|  | // Copyright 2013 The Chromium Authors. All rights reserved. | 
|  | // Use of this source code is governed by a BSD-style license that can be | 
|  | // found in the LICENSE file. | 
|  |  | 
|  | #include "url/url_canon_ip.h" | 
|  |  | 
|  | #include <stdlib.h> | 
|  | #include <limits> | 
|  |  | 
|  | #include "base/logging.h" | 
|  | #include "starboard/common/string.h" | 
|  | #include "starboard/types.h" | 
|  | #include "url/url_canon_internal.h" | 
|  |  | 
|  | namespace url { | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | // Converts one of the character types that represent a numerical base to the | 
|  | // corresponding base. | 
|  | int BaseForType(SharedCharTypes type) { | 
|  | switch (type) { | 
|  | case CHAR_HEX: | 
|  | return 16; | 
|  | case CHAR_DEC: | 
|  | return 10; | 
|  | case CHAR_OCT: | 
|  | return 8; | 
|  | default: | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | template<typename CHAR, typename UCHAR> | 
|  | bool DoFindIPv4Components(const CHAR* spec, | 
|  | const Component& host, | 
|  | Component components[4]) { | 
|  | if (!host.is_nonempty()) | 
|  | return false; | 
|  |  | 
|  | int cur_component = 0;  // Index of the component we're working on. | 
|  | int cur_component_begin = host.begin;  // Start of the current component. | 
|  | int end = host.end(); | 
|  | for (int i = host.begin; /* nothing */; i++) { | 
|  | if (i >= end || spec[i] == '.') { | 
|  | // Found the end of the current component. | 
|  | int component_len = i - cur_component_begin; | 
|  | components[cur_component] = Component(cur_component_begin, component_len); | 
|  |  | 
|  | // The next component starts after the dot. | 
|  | cur_component_begin = i + 1; | 
|  | cur_component++; | 
|  |  | 
|  | // Don't allow empty components (two dots in a row), except we may | 
|  | // allow an empty component at the end (this would indicate that the | 
|  | // input ends in a dot). We also want to error if the component is | 
|  | // empty and it's the only component (cur_component == 1). | 
|  | if (component_len == 0 && (i < end || cur_component == 1)) | 
|  | return false; | 
|  |  | 
|  | if (i >= end) | 
|  | break;  // End of the input. | 
|  |  | 
|  | if (cur_component == 4) { | 
|  | // Anything else after the 4th component is an error unless it is a | 
|  | // dot that would otherwise be treated as the end of input. | 
|  | if (spec[i] == '.' && i + 1 == end) | 
|  | break; | 
|  | return false; | 
|  | } | 
|  | } else if (static_cast<UCHAR>(spec[i]) >= 0x80 || | 
|  | !IsIPv4Char(static_cast<unsigned char>(spec[i]))) { | 
|  | // Invalid character for an IPv4 address. | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Fill in any unused components. | 
|  | while (cur_component < 4) | 
|  | components[cur_component++] = Component(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Converts an IPv4 component to a 32-bit number, while checking for overflow. | 
|  | // | 
|  | // Possible return values: | 
|  | // - IPV4    - The number was valid, and did not overflow. | 
|  | // - BROKEN  - The input was numeric, but too large for a 32-bit field. | 
|  | // - NEUTRAL - Input was not numeric. | 
|  | // | 
|  | // The input is assumed to be ASCII. FindIPv4Components should have stripped | 
|  | // out any input that is greater than 7 bits. The components are assumed | 
|  | // to be non-empty. | 
|  | template<typename CHAR> | 
|  | CanonHostInfo::Family IPv4ComponentToNumber(const CHAR* spec, | 
|  | const Component& component, | 
|  | uint32_t* number) { | 
|  | // Figure out the base | 
|  | SharedCharTypes base; | 
|  | int base_prefix_len = 0;  // Size of the prefix for this base. | 
|  | if (spec[component.begin] == '0') { | 
|  | // Either hex or dec, or a standalone zero. | 
|  | if (component.len == 1) { | 
|  | base = CHAR_DEC; | 
|  | } else if (spec[component.begin + 1] == 'X' || | 
|  | spec[component.begin + 1] == 'x') { | 
|  | base = CHAR_HEX; | 
|  | base_prefix_len = 2; | 
|  | } else { | 
|  | base = CHAR_OCT; | 
|  | base_prefix_len = 1; | 
|  | } | 
|  | } else { | 
|  | base = CHAR_DEC; | 
|  | } | 
|  |  | 
|  | // Extend the prefix to consume all leading zeros. | 
|  | while (base_prefix_len < component.len && | 
|  | spec[component.begin + base_prefix_len] == '0') | 
|  | base_prefix_len++; | 
|  |  | 
|  | // Put the component, minus any base prefix, into a NULL-terminated buffer so | 
|  | // we can call the standard library. Because leading zeros have already been | 
|  | // discarded, filling the entire buffer is guaranteed to trigger the 32-bit | 
|  | // overflow check. | 
|  | const int kMaxComponentLen = 16; | 
|  | char buf[kMaxComponentLen + 1];  // digits + '\0' | 
|  | int dest_i = 0; | 
|  | for (int i = component.begin + base_prefix_len; i < component.end(); i++) { | 
|  | // We know the input is 7-bit, so convert to narrow (if this is the wide | 
|  | // version of the template) by casting. | 
|  | char input = static_cast<char>(spec[i]); | 
|  |  | 
|  | // Validate that this character is OK for the given base. | 
|  | if (!IsCharOfType(input, base)) | 
|  | return CanonHostInfo::NEUTRAL; | 
|  |  | 
|  | // Fill the buffer, if there's space remaining. This check allows us to | 
|  | // verify that all characters are numeric, even those that don't fit. | 
|  | if (dest_i < kMaxComponentLen) | 
|  | buf[dest_i++] = input; | 
|  | } | 
|  |  | 
|  | buf[dest_i] = '\0'; | 
|  |  | 
|  | // Use the 64-bit strtoi so we get a big number (no hex, decimal, or octal | 
|  | // number can overflow a 64-bit number in <= 16 characters). | 
|  | uint64_t num = _strtoui64(buf, NULL, BaseForType(base)); | 
|  |  | 
|  | // Check for 32-bit overflow. | 
|  | if (num > std::numeric_limits<uint32_t>::max()) | 
|  | return CanonHostInfo::BROKEN; | 
|  |  | 
|  | // No overflow. Success! | 
|  | *number = static_cast<uint32_t>(num); | 
|  | return CanonHostInfo::IPV4; | 
|  | } | 
|  |  | 
|  | // See declaration of IPv4AddressToNumber for documentation. | 
|  | template<typename CHAR> | 
|  | CanonHostInfo::Family DoIPv4AddressToNumber(const CHAR* spec, | 
|  | const Component& host, | 
|  | unsigned char address[4], | 
|  | int* num_ipv4_components) { | 
|  | // The identified components. Not all may exist. | 
|  | Component components[4]; | 
|  | if (!FindIPv4Components(spec, host, components)) | 
|  | return CanonHostInfo::NEUTRAL; | 
|  |  | 
|  | // Convert existing components to digits. Values up to | 
|  | // |existing_components| will be valid. | 
|  | uint32_t component_values[4]; | 
|  | int existing_components = 0; | 
|  |  | 
|  | // Set to true if one or more components are BROKEN. BROKEN is only | 
|  | // returned if all components are IPV4 or BROKEN, so, for example, | 
|  | // 12345678912345.de returns NEUTRAL rather than broken. | 
|  | bool broken = false; | 
|  | for (int i = 0; i < 4; i++) { | 
|  | if (components[i].len <= 0) | 
|  | continue; | 
|  | CanonHostInfo::Family family = IPv4ComponentToNumber( | 
|  | spec, components[i], &component_values[existing_components]); | 
|  |  | 
|  | if (family == CanonHostInfo::BROKEN) { | 
|  | broken = true; | 
|  | } else if (family != CanonHostInfo::IPV4) { | 
|  | // Stop if we hit a non-BROKEN invalid non-empty component. | 
|  | return family; | 
|  | } | 
|  |  | 
|  | existing_components++; | 
|  | } | 
|  |  | 
|  | if (broken) | 
|  | return CanonHostInfo::BROKEN; | 
|  |  | 
|  | // Use that sequence of numbers to fill out the 4-component IP address. | 
|  |  | 
|  | // First, process all components but the last, while making sure each fits | 
|  | // within an 8-bit field. | 
|  | for (int i = 0; i < existing_components - 1; i++) { | 
|  | if (component_values[i] > std::numeric_limits<uint8_t>::max()) | 
|  | return CanonHostInfo::BROKEN; | 
|  | address[i] = static_cast<unsigned char>(component_values[i]); | 
|  | } | 
|  |  | 
|  | // Next, consume the last component to fill in the remaining bytes. | 
|  | // Work around a gcc 4.9 bug. crbug.com/392872 | 
|  | #if ((__GNUC__ == 4 && __GNUC_MINOR__ >= 9) || __GNUC__ > 4) | 
|  | #pragma GCC diagnostic push | 
|  | #pragma GCC diagnostic ignored "-Warray-bounds" | 
|  | #endif | 
|  | uint32_t last_value = component_values[existing_components - 1]; | 
|  | #if ((__GNUC__ == 4 && __GNUC_MINOR__ >= 9) || __GNUC__ > 4) | 
|  | #pragma GCC diagnostic pop | 
|  | #endif | 
|  | for (int i = 3; i >= existing_components - 1; i--) { | 
|  | address[i] = static_cast<unsigned char>(last_value); | 
|  | last_value >>= 8; | 
|  | } | 
|  |  | 
|  | // If the last component has residual bits, report overflow. | 
|  | if (last_value != 0) | 
|  | return CanonHostInfo::BROKEN; | 
|  |  | 
|  | // Tell the caller how many components we saw. | 
|  | *num_ipv4_components = existing_components; | 
|  |  | 
|  | // Success! | 
|  | return CanonHostInfo::IPV4; | 
|  | } | 
|  |  | 
|  | // Return true if we've made a final IPV4/BROKEN decision, false if the result | 
|  | // is NEUTRAL, and we could use a second opinion. | 
|  | template<typename CHAR, typename UCHAR> | 
|  | bool DoCanonicalizeIPv4Address(const CHAR* spec, | 
|  | const Component& host, | 
|  | CanonOutput* output, | 
|  | CanonHostInfo* host_info) { | 
|  | host_info->family = IPv4AddressToNumber( | 
|  | spec, host, host_info->address, &host_info->num_ipv4_components); | 
|  |  | 
|  | switch (host_info->family) { | 
|  | case CanonHostInfo::IPV4: | 
|  | // Definitely an IPv4 address. | 
|  | host_info->out_host.begin = output->length(); | 
|  | AppendIPv4Address(host_info->address, output); | 
|  | host_info->out_host.len = output->length() - host_info->out_host.begin; | 
|  | return true; | 
|  | case CanonHostInfo::BROKEN: | 
|  | // Definitely broken. | 
|  | return true; | 
|  | default: | 
|  | // Could be IPv6 or a hostname. | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Helper class that describes the main components of an IPv6 input string. | 
|  | // See the following examples to understand how it breaks up an input string: | 
|  | // | 
|  | // [Example 1]: input = "[::aa:bb]" | 
|  | //  ==> num_hex_components = 2 | 
|  | //  ==> hex_components[0] = Component(3,2) "aa" | 
|  | //  ==> hex_components[1] = Component(6,2) "bb" | 
|  | //  ==> index_of_contraction = 0 | 
|  | //  ==> ipv4_component = Component(0, -1) | 
|  | // | 
|  | // [Example 2]: input = "[1:2::3:4:5]" | 
|  | //  ==> num_hex_components = 5 | 
|  | //  ==> hex_components[0] = Component(1,1) "1" | 
|  | //  ==> hex_components[1] = Component(3,1) "2" | 
|  | //  ==> hex_components[2] = Component(6,1) "3" | 
|  | //  ==> hex_components[3] = Component(8,1) "4" | 
|  | //  ==> hex_components[4] = Component(10,1) "5" | 
|  | //  ==> index_of_contraction = 2 | 
|  | //  ==> ipv4_component = Component(0, -1) | 
|  | // | 
|  | // [Example 3]: input = "[::ffff:192.168.0.1]" | 
|  | //  ==> num_hex_components = 1 | 
|  | //  ==> hex_components[0] = Component(3,4) "ffff" | 
|  | //  ==> index_of_contraction = 0 | 
|  | //  ==> ipv4_component = Component(8, 11) "192.168.0.1" | 
|  | // | 
|  | // [Example 4]: input = "[1::]" | 
|  | //  ==> num_hex_components = 1 | 
|  | //  ==> hex_components[0] = Component(1,1) "1" | 
|  | //  ==> index_of_contraction = 1 | 
|  | //  ==> ipv4_component = Component(0, -1) | 
|  | // | 
|  | // [Example 5]: input = "[::192.168.0.1]" | 
|  | //  ==> num_hex_components = 0 | 
|  | //  ==> index_of_contraction = 0 | 
|  | //  ==> ipv4_component = Component(8, 11) "192.168.0.1" | 
|  | // | 
|  | struct IPv6Parsed { | 
|  | // Zero-out the parse information. | 
|  | void reset() { | 
|  | num_hex_components = 0; | 
|  | index_of_contraction = -1; | 
|  | ipv4_component.reset(); | 
|  | } | 
|  |  | 
|  | // There can be up to 8 hex components (colon separated) in the literal. | 
|  | Component hex_components[8]; | 
|  |  | 
|  | // The count of hex components present. Ranges from [0,8]. | 
|  | int num_hex_components; | 
|  |  | 
|  | // The index of the hex component that the "::" contraction precedes, or | 
|  | // -1 if there is no contraction. | 
|  | int index_of_contraction; | 
|  |  | 
|  | // The range of characters which are an IPv4 literal. | 
|  | Component ipv4_component; | 
|  | }; | 
|  |  | 
|  | // Parse the IPv6 input string. If parsing succeeded returns true and fills | 
|  | // |parsed| with the information. If parsing failed (because the input is | 
|  | // invalid) returns false. | 
|  | template<typename CHAR, typename UCHAR> | 
|  | bool DoParseIPv6(const CHAR* spec, const Component& host, IPv6Parsed* parsed) { | 
|  | // Zero-out the info. | 
|  | parsed->reset(); | 
|  |  | 
|  | if (!host.is_nonempty()) | 
|  | return false; | 
|  |  | 
|  | // The index for start and end of address range (no brackets). | 
|  | int begin = host.begin; | 
|  | int end = host.end(); | 
|  |  | 
|  | int cur_component_begin = begin;  // Start of the current component. | 
|  |  | 
|  | // Scan through the input, searching for hex components, "::" contractions, | 
|  | // and IPv4 components. | 
|  | for (int i = begin; /* i <= end */; i++) { | 
|  | bool is_colon = spec[i] == ':'; | 
|  | bool is_contraction = is_colon && i < end - 1 && spec[i + 1] == ':'; | 
|  |  | 
|  | // We reached the end of the current component if we encounter a colon | 
|  | // (separator between hex components, or start of a contraction), or end of | 
|  | // input. | 
|  | if (is_colon || i == end) { | 
|  | int component_len = i - cur_component_begin; | 
|  |  | 
|  | // A component should not have more than 4 hex digits. | 
|  | if (component_len > 4) | 
|  | return false; | 
|  |  | 
|  | // Don't allow empty components. | 
|  | if (component_len == 0) { | 
|  | // The exception is when contractions appear at beginning of the | 
|  | // input or at the end of the input. | 
|  | if (!((is_contraction && i == begin) || (i == end && | 
|  | parsed->index_of_contraction == parsed->num_hex_components))) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Add the hex component we just found to running list. | 
|  | if (component_len > 0) { | 
|  | // Can't have more than 8 components! | 
|  | if (parsed->num_hex_components >= 8) | 
|  | return false; | 
|  |  | 
|  | parsed->hex_components[parsed->num_hex_components++] = | 
|  | Component(cur_component_begin, component_len); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (i == end) | 
|  | break;  // Reached the end of the input, DONE. | 
|  |  | 
|  | // We found a "::" contraction. | 
|  | if (is_contraction) { | 
|  | // There can be at most one contraction in the literal. | 
|  | if (parsed->index_of_contraction != -1) | 
|  | return false; | 
|  | parsed->index_of_contraction = parsed->num_hex_components; | 
|  | ++i;  // Consume the colon we peeked. | 
|  | } | 
|  |  | 
|  | if (is_colon) { | 
|  | // Colons are separators between components, keep track of where the | 
|  | // current component started (after this colon). | 
|  | cur_component_begin = i + 1; | 
|  | } else { | 
|  | if (static_cast<UCHAR>(spec[i]) >= 0x80) | 
|  | return false;  // Not ASCII. | 
|  |  | 
|  | if (!IsHexChar(static_cast<unsigned char>(spec[i]))) { | 
|  | // Regular components are hex numbers. It is also possible for | 
|  | // a component to be an IPv4 address in dotted form. | 
|  | if (IsIPv4Char(static_cast<unsigned char>(spec[i]))) { | 
|  | // Since IPv4 address can only appear at the end, assume the rest | 
|  | // of the string is an IPv4 address. (We will parse this separately | 
|  | // later). | 
|  | parsed->ipv4_component = | 
|  | Component(cur_component_begin, end - cur_component_begin); | 
|  | break; | 
|  | } else { | 
|  | // The character was neither a hex digit, nor an IPv4 character. | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Verifies the parsed IPv6 information, checking that the various components | 
|  | // add up to the right number of bits (hex components are 16 bits, while | 
|  | // embedded IPv4 formats are 32 bits, and contractions are placeholdes for | 
|  | // 16 or more bits). Returns true if sizes match up, false otherwise. On | 
|  | // success writes the length of the contraction (if any) to | 
|  | // |out_num_bytes_of_contraction|. | 
|  | bool CheckIPv6ComponentsSize(const IPv6Parsed& parsed, | 
|  | int* out_num_bytes_of_contraction) { | 
|  | // Each group of four hex digits contributes 16 bits. | 
|  | int num_bytes_without_contraction = parsed.num_hex_components * 2; | 
|  |  | 
|  | // If an IPv4 address was embedded at the end, it contributes 32 bits. | 
|  | if (parsed.ipv4_component.is_valid()) | 
|  | num_bytes_without_contraction += 4; | 
|  |  | 
|  | // If there was a "::" contraction, its size is going to be: | 
|  | // MAX([16bits], [128bits] - num_bytes_without_contraction). | 
|  | int num_bytes_of_contraction = 0; | 
|  | if (parsed.index_of_contraction != -1) { | 
|  | num_bytes_of_contraction = 16 - num_bytes_without_contraction; | 
|  | if (num_bytes_of_contraction < 2) | 
|  | num_bytes_of_contraction = 2; | 
|  | } | 
|  |  | 
|  | // Check that the numbers add up. | 
|  | if (num_bytes_without_contraction + num_bytes_of_contraction != 16) | 
|  | return false; | 
|  |  | 
|  | *out_num_bytes_of_contraction = num_bytes_of_contraction; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Converts a hex component into a number. This cannot fail since the caller has | 
|  | // already verified that each character in the string was a hex digit, and | 
|  | // that there were no more than 4 characters. | 
|  | template <typename CHAR> | 
|  | uint16_t IPv6HexComponentToNumber(const CHAR* spec, | 
|  | const Component& component) { | 
|  | DCHECK(component.len <= 4); | 
|  |  | 
|  | // Copy the hex string into a C-string. | 
|  | char buf[5]; | 
|  | for (int i = 0; i < component.len; ++i) | 
|  | buf[i] = static_cast<char>(spec[component.begin + i]); | 
|  | buf[component.len] = '\0'; | 
|  |  | 
|  | // Convert it to a number (overflow is not possible, since with 4 hex | 
|  | // characters we can at most have a 16 bit number). | 
|  | return static_cast<uint16_t>(_strtoui64(buf, NULL, 16)); | 
|  | } | 
|  |  | 
|  | // Converts an IPv6 address to a 128-bit number (network byte order), returning | 
|  | // true on success. False means that the input was not a valid IPv6 address. | 
|  | template<typename CHAR, typename UCHAR> | 
|  | bool DoIPv6AddressToNumber(const CHAR* spec, | 
|  | const Component& host, | 
|  | unsigned char address[16]) { | 
|  | // Make sure the component is bounded by '[' and ']'. | 
|  | int end = host.end(); | 
|  | if (!host.is_nonempty() || spec[host.begin] != '[' || spec[end - 1] != ']') | 
|  | return false; | 
|  |  | 
|  | // Exclude the square brackets. | 
|  | Component ipv6_comp(host.begin + 1, host.len - 2); | 
|  |  | 
|  | // Parse the IPv6 address -- identify where all the colon separated hex | 
|  | // components are, the "::" contraction, and the embedded IPv4 address. | 
|  | IPv6Parsed ipv6_parsed; | 
|  | if (!DoParseIPv6<CHAR, UCHAR>(spec, ipv6_comp, &ipv6_parsed)) | 
|  | return false; | 
|  |  | 
|  | // Do some basic size checks to make sure that the address doesn't | 
|  | // specify more than 128 bits or fewer than 128 bits. This also resolves | 
|  | // how may zero bytes the "::" contraction represents. | 
|  | int num_bytes_of_contraction; | 
|  | if (!CheckIPv6ComponentsSize(ipv6_parsed, &num_bytes_of_contraction)) | 
|  | return false; | 
|  |  | 
|  | int cur_index_in_address = 0; | 
|  |  | 
|  | // Loop through each hex components, and contraction in order. | 
|  | for (int i = 0; i <= ipv6_parsed.num_hex_components; ++i) { | 
|  | // Append the contraction if it appears before this component. | 
|  | if (i == ipv6_parsed.index_of_contraction) { | 
|  | for (int j = 0; j < num_bytes_of_contraction; ++j) | 
|  | address[cur_index_in_address++] = 0; | 
|  | } | 
|  | // Append the hex component's value. | 
|  | if (i != ipv6_parsed.num_hex_components) { | 
|  | // Get the 16-bit value for this hex component. | 
|  | uint16_t number = IPv6HexComponentToNumber<CHAR>( | 
|  | spec, ipv6_parsed.hex_components[i]); | 
|  | // Append to |address|, in network byte order. | 
|  | address[cur_index_in_address++] = (number & 0xFF00) >> 8; | 
|  | address[cur_index_in_address++] = (number & 0x00FF); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If there was an IPv4 section, convert it into a 32-bit number and append | 
|  | // it to |address|. | 
|  | if (ipv6_parsed.ipv4_component.is_valid()) { | 
|  | // Append the 32-bit number to |address|. | 
|  | int ignored_num_ipv4_components; | 
|  | if (CanonHostInfo::IPV4 != | 
|  | IPv4AddressToNumber(spec, | 
|  | ipv6_parsed.ipv4_component, | 
|  | &address[cur_index_in_address], | 
|  | &ignored_num_ipv4_components)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Searches for the longest sequence of zeros in |address|, and writes the | 
|  | // range into |contraction_range|. The run of zeros must be at least 16 bits, | 
|  | // and if there is a tie the first is chosen. | 
|  | void ChooseIPv6ContractionRange(const unsigned char address[16], | 
|  | Component* contraction_range) { | 
|  | // The longest run of zeros in |address| seen so far. | 
|  | Component max_range; | 
|  |  | 
|  | // The current run of zeros in |address| being iterated over. | 
|  | Component cur_range; | 
|  |  | 
|  | for (int i = 0; i < 16; i += 2) { | 
|  | // Test for 16 bits worth of zero. | 
|  | bool is_zero = (address[i] == 0 && address[i + 1] == 0); | 
|  |  | 
|  | if (is_zero) { | 
|  | // Add the zero to the current range (or start a new one). | 
|  | if (!cur_range.is_valid()) | 
|  | cur_range = Component(i, 0); | 
|  | cur_range.len += 2; | 
|  | } | 
|  |  | 
|  | if (!is_zero || i == 14) { | 
|  | // Just completed a run of zeros. If the run is greater than 16 bits, | 
|  | // it is a candidate for the contraction. | 
|  | if (cur_range.len > 2 && cur_range.len > max_range.len) { | 
|  | max_range = cur_range; | 
|  | } | 
|  | cur_range.reset(); | 
|  | } | 
|  | } | 
|  | *contraction_range = max_range; | 
|  | } | 
|  |  | 
|  | // Return true if we've made a final IPV6/BROKEN decision, false if the result | 
|  | // is NEUTRAL, and we could use a second opinion. | 
|  | template<typename CHAR, typename UCHAR> | 
|  | bool DoCanonicalizeIPv6Address(const CHAR* spec, | 
|  | const Component& host, | 
|  | CanonOutput* output, | 
|  | CanonHostInfo* host_info) { | 
|  | // Turn the IP address into a 128 bit number. | 
|  | if (!IPv6AddressToNumber(spec, host, host_info->address)) { | 
|  | // If it's not an IPv6 address, scan for characters that should *only* | 
|  | // exist in an IPv6 address. | 
|  | for (int i = host.begin; i < host.end(); i++) { | 
|  | switch (spec[i]) { | 
|  | case '[': | 
|  | case ']': | 
|  | case ':': | 
|  | host_info->family = CanonHostInfo::BROKEN; | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // No invalid characters. Could still be IPv4 or a hostname. | 
|  | host_info->family = CanonHostInfo::NEUTRAL; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | host_info->out_host.begin = output->length(); | 
|  | output->push_back('['); | 
|  | AppendIPv6Address(host_info->address, output); | 
|  | output->push_back(']'); | 
|  | host_info->out_host.len = output->length() - host_info->out_host.begin; | 
|  |  | 
|  | host_info->family = CanonHostInfo::IPV6; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | }  // namespace | 
|  |  | 
|  | void AppendIPv4Address(const unsigned char address[4], CanonOutput* output) { | 
|  | for (int i = 0; i < 4; i++) { | 
|  | char str[16]; | 
|  | #if defined(STARBOARD) | 
|  | SbStringFormatF(str, 16, "%d", address[i]); | 
|  | #else | 
|  | _itoa_s(address[i], str, 10); | 
|  | #endif | 
|  |  | 
|  | for (int ch = 0; str[ch] != 0; ch++) | 
|  | output->push_back(str[ch]); | 
|  |  | 
|  | if (i != 3) | 
|  | output->push_back('.'); | 
|  | } | 
|  | } | 
|  |  | 
|  | void AppendIPv6Address(const unsigned char address[16], CanonOutput* output) { | 
|  | // We will output the address according to the rules in: | 
|  | // http://tools.ietf.org/html/draft-kawamura-ipv6-text-representation-01#section-4 | 
|  |  | 
|  | // Start by finding where to place the "::" contraction (if any). | 
|  | Component contraction_range; | 
|  | ChooseIPv6ContractionRange(address, &contraction_range); | 
|  |  | 
|  | for (int i = 0; i <= 14;) { | 
|  | // We check 2 bytes at a time, from bytes (0, 1) to (14, 15), inclusive. | 
|  | DCHECK(i % 2 == 0); | 
|  | if (i == contraction_range.begin && contraction_range.len > 0) { | 
|  | // Jump over the contraction. | 
|  | if (i == 0) | 
|  | output->push_back(':'); | 
|  | output->push_back(':'); | 
|  | i = contraction_range.end(); | 
|  | } else { | 
|  | // Consume the next 16 bits from |address|. | 
|  | int x = address[i] << 8 | address[i + 1]; | 
|  |  | 
|  | i += 2; | 
|  |  | 
|  | // Stringify the 16 bit number (at most requires 4 hex digits). | 
|  | char str[5]; | 
|  | #if defined(STARBOARD) | 
|  | SbStringFormatF(str, 5, "%x", x); | 
|  | #else | 
|  | _itoa_s(x, str, 16); | 
|  | #endif | 
|  | for (int ch = 0; str[ch] != 0; ++ch) | 
|  | output->push_back(str[ch]); | 
|  |  | 
|  | // Put a colon after each number, except the last. | 
|  | if (i < 16) | 
|  | output->push_back(':'); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | bool FindIPv4Components(const char* spec, | 
|  | const Component& host, | 
|  | Component components[4]) { | 
|  | return DoFindIPv4Components<char, unsigned char>(spec, host, components); | 
|  | } | 
|  |  | 
|  | bool FindIPv4Components(const base::char16* spec, | 
|  | const Component& host, | 
|  | Component components[4]) { | 
|  | return DoFindIPv4Components<base::char16, base::char16>( | 
|  | spec, host, components); | 
|  | } | 
|  |  | 
|  | void CanonicalizeIPAddress(const char* spec, | 
|  | const Component& host, | 
|  | CanonOutput* output, | 
|  | CanonHostInfo* host_info) { | 
|  | if (DoCanonicalizeIPv4Address<char, unsigned char>( | 
|  | spec, host, output, host_info)) | 
|  | return; | 
|  | if (DoCanonicalizeIPv6Address<char, unsigned char>( | 
|  | spec, host, output, host_info)) | 
|  | return; | 
|  | } | 
|  |  | 
|  | void CanonicalizeIPAddress(const base::char16* spec, | 
|  | const Component& host, | 
|  | CanonOutput* output, | 
|  | CanonHostInfo* host_info) { | 
|  | if (DoCanonicalizeIPv4Address<base::char16, base::char16>( | 
|  | spec, host, output, host_info)) | 
|  | return; | 
|  | if (DoCanonicalizeIPv6Address<base::char16, base::char16>( | 
|  | spec, host, output, host_info)) | 
|  | return; | 
|  | } | 
|  |  | 
|  | CanonHostInfo::Family IPv4AddressToNumber(const char* spec, | 
|  | const Component& host, | 
|  | unsigned char address[4], | 
|  | int* num_ipv4_components) { | 
|  | return DoIPv4AddressToNumber<char>(spec, host, address, num_ipv4_components); | 
|  | } | 
|  |  | 
|  | CanonHostInfo::Family IPv4AddressToNumber(const base::char16* spec, | 
|  | const Component& host, | 
|  | unsigned char address[4], | 
|  | int* num_ipv4_components) { | 
|  | return DoIPv4AddressToNumber<base::char16>( | 
|  | spec, host, address, num_ipv4_components); | 
|  | } | 
|  |  | 
|  | bool IPv6AddressToNumber(const char* spec, | 
|  | const Component& host, | 
|  | unsigned char address[16]) { | 
|  | return DoIPv6AddressToNumber<char, unsigned char>(spec, host, address); | 
|  | } | 
|  |  | 
|  | bool IPv6AddressToNumber(const base::char16* spec, | 
|  | const Component& host, | 
|  | unsigned char address[16]) { | 
|  | return DoIPv6AddressToNumber<base::char16, base::char16>(spec, host, address); | 
|  | } | 
|  |  | 
|  | }  // namespace url |