unexpected VEX type");
}
kind = HeapAccess::Store;
break;
case Pack2ByteOpcode(OP2_MOVD_EdVd): // aka OP2_MOVQ_VdWd
MOZ_RELEASE_ASSERT(!haveImm);
otherOperand = OtherOperand(xmm);
switch (type) {
case VEX_SS: memSize = 8; kind = HeapAccess::Load; break;
case VEX_PD: memSize = 4; kind = HeapAccess::Store; break;
default: MOZ_CRASH("Unexpected VEX type");
}
break;
default:
MOZ_CRASH("Unable to disassemble instruction");
}
*access = HeapAccess(kind, memSize, addr, otherOperand);
return ptr;
}
#ifdef DEBUG
void
js::jit::Disassembler::DumpHeapAccess(const HeapAccess& access)
{
switch (access.kind()) {
case HeapAccess::Store: fprintf(stderr, "store"); break;
case HeapAccess::Load: fprintf(stderr, "load"); break;
case HeapAccess::LoadSext32: fprintf(stderr, "loadSext32"); break;
default: fprintf(stderr, "unknown"); break;
}
fprintf(stderr, "%u ", unsigned(access.size()));
switch (access.otherOperand().kind()) {
case OtherOperand::Imm: fprintf(stderr, "imm %d", access.otherOperand().imm()); break;
case OtherOperand::GPR: fprintf(stderr, "gpr %s", X86Encoding::GPRegName(access.otherOperand().gpr())); break;
case OtherOperand::FPR: fprintf(stderr, "fpr %s", X86Encoding::XMMRegName(access.otherOperand().fpr())); break;
default: fprintf(stderr, "unknown");
}
fprintf(stderr, " @ ");
if (access.address().isPCRelative()) {
fprintf(stderr, MEM_o32r " ", ADDR_o32r(access.address().disp()));
} else if (access.address().hasIndex()) {
if (access.address().hasBase()) {
fprintf(stderr, MEM_obs " ",
ADDR_obs(access.address().disp(), access.address().base(),
access.address().index(), access.address().scale()));
} else {
fprintf(stderr, MEM_os " ",
ADDR_os(access.address().disp(),
access.address().index(), access.address().scale()));
}
} else if (access.address().hasBase()) {
fprintf(stderr, MEM_ob " ", ADDR_ob(access.address().disp(), access.address().base()));
} else {
fprintf(stderr, MEM_o " ", ADDR_o(access.address().disp()));
}
fprintf(stderr, "\n");
}
#endif