blob: aca128ece1654055d8803974578d0d1b87ec82f1 [file] [log] [blame]
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
* vim: set ts=8 sts=4 et sw=4 tw=99:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef jit_x86_shared_LIR_x86_shared_h
#define jit_x86_shared_LIR_x86_shared_h
namespace js {
namespace jit {
class LDivI : public LBinaryMath<1>
{
public:
LIR_HEADER(DivI)
LDivI(const LAllocation& lhs, const LAllocation& rhs, const LDefinition& temp) {
setOperand(0, lhs);
setOperand(1, rhs);
setTemp(0, temp);
}
const char* extraName() const {
if (mir()->isTruncated()) {
if (mir()->canBeNegativeZero()) {
return mir()->canBeNegativeOverflow()
? "Truncate_NegativeZero_NegativeOverflow"
: "Truncate_NegativeZero";
}
return mir()->canBeNegativeOverflow() ? "Truncate_NegativeOverflow" : "Truncate";
}
if (mir()->canBeNegativeZero())
return mir()->canBeNegativeOverflow() ? "NegativeZero_NegativeOverflow" : "NegativeZero";
return mir()->canBeNegativeOverflow() ? "NegativeOverflow" : nullptr;
}
const LDefinition* remainder() {
return getTemp(0);
}
MDiv* mir() const {
return mir_->toDiv();
}
};
// Signed division by a power-of-two constant.
class LDivPowTwoI : public LBinaryMath<0>
{
const int32_t shift_;
const bool negativeDivisor_;
public:
LIR_HEADER(DivPowTwoI)
LDivPowTwoI(const LAllocation& lhs, const LAllocation& lhsCopy, int32_t shift, bool negativeDivisor)
: shift_(shift), negativeDivisor_(negativeDivisor)
{
setOperand(0, lhs);
setOperand(1, lhsCopy);
}
const LAllocation* numerator() {
return getOperand(0);
}
const LAllocation* numeratorCopy() {
return getOperand(1);
}
int32_t shift() const {
return shift_;
}
bool negativeDivisor() const {
return negativeDivisor_;
}
MDiv* mir() const {
return mir_->toDiv();
}
};
class LDivOrModConstantI : public LInstructionHelper<1, 1, 1>
{
const int32_t denominator_;
public:
LIR_HEADER(DivOrModConstantI)
LDivOrModConstantI(const LAllocation& lhs, int32_t denominator, const LDefinition& temp)
: denominator_(denominator)
{
setOperand(0, lhs);
setTemp(0, temp);
}
const LAllocation* numerator() {
return getOperand(0);
}
int32_t denominator() const {
return denominator_;
}
MBinaryArithInstruction* mir() const {
MOZ_ASSERT(mir_->isDiv() || mir_->isMod());
return static_cast<MBinaryArithInstruction*>(mir_);
}
bool canBeNegativeDividend() const {
if (mir_->isMod())
return mir_->toMod()->canBeNegativeDividend();
return mir_->toDiv()->canBeNegativeDividend();
}
};
class LModI : public LBinaryMath<1>
{
public:
LIR_HEADER(ModI)
LModI(const LAllocation& lhs, const LAllocation& rhs, const LDefinition& temp) {
setOperand(0, lhs);
setOperand(1, rhs);
setTemp(0, temp);
}
const char* extraName() const {
return mir()->isTruncated() ? "Truncated" : nullptr;
}
const LDefinition* remainder() {
return getDef(0);
}
MMod* mir() const {
return mir_->toMod();
}
};
// This class performs a simple x86 'div', yielding either a quotient or remainder depending on
// whether this instruction is defined to output eax (quotient) or edx (remainder).
class LUDivOrMod : public LBinaryMath<1>
{
public:
LIR_HEADER(UDivOrMod);
LUDivOrMod(const LAllocation& lhs, const LAllocation& rhs, const LDefinition& temp) {
setOperand(0, lhs);
setOperand(1, rhs);
setTemp(0, temp);
}
const LDefinition* remainder() {
return getTemp(0);
}
const char* extraName() const {
return mir()->isTruncated() ? "Truncated" : nullptr;
}
MBinaryArithInstruction* mir() const {
MOZ_ASSERT(mir_->isDiv() || mir_->isMod());
return static_cast<MBinaryArithInstruction*>(mir_);
}
bool canBeDivideByZero() const {
if (mir_->isMod())
return mir_->toMod()->canBeDivideByZero();
return mir_->toDiv()->canBeDivideByZero();
}
};
class LUDivOrModConstant : public LInstructionHelper<1, 1, 1>
{
const uint32_t denominator_;
public:
LIR_HEADER(UDivOrModConstant)
LUDivOrModConstant(const LAllocation &lhs, uint32_t denominator, const LDefinition& temp)
: denominator_(denominator)
{
setOperand(0, lhs);
setTemp(0, temp);
}
const LAllocation *numerator() {
return getOperand(0);
}
uint32_t denominator() const {
return denominator_;
}
MBinaryArithInstruction *mir() const {
MOZ_ASSERT(mir_->isDiv() || mir_->isMod());
return static_cast<MBinaryArithInstruction *>(mir_);
}
bool canBeNegativeDividend() const {
if (mir_->isMod())
return mir_->toMod()->canBeNegativeDividend();
return mir_->toDiv()->canBeNegativeDividend();
}
};
class LModPowTwoI : public LInstructionHelper<1,1,0>
{
const int32_t shift_;
public:
LIR_HEADER(ModPowTwoI)
LModPowTwoI(const LAllocation& lhs, int32_t shift)
: shift_(shift)
{
setOperand(0, lhs);
}
int32_t shift() const {
return shift_;
}
const LDefinition* remainder() {
return getDef(0);
}
MMod* mir() const {
return mir_->toMod();
}
};
// Takes a tableswitch with an integer to decide
class LTableSwitch : public LInstructionHelper<0, 1, 2>
{
public:
LIR_HEADER(TableSwitch)
LTableSwitch(const LAllocation& in, const LDefinition& inputCopy,
const LDefinition& jumpTablePointer, MTableSwitch* ins)
{
setOperand(0, in);
setTemp(0, inputCopy);
setTemp(1, jumpTablePointer);
setMir(ins);
}
MTableSwitch* mir() const {
return mir_->toTableSwitch();
}
const LAllocation* index() {
return getOperand(0);
}
const LDefinition* tempInt() {
return getTemp(0);
}
const LDefinition* tempPointer() {
return getTemp(1);
}
};
// Takes a tableswitch with a value to decide
class LTableSwitchV : public LInstructionHelper<0, BOX_PIECES, 3>
{
public:
LIR_HEADER(TableSwitchV)
LTableSwitchV(const LDefinition& inputCopy, const LDefinition& floatCopy,
const LDefinition& jumpTablePointer, MTableSwitch* ins)
{
setTemp(0, inputCopy);
setTemp(1, floatCopy);
setTemp(2, jumpTablePointer);
setMir(ins);
}
MTableSwitch* mir() const {
return mir_->toTableSwitch();
}
static const size_t InputValue = 0;
const LDefinition* tempInt() {
return getTemp(0);
}
const LDefinition* tempFloat() {
return getTemp(1);
}
const LDefinition* tempPointer() {
return getTemp(2);
}
};
class LGuardShape : public LInstructionHelper<0, 1, 0>
{
public:
LIR_HEADER(GuardShape)
explicit LGuardShape(const LAllocation& in) {
setOperand(0, in);
}
const MGuardShape* mir() const {
return mir_->toGuardShape();
}
};
class LGuardObjectGroup : public LInstructionHelper<0, 1, 0>
{
public:
LIR_HEADER(GuardObjectGroup)
explicit LGuardObjectGroup(const LAllocation& in) {
setOperand(0, in);
}
const MGuardObjectGroup* mir() const {
return mir_->toGuardObjectGroup();
}
};
class LMulI : public LBinaryMath<0, 1>
{
public:
LIR_HEADER(MulI)
LMulI(const LAllocation& lhs, const LAllocation& rhs, const LAllocation& lhsCopy) {
setOperand(0, lhs);
setOperand(1, rhs);
setOperand(2, lhsCopy);
}
const char* extraName() const {
return (mir()->mode() == MMul::Integer)
? "Integer"
: (mir()->canBeNegativeZero() ? "CanBeNegativeZero" : nullptr);
}
MMul* mir() const {
return mir_->toMul();
}
const LAllocation* lhsCopy() {
return this->getOperand(2);
}
};
// Constructs an int32x4 SIMD value.
class LSimdValueInt32x4 : public LInstructionHelper<1, 4, 0>
{
public:
LIR_HEADER(SimdValueInt32x4)
LSimdValueInt32x4(const LAllocation& x, const LAllocation& y,
const LAllocation& z, const LAllocation& w)
{
setOperand(0, x);
setOperand(1, y);
setOperand(2, z);
setOperand(3, w);
}
MSimdValueX4* mir() const {
return mir_->toSimdValueX4();
}
};
// Constructs a float32x4 SIMD value, optimized for x86 family
class LSimdValueFloat32x4 : public LInstructionHelper<1, 4, 1>
{
public:
LIR_HEADER(SimdValueFloat32x4)
LSimdValueFloat32x4(const LAllocation& x, const LAllocation& y,
const LAllocation& z, const LAllocation& w,
const LDefinition& copyY)
{
setOperand(0, x);
setOperand(1, y);
setOperand(2, z);
setOperand(3, w);
setTemp(0, copyY);
}
MSimdValueX4* mir() const {
return mir_->toSimdValueX4();
}
};
} // namespace jit
} // namespace js
#endif /* jit_x86_shared_LIR_x86_shared_h */