blob: ef0b441369c93cdf57517f5a13570de3bb868110 [file] [log] [blame]
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
* vim: set ts=8 sts=4 et sw=4 tw=99:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
/* Inline members for javascript type inference. */
#ifndef vm_TypeInference_inl_h
#define vm_TypeInference_inl_h
#include "vm/TypeInference.h"
#include "mozilla/PodOperations.h"
#include "builtin/SymbolObject.h"
#include "jit/BaselineJIT.h"
#include "vm/ArrayObject.h"
#include "vm/BooleanObject.h"
#include "vm/NumberObject.h"
#include "vm/SharedArrayObject.h"
#include "vm/StringObject.h"
#include "vm/TypedArrayObject.h"
#include "vm/UnboxedObject.h"
#include "jscntxtinlines.h"
#include "vm/ObjectGroup-inl.h"
namespace js {
/////////////////////////////////////////////////////////////////////
// CompilerOutput & RecompileInfo
/////////////////////////////////////////////////////////////////////
inline jit::IonScript*
CompilerOutput::ion() const
{
// Note: If type constraints are generated before compilation has finished
// (i.e. after IonBuilder but before CodeGenerator::link) then a valid
// CompilerOutput may not yet have an associated IonScript.
MOZ_ASSERT(isValid());
jit::IonScript* ion = script()->maybeIonScript();
MOZ_ASSERT(ion != ION_COMPILING_SCRIPT);
return ion;
}
inline CompilerOutput*
RecompileInfo::compilerOutput(TypeZone& types) const
{
if (generation != types.generation) {
if (!types.sweepCompilerOutputs || outputIndex >= types.sweepCompilerOutputs->length())
return nullptr;
CompilerOutput* output = &(*types.sweepCompilerOutputs)[outputIndex];
if (!output->isValid())
return nullptr;
output = &(*types.compilerOutputs)[output->sweepIndex()];
return output->isValid() ? output : nullptr;
}
if (!types.compilerOutputs || outputIndex >= types.compilerOutputs->length())
return nullptr;
CompilerOutput* output = &(*types.compilerOutputs)[outputIndex];
return output->isValid() ? output : nullptr;
}
inline CompilerOutput*
RecompileInfo::compilerOutput(JSContext* cx) const
{
return compilerOutput(cx->zone()->types);
}
inline bool
RecompileInfo::shouldSweep(TypeZone& types)
{
CompilerOutput* output = compilerOutput(types);
if (!output || !output->isValid())
return true;
// If this info is for a compilation that occurred after sweeping started,
// the index is already correct.
MOZ_ASSERT_IF(generation == types.generation,
outputIndex == output - types.compilerOutputs->begin());
// Update this info for the output's index in the zone's compiler outputs.
outputIndex = output - types.compilerOutputs->begin();
generation = types.generation;
return false;
}
/////////////////////////////////////////////////////////////////////
// Types
/////////////////////////////////////////////////////////////////////
/* static */ inline TypeSet::ObjectKey*
TypeSet::ObjectKey::get(JSObject* obj)
{
MOZ_ASSERT(obj);
if (obj->isSingleton())
return (ObjectKey*) (uintptr_t(obj) | 1);
return (ObjectKey*) obj->group();
}
/* static */ inline TypeSet::ObjectKey*
TypeSet::ObjectKey::get(ObjectGroup* group)
{
MOZ_ASSERT(group);
if (group->singleton())
return (ObjectKey*) (uintptr_t(group->singleton()) | 1);
return (ObjectKey*) group;
}
inline ObjectGroup*
TypeSet::ObjectKey::groupNoBarrier()
{
MOZ_ASSERT(isGroup());
return (ObjectGroup*) this;
}
inline JSObject*
TypeSet::ObjectKey::singletonNoBarrier()
{
MOZ_ASSERT(isSingleton());
return (JSObject*) (uintptr_t(this) & ~1);
}
inline ObjectGroup*
TypeSet::ObjectKey::group()
{
ObjectGroup* res = groupNoBarrier();
ObjectGroup::readBarrier(res);
return res;
}
inline JSObject*
TypeSet::ObjectKey::singleton()
{
JSObject* res = singletonNoBarrier();
JSObject::readBarrier(res);
return res;
}
/* static */ inline TypeSet::Type
TypeSet::ObjectType(JSObject* obj)
{
if (obj->isSingleton())
return Type(uintptr_t(obj) | 1);
return Type(uintptr_t(obj->group()));
}
/* static */ inline TypeSet::Type
TypeSet::ObjectType(ObjectGroup* group)
{
if (group->singleton())
return Type(uintptr_t(group->singleton()) | 1);
return Type(uintptr_t(group));
}
/* static */ inline TypeSet::Type
TypeSet::ObjectType(ObjectKey* obj)
{
return Type(uintptr_t(obj));
}
inline TypeSet::Type
TypeSet::GetValueType(const Value& val)
{
if (val.isDouble())
return TypeSet::DoubleType();
if (val.isObject())
return TypeSet::ObjectType(&val.toObject());
return TypeSet::PrimitiveType(val.extractNonDoubleType());
}
inline bool
TypeSet::IsUntrackedValue(const Value& val)
{
return val.isMagic() && (val.whyMagic() == JS_OPTIMIZED_OUT ||
val.whyMagic() == JS_UNINITIALIZED_LEXICAL);
}
inline TypeSet::Type
TypeSet::GetMaybeUntrackedValueType(const Value& val)
{
return IsUntrackedValue(val) ? UnknownType() : GetValueType(val);
}
inline TypeFlags
PrimitiveTypeFlag(JSValueType type)
{
switch (type) {
case JSVAL_TYPE_UNDEFINED:
return TYPE_FLAG_UNDEFINED;
case JSVAL_TYPE_NULL:
return TYPE_FLAG_NULL;
case JSVAL_TYPE_BOOLEAN:
return TYPE_FLAG_BOOLEAN;
case JSVAL_TYPE_INT32:
return TYPE_FLAG_INT32;
case JSVAL_TYPE_DOUBLE:
return TYPE_FLAG_DOUBLE;
case JSVAL_TYPE_STRING:
return TYPE_FLAG_STRING;
case JSVAL_TYPE_SYMBOL:
return TYPE_FLAG_SYMBOL;
case JSVAL_TYPE_MAGIC:
return TYPE_FLAG_LAZYARGS;
default:
MOZ_CRASH("Bad JSValueType");
}
}
inline JSValueType
TypeFlagPrimitive(TypeFlags flags)
{
switch (flags) {
case TYPE_FLAG_UNDEFINED:
return JSVAL_TYPE_UNDEFINED;
case TYPE_FLAG_NULL:
return JSVAL_TYPE_NULL;
case TYPE_FLAG_BOOLEAN:
return JSVAL_TYPE_BOOLEAN;
case TYPE_FLAG_INT32:
return JSVAL_TYPE_INT32;
case TYPE_FLAG_DOUBLE:
return JSVAL_TYPE_DOUBLE;
case TYPE_FLAG_STRING:
return JSVAL_TYPE_STRING;
case TYPE_FLAG_SYMBOL:
return JSVAL_TYPE_SYMBOL;
case TYPE_FLAG_LAZYARGS:
return JSVAL_TYPE_MAGIC;
default:
MOZ_CRASH("Bad TypeFlags");
}
}
/*
* Get the canonical representation of an id to use when doing inference. This
* maintains the constraint that if two different jsids map to the same property
* in JS (e.g. 3 and "3"), they have the same type representation.
*/
inline jsid
IdToTypeId(jsid id)
{
MOZ_ASSERT(!JSID_IS_EMPTY(id));
// All properties which can be stored in an object's dense elements must
// map to the aggregate property for index types.
return JSID_IS_INT(id) ? JSID_VOID : id;
}
const char * TypeIdStringImpl(jsid id);
/* Convert an id for printing during debug. */
static inline const char*
TypeIdString(jsid id)
{
#ifdef DEBUG
return TypeIdStringImpl(id);
#else
return "(missing)";
#endif
}
/*
* Structure for type inference entry point functions. All functions which can
* change type information must use this, and functions which depend on
* intermediate types (i.e. JITs) can use this to ensure that intermediate
* information is not collected and does not change.
*
* Ensures that GC cannot occur. Does additional sanity checking that inference
* is not reentrant and that recompilations occur properly.
*/
struct AutoEnterAnalysis
{
/* Prevent GC activity in the middle of analysis. */
gc::AutoSuppressGC suppressGC;
// Allow clearing inference info on OOM during incremental sweeping.
AutoClearTypeInferenceStateOnOOM oom;
// Pending recompilations to perform before execution of JIT code can resume.
RecompileInfoVector pendingRecompiles;
FreeOp* freeOp;
Zone* zone;
explicit AutoEnterAnalysis(ExclusiveContext* cx)
: suppressGC(cx), oom(cx->zone())
{
init(cx->defaultFreeOp(), cx->zone());
}
AutoEnterAnalysis(FreeOp* fop, Zone* zone)
: suppressGC(zone->runtimeFromMainThread()), oom(zone)
{
init(fop, zone);
}
~AutoEnterAnalysis()
{
if (this != zone->types.activeAnalysis)
return;
zone->types.activeAnalysis = nullptr;
if (!pendingRecompiles.empty())
zone->types.processPendingRecompiles(freeOp, pendingRecompiles);
}
private:
void init(FreeOp* fop, Zone* zone) {
this->freeOp = fop;
this->zone = zone;
if (!zone->types.activeAnalysis)
zone->types.activeAnalysis = this;
}
};
/////////////////////////////////////////////////////////////////////
// Interface functions
/////////////////////////////////////////////////////////////////////
void MarkIteratorUnknownSlow(JSContext* cx);
void TypeMonitorCallSlow(JSContext* cx, JSObject* callee, const CallArgs& args,
bool constructing);
/*
* Monitor a javascript call, either on entry to the interpreter or made
* from within the interpreter.
*/
inline void
TypeMonitorCall(JSContext* cx, const js::CallArgs& args, bool constructing)
{
if (args.callee().is<JSFunction>()) {
JSFunction* fun = &args.callee().as<JSFunction>();
if (fun->isInterpreted() && fun->nonLazyScript()->types())
TypeMonitorCallSlow(cx, &args.callee(), args, constructing);
}
}
inline bool
TrackPropertyTypes(ExclusiveContext* cx, JSObject* obj, jsid id)
{
if (obj->hasLazyGroup() || obj->group()->unknownProperties())
return false;
if (obj->isSingleton() && !obj->group()->maybeGetProperty(id))
return false;
return true;
}
void
EnsureTrackPropertyTypes(JSContext* cx, JSObject* obj, jsid id);
inline bool
CanHaveEmptyPropertyTypesForOwnProperty(JSObject* obj)
{
// Per the comment on TypeSet::propertySet, property type sets for global
// objects may be empty for 'own' properties if the global property still
// has its initial undefined value.
return obj->is<GlobalObject>();
}
inline bool
PropertyHasBeenMarkedNonConstant(JSObject* obj, jsid id)
{
// Non-constant properties are only relevant for singleton objects.
if (!obj->isSingleton())
return true;
// EnsureTrackPropertyTypes must have been called on this object.
if (obj->group()->unknownProperties())
return true;
HeapTypeSet* types = obj->group()->maybeGetProperty(IdToTypeId(id));
return types->nonConstantProperty();
}
inline bool
HasTypePropertyId(JSObject* obj, jsid id, TypeSet::Type type)
{
if (obj->hasLazyGroup())
return true;
if (obj->group()->unknownProperties())
return true;
if (HeapTypeSet* types = obj->group()->maybeGetProperty(IdToTypeId(id)))
return types->hasType(type);
return false;
}
inline bool
HasTypePropertyId(JSObject* obj, jsid id, const Value& value)
{
return HasTypePropertyId(obj, id, TypeSet::GetValueType(value));
}
void AddTypePropertyId(ExclusiveContext* cx, ObjectGroup* group, JSObject* obj, jsid id, TypeSet::Type type);
void AddTypePropertyId(ExclusiveContext* cx, ObjectGroup* group, JSObject* obj, jsid id, const Value& value);
/* Add a possible type for a property of obj. */
inline void
AddTypePropertyId(ExclusiveContext* cx, JSObject* obj, jsid id, TypeSet::Type type)
{
id = IdToTypeId(id);
if (TrackPropertyTypes(cx, obj, id))
AddTypePropertyId(cx, obj->group(), obj, id, type);
}
inline void
AddTypePropertyId(ExclusiveContext* cx, JSObject* obj, jsid id, const Value& value)
{
id = IdToTypeId(id);
if (TrackPropertyTypes(cx, obj, id))
AddTypePropertyId(cx, obj->group(), obj, id, value);
}
inline void
MarkObjectGroupFlags(ExclusiveContext* cx, JSObject* obj, ObjectGroupFlags flags)
{
if (!obj->hasLazyGroup() && !obj->group()->hasAllFlags(flags))
obj->group()->setFlags(cx, flags);
}
inline void
MarkObjectGroupUnknownProperties(ExclusiveContext* cx, ObjectGroup* obj)
{
if (!obj->unknownProperties())
obj->markUnknown(cx);
}
inline void
MarkTypePropertyNonData(ExclusiveContext* cx, JSObject* obj, jsid id)
{
id = IdToTypeId(id);
if (TrackPropertyTypes(cx, obj, id))
obj->group()->markPropertyNonData(cx, obj, id);
}
inline void
MarkTypePropertyNonWritable(ExclusiveContext* cx, JSObject* obj, jsid id)
{
id = IdToTypeId(id);
if (TrackPropertyTypes(cx, obj, id))
obj->group()->markPropertyNonWritable(cx, obj, id);
}
/* Mark a state change on a particular object. */
inline void
MarkObjectStateChange(ExclusiveContext* cx, JSObject* obj)
{
if (!obj->hasLazyGroup() && !obj->group()->unknownProperties())
obj->group()->markStateChange(cx);
}
/* Interface helpers for JSScript*. */
extern void TypeMonitorResult(JSContext* cx, JSScript* script, jsbytecode* pc, TypeSet::Type type);
extern void TypeMonitorResult(JSContext* cx, JSScript* script, jsbytecode* pc, const Value& rval);
/////////////////////////////////////////////////////////////////////
// Script interface functions
/////////////////////////////////////////////////////////////////////
/* static */ inline unsigned
TypeScript::NumTypeSets(JSScript* script)
{
size_t num = script->nTypeSets() + 1 /* this */;
if (JSFunction* fun = script->functionNonDelazifying())
num += fun->nargs();
return num;
}
/* static */ inline StackTypeSet*
TypeScript::ThisTypes(JSScript* script)
{
TypeScript* types = script->types();
return types ? types->typeArray() + script->nTypeSets() : nullptr;
}
/*
* Note: for non-escaping arguments, argTypes reflect only the initial type of
* the variable (e.g. passed values for argTypes, or undefined for localTypes)
* and not types from subsequent assignments.
*/
/* static */ inline StackTypeSet*
TypeScript::ArgTypes(JSScript* script, unsigned i)
{
MOZ_ASSERT(i < script->functionNonDelazifying()->nargs());
TypeScript* types = script->types();
return types ? types->typeArray() + script->nTypeSets() + 1 + i : nullptr;
}
template <typename TYPESET>
/* static */ inline TYPESET*
TypeScript::BytecodeTypes(JSScript* script, jsbytecode* pc, uint32_t* bytecodeMap,
uint32_t* hint, TYPESET* typeArray)
{
MOZ_ASSERT(CodeSpec[*pc].format & JOF_TYPESET);
uint32_t offset = script->pcToOffset(pc);
// See if this pc is the next typeset opcode after the last one looked up.
if ((*hint + 1) < script->nTypeSets() && bytecodeMap[*hint + 1] == offset) {
(*hint)++;
return typeArray + *hint;
}
// See if this pc is the same as the last one looked up.
if (bytecodeMap[*hint] == offset)
return typeArray + *hint;
// Fall back to a binary search.
size_t bottom = 0;
size_t top = script->nTypeSets() - 1;
size_t mid = bottom + (top - bottom) / 2;
while (mid < top) {
if (bytecodeMap[mid] < offset)
bottom = mid + 1;
else if (bytecodeMap[mid] > offset)
top = mid;
else
break;
mid = bottom + (top - bottom) / 2;
}
// We should have have zeroed in on either the exact offset, unless there
// are more JOF_TYPESET opcodes than nTypeSets in the script (as can happen
// if the script is very long).
MOZ_ASSERT(bytecodeMap[mid] == offset || mid == top);
*hint = mid;
return typeArray + *hint;
}
/* static */ inline StackTypeSet*
TypeScript::BytecodeTypes(JSScript* script, jsbytecode* pc)
{
MOZ_ASSERT(CurrentThreadCanAccessRuntime(script->runtimeFromMainThread()));
TypeScript* types = script->types();
if (!types)
return nullptr;
uint32_t* hint = script->baselineScript()->bytecodeTypeMap() + script->nTypeSets();
return BytecodeTypes(script, pc, script->baselineScript()->bytecodeTypeMap(),
hint, types->typeArray());
}
/* static */ inline void
TypeScript::Monitor(JSContext* cx, JSScript* script, jsbytecode* pc, const js::Value& rval)
{
TypeMonitorResult(cx, script, pc, rval);
}
/* static */ inline void
TypeScript::Monitor(JSContext* cx, JSScript* script, jsbytecode* pc, TypeSet::Type type)
{
TypeMonitorResult(cx, script, pc, type);
}
/* static */ inline void
TypeScript::Monitor(JSContext* cx, const js::Value& rval)
{
jsbytecode* pc;
RootedScript script(cx, cx->currentScript(&pc));
Monitor(cx, script, pc, rval);
}
/* static */ inline void
TypeScript::MonitorAssign(JSContext* cx, HandleObject obj, jsid id)
{
if (!obj->isSingleton()) {
/*
* Mark as unknown any object which has had dynamic assignments to
* non-integer properties at SETELEM opcodes. This avoids making large
* numbers of type properties for hashmap-style objects. We don't need
* to do this for objects with singleton type, because type properties
* are only constructed for them when analyzed scripts depend on those
* specific properties.
*/
uint32_t i;
if (IdIsIndex(id, &i))
return;
// But if we don't have too many properties yet, don't do anything. The
// idea here is that normal object initialization should not trigger
// deoptimization in most cases, while actual usage as a hashmap should.
ObjectGroup* group = obj->group();
if (group->basePropertyCount() < 128)
return;
MarkObjectGroupUnknownProperties(cx, group);
}
}
/* static */ inline void
TypeScript::SetThis(JSContext* cx, JSScript* script, TypeSet::Type type)
{
StackTypeSet* types = ThisTypes(script);
if (!types)
return;
if (!types->hasType(type)) {
AutoEnterAnalysis enter(cx);
InferSpew(ISpewOps, "externalType: setThis %p: %s",
script, TypeSet::TypeString(type));
types->addType(cx, type);
}
}
/* static */ inline void
TypeScript::SetThis(JSContext* cx, JSScript* script, const js::Value& value)
{
SetThis(cx, script, TypeSet::GetValueType(value));
}
/* static */ inline void
TypeScript::SetArgument(JSContext* cx, JSScript* script, unsigned arg, TypeSet::Type type)
{
StackTypeSet* types = ArgTypes(script, arg);
if (!types)
return;
if (!types->hasType(type)) {
AutoEnterAnalysis enter(cx);
InferSpew(ISpewOps, "externalType: setArg %p %u: %s",
script, arg, TypeSet::TypeString(type));
types->addType(cx, type);
}
}
/* static */ inline void
TypeScript::SetArgument(JSContext* cx, JSScript* script, unsigned arg, const js::Value& value)
{
SetArgument(cx, script, arg, TypeSet::GetValueType(value));
}
/////////////////////////////////////////////////////////////////////
// TypeHashSet
/////////////////////////////////////////////////////////////////////
// Hashing code shared by objects in TypeSets and properties in ObjectGroups.
struct TypeHashSet
{
// The sets of objects in a type set grow monotonically, are usually empty,
// almost always small, and sometimes big. For empty or singleton sets, the
// the pointer refers directly to the value. For sets fitting into
// SET_ARRAY_SIZE, an array of this length is used to store the elements.
// For larger sets, a hash table filled to 25%-50% of capacity is used,
// with collisions resolved by linear probing.
static const unsigned SET_ARRAY_SIZE = 8;
static const unsigned SET_CAPACITY_OVERFLOW = 1u << 30;
// Get the capacity of a set with the given element count.
static inline unsigned
Capacity(unsigned count)
{
MOZ_ASSERT(count >= 2);
MOZ_ASSERT(count < SET_CAPACITY_OVERFLOW);
if (count <= SET_ARRAY_SIZE)
return SET_ARRAY_SIZE;
return 1u << (mozilla::FloorLog2(count) + 2);
}
// Compute the FNV hash for the low 32 bits of v.
template <class T, class KEY>
static inline uint32_t
HashKey(T v)
{
uint32_t nv = KEY::keyBits(v);
uint32_t hash = 84696351 ^ (nv & 0xff);
hash = (hash * 16777619) ^ ((nv >> 8) & 0xff);
hash = (hash * 16777619) ^ ((nv >> 16) & 0xff);
return (hash * 16777619) ^ ((nv >> 24) & 0xff);
}
// Insert space for an element into the specified set and grow its capacity
// if needed. returned value is an existing or new entry (nullptr if new).
template <class T, class U, class KEY>
static U**
InsertTry(LifoAlloc& alloc, U**& values, unsigned& count, T key)
{
unsigned capacity = Capacity(count);
unsigned insertpos = HashKey<T,KEY>(key) & (capacity - 1);
// Whether we are converting from a fixed array to hashtable.
bool converting = (count == SET_ARRAY_SIZE);
if (!converting) {
while (values[insertpos] != nullptr) {
if (KEY::getKey(values[insertpos]) == key)
return &values[insertpos];
insertpos = (insertpos + 1) & (capacity - 1);
}
}
if (count >= SET_CAPACITY_OVERFLOW)
return nullptr;
count++;
unsigned newCapacity = Capacity(count);
if (newCapacity == capacity) {
MOZ_ASSERT(!converting);
return &values[insertpos];
}
U** newValues = alloc.newArray<U*>(newCapacity);
if (!newValues)
return nullptr;
mozilla::PodZero(newValues, newCapacity);
for (unsigned i = 0; i < capacity; i++) {
if (values[i]) {
unsigned pos = HashKey<T,KEY>(KEY::getKey(values[i])) & (newCapacity - 1);
while (newValues[pos] != nullptr)
pos = (pos + 1) & (newCapacity - 1);
newValues[pos] = values[i];
}
}
values = newValues;
insertpos = HashKey<T,KEY>(key) & (newCapacity - 1);
while (values[insertpos] != nullptr)
insertpos = (insertpos + 1) & (newCapacity - 1);
return &values[insertpos];
}
// Insert an element into the specified set if it is not already there,
// returning an entry which is nullptr if the element was not there.
template <class T, class U, class KEY>
static inline U**
Insert(LifoAlloc& alloc, U**& values, unsigned& count, T key)
{
if (count == 0) {
MOZ_ASSERT(values == nullptr);
count++;
return (U**) &values;
}
if (count == 1) {
U* oldData = (U*) values;
if (KEY::getKey(oldData) == key)
return (U**) &values;
values = alloc.newArray<U*>(SET_ARRAY_SIZE);
if (!values) {
values = (U**) oldData;
return nullptr;
}
mozilla::PodZero(values, SET_ARRAY_SIZE);
count++;
values[0] = oldData;
return &values[1];
}
if (count <= SET_ARRAY_SIZE) {
for (unsigned i = 0; i < count; i++) {
if (KEY::getKey(values[i]) == key)
return &values[i];
}
if (count < SET_ARRAY_SIZE) {
count++;
return &values[count - 1];
}
}
return InsertTry<T,U,KEY>(alloc, values, count, key);
}
// Lookup an entry in a hash set, return nullptr if it does not exist.
template <class T, class U, class KEY>
static inline U*
Lookup(U** values, unsigned count, T key)
{
if (count == 0)
return nullptr;
if (count == 1)
return (KEY::getKey((U*) values) == key) ? (U*) values : nullptr;
if (count <= SET_ARRAY_SIZE) {
for (unsigned i = 0; i < count; i++) {
if (KEY::getKey(values[i]) == key)
return values[i];
}
return nullptr;
}
unsigned capacity = Capacity(count);
unsigned pos = HashKey<T,KEY>(key) & (capacity - 1);
while (values[pos] != nullptr) {
if (KEY::getKey(values[pos]) == key)
return values[pos];
pos = (pos + 1) & (capacity - 1);
}
return nullptr;
}
};
/////////////////////////////////////////////////////////////////////
// TypeSet
/////////////////////////////////////////////////////////////////////
inline TypeSet::ObjectKey*
TypeSet::Type::objectKey() const
{
MOZ_ASSERT(isObject());
return (ObjectKey*) data;
}
inline JSObject*
TypeSet::Type::singleton() const
{
return objectKey()->singleton();
}
inline ObjectGroup*
TypeSet::Type::group() const
{
return objectKey()->group();
}
inline JSObject*
TypeSet::Type::singletonNoBarrier() const
{
return objectKey()->singletonNoBarrier();
}
inline ObjectGroup*
TypeSet::Type::groupNoBarrier() const
{
return objectKey()->groupNoBarrier();
}
inline bool
TypeSet::hasType(Type type) const
{
if (unknown())
return true;
if (type.isUnknown()) {
return false;
} else if (type.isPrimitive()) {
return !!(flags & PrimitiveTypeFlag(type.primitive()));
} else if (type.isAnyObject()) {
return !!(flags & TYPE_FLAG_ANYOBJECT);
} else {
return !!(flags & TYPE_FLAG_ANYOBJECT) ||
TypeHashSet::Lookup<ObjectKey*, ObjectKey, ObjectKey>
(objectSet, baseObjectCount(), type.objectKey()) != nullptr;
}
}
inline void
TypeSet::setBaseObjectCount(uint32_t count)
{
MOZ_ASSERT(count <= TYPE_FLAG_DOMOBJECT_COUNT_LIMIT);
flags = (flags & ~TYPE_FLAG_OBJECT_COUNT_MASK)
| (count << TYPE_FLAG_OBJECT_COUNT_SHIFT);
}
inline void
HeapTypeSet::newPropertyState(ExclusiveContext* cxArg)
{
/* Propagate the change to all constraints. */
if (JSContext* cx = cxArg->maybeJSContext()) {
TypeConstraint* constraint = constraintList;
while (constraint) {
constraint->newPropertyState(cx, this);
constraint = constraint->next;
}
} else {
MOZ_ASSERT(!constraintList);
}
}
inline void
HeapTypeSet::setNonDataProperty(ExclusiveContext* cx)
{
if (flags & TYPE_FLAG_NON_DATA_PROPERTY)
return;
flags |= TYPE_FLAG_NON_DATA_PROPERTY;
newPropertyState(cx);
}
inline void
HeapTypeSet::setNonWritableProperty(ExclusiveContext* cx)
{
if (flags & TYPE_FLAG_NON_WRITABLE_PROPERTY)
return;
flags |= TYPE_FLAG_NON_WRITABLE_PROPERTY;
newPropertyState(cx);
}
inline void
HeapTypeSet::setNonConstantProperty(ExclusiveContext* cx)
{
if (flags & TYPE_FLAG_NON_CONSTANT_PROPERTY)
return;
flags |= TYPE_FLAG_NON_CONSTANT_PROPERTY;
newPropertyState(cx);
}
inline unsigned
TypeSet::getObjectCount() const
{
MOZ_ASSERT(!unknownObject());
uint32_t count = baseObjectCount();
if (count > TypeHashSet::SET_ARRAY_SIZE)
return TypeHashSet::Capacity(count);
return count;
}
inline TypeSet::ObjectKey*
TypeSet::getObject(unsigned i) const
{
MOZ_ASSERT(i < getObjectCount());
if (baseObjectCount() == 1) {
MOZ_ASSERT(i == 0);
return (ObjectKey*) objectSet;
}
return objectSet[i];
}
inline JSObject*
TypeSet::getSingleton(unsigned i) const
{
ObjectKey* key = getObject(i);
return (key && key->isSingleton()) ? key->singleton() : nullptr;
}
inline ObjectGroup*
TypeSet::getGroup(unsigned i) const
{
ObjectKey* key = getObject(i);
return (key && key->isGroup()) ? key->group() : nullptr;
}
inline JSObject*
TypeSet::getSingletonNoBarrier(unsigned i) const
{
ObjectKey* key = getObject(i);
return (key && key->isSingleton()) ? key->singletonNoBarrier() : nullptr;
}
inline ObjectGroup*
TypeSet::getGroupNoBarrier(unsigned i) const
{
ObjectKey* key = getObject(i);
return (key && key->isGroup()) ? key->groupNoBarrier() : nullptr;
}
inline const Class*
TypeSet::getObjectClass(unsigned i) const
{
if (JSObject* object = getSingleton(i))
return object->getClass();
if (ObjectGroup* group = getGroup(i))
return group->clasp();
return nullptr;
}
/////////////////////////////////////////////////////////////////////
// ObjectGroup
/////////////////////////////////////////////////////////////////////
inline uint32_t
ObjectGroup::basePropertyCount()
{
return (flags() & OBJECT_FLAG_PROPERTY_COUNT_MASK) >> OBJECT_FLAG_PROPERTY_COUNT_SHIFT;
}
inline void
ObjectGroup::setBasePropertyCount(uint32_t count)
{
// Note: Callers must ensure they are performing threadsafe operations.
MOZ_ASSERT(count <= OBJECT_FLAG_PROPERTY_COUNT_LIMIT);
flags_ = (flags() & ~OBJECT_FLAG_PROPERTY_COUNT_MASK)
| (count << OBJECT_FLAG_PROPERTY_COUNT_SHIFT);
}
inline HeapTypeSet*
ObjectGroup::getProperty(ExclusiveContext* cx, JSObject* obj, jsid id)
{
MOZ_ASSERT(JSID_IS_VOID(id) || JSID_IS_EMPTY(id) || JSID_IS_STRING(id) || JSID_IS_SYMBOL(id));
MOZ_ASSERT_IF(!JSID_IS_EMPTY(id), id == IdToTypeId(id));
MOZ_ASSERT(!unknownProperties());
MOZ_ASSERT_IF(obj, obj->group() == this);
MOZ_ASSERT_IF(singleton(), obj);
if (HeapTypeSet* types = maybeGetProperty(id))
return types;
Property* base = cx->typeLifoAlloc().new_<Property>(id);
if (!base) {
markUnknown(cx);
return nullptr;
}
uint32_t propertyCount = basePropertyCount();
Property** pprop = TypeHashSet::Insert<jsid, Property, Property>
(cx->typeLifoAlloc(), propertySet, propertyCount, id);
if (!pprop) {
markUnknown(cx);
return nullptr;
}
MOZ_ASSERT(!*pprop);
setBasePropertyCount(propertyCount);
*pprop = base;
updateNewPropertyTypes(cx, obj, id, &base->types);
if (propertyCount == OBJECT_FLAG_PROPERTY_COUNT_LIMIT) {
// We hit the maximum number of properties the object can have, mark
// the object unknown so that new properties will not be added in the
// future.
markUnknown(cx);
}
return &base->types;
}
inline HeapTypeSet*
ObjectGroup::maybeGetProperty(jsid id)
{
MOZ_ASSERT(JSID_IS_VOID(id) || JSID_IS_EMPTY(id) || JSID_IS_STRING(id) || JSID_IS_SYMBOL(id));
MOZ_ASSERT_IF(!JSID_IS_EMPTY(id), id == IdToTypeId(id));
MOZ_ASSERT(!unknownProperties());
Property* prop = TypeHashSet::Lookup<jsid, Property, Property>
(propertySet, basePropertyCount(), id);
return prop ? &prop->types : nullptr;
}
inline unsigned
ObjectGroup::getPropertyCount()
{
uint32_t count = basePropertyCount();
if (count > TypeHashSet::SET_ARRAY_SIZE)
return TypeHashSet::Capacity(count);
return count;
}
inline ObjectGroup::Property*
ObjectGroup::getProperty(unsigned i)
{
MOZ_ASSERT(i < getPropertyCount());
if (basePropertyCount() == 1) {
MOZ_ASSERT(i == 0);
return (Property*) propertySet;
}
return propertySet[i];
}
} // namespace js
inline js::TypeScript*
JSScript::types()
{
maybeSweepTypes(nullptr);
return types_;
}
inline bool
JSScript::ensureHasTypes(JSContext* cx)
{
return types() || makeTypes(cx);
}
#endif /* vm_TypeInference_inl_h */