| // Copyright 2014 the V8 project authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include <vector> |
| |
| #include "src/counters-inl.h" |
| #include "src/counters.h" |
| #include "src/handles-inl.h" |
| #include "src/objects-inl.h" |
| #include "src/tracing/tracing-category-observer.h" |
| #include "testing/gtest/include/gtest/gtest.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| namespace { |
| |
| class MockHistogram : public Histogram { |
| public: |
| void AddSample(int value) { samples_.push_back(value); } |
| std::vector<int>* samples() { return &samples_; } |
| |
| private: |
| std::vector<int> samples_; |
| }; |
| |
| |
| class AggregatedMemoryHistogramTest : public ::testing::Test { |
| public: |
| AggregatedMemoryHistogramTest() : aggregated_(&mock_) {} |
| virtual ~AggregatedMemoryHistogramTest() {} |
| |
| void AddSample(double current_ms, double current_value) { |
| aggregated_.AddSample(current_ms, current_value); |
| } |
| |
| std::vector<int>* samples() { return mock_.samples(); } |
| |
| private: |
| AggregatedMemoryHistogram<MockHistogram> aggregated_; |
| MockHistogram mock_; |
| }; |
| |
| class RuntimeCallStatsTest : public ::testing::Test { |
| public: |
| RuntimeCallStatsTest() { |
| FLAG_runtime_stats = |
| v8::tracing::TracingCategoryObserver::ENABLED_BY_NATIVE; |
| } |
| virtual ~RuntimeCallStatsTest() {} |
| |
| RuntimeCallStats* stats() { return &stats_; } |
| RuntimeCallStats::CounterId counter_id() { |
| return &RuntimeCallStats::TestCounter1; |
| } |
| RuntimeCallStats::CounterId counter_id2() { |
| return &RuntimeCallStats::TestCounter2; |
| } |
| RuntimeCallStats::CounterId counter_id3() { |
| return &RuntimeCallStats::TestCounter3; |
| } |
| RuntimeCallCounter* counter() { return &(stats()->*counter_id()); } |
| RuntimeCallCounter* counter2() { return &(stats()->*counter_id2()); } |
| RuntimeCallCounter* counter3() { return &(stats()->*counter_id3()); } |
| void Sleep(int32_t milliseconds) { |
| base::ElapsedTimer timer; |
| base::TimeDelta delta = base::TimeDelta::FromMilliseconds(milliseconds); |
| timer.Start(); |
| while (!timer.HasExpired(delta)) { |
| base::OS::Sleep(base::TimeDelta::FromMicroseconds(0)); |
| } |
| } |
| |
| const uint32_t kEpsilonMs = 20; |
| |
| private: |
| RuntimeCallStats stats_; |
| }; |
| |
| } // namespace |
| |
| |
| TEST_F(AggregatedMemoryHistogramTest, OneSample1) { |
| FLAG_histogram_interval = 10; |
| AddSample(10, 1000); |
| AddSample(20, 1000); |
| EXPECT_EQ(1U, samples()->size()); |
| EXPECT_EQ(1000, (*samples())[0]); |
| } |
| |
| |
| TEST_F(AggregatedMemoryHistogramTest, OneSample2) { |
| FLAG_histogram_interval = 10; |
| AddSample(10, 500); |
| AddSample(20, 1000); |
| EXPECT_EQ(1U, samples()->size()); |
| EXPECT_EQ(750, (*samples())[0]); |
| } |
| |
| |
| TEST_F(AggregatedMemoryHistogramTest, OneSample3) { |
| FLAG_histogram_interval = 10; |
| AddSample(10, 500); |
| AddSample(15, 500); |
| AddSample(15, 1000); |
| AddSample(20, 1000); |
| EXPECT_EQ(1U, samples()->size()); |
| EXPECT_EQ(750, (*samples())[0]); |
| } |
| |
| |
| TEST_F(AggregatedMemoryHistogramTest, OneSample4) { |
| FLAG_histogram_interval = 10; |
| AddSample(10, 500); |
| AddSample(15, 750); |
| AddSample(20, 1000); |
| EXPECT_EQ(1U, samples()->size()); |
| EXPECT_EQ(750, (*samples())[0]); |
| } |
| |
| |
| TEST_F(AggregatedMemoryHistogramTest, TwoSamples1) { |
| FLAG_histogram_interval = 10; |
| AddSample(10, 1000); |
| AddSample(30, 1000); |
| EXPECT_EQ(2U, samples()->size()); |
| EXPECT_EQ(1000, (*samples())[0]); |
| EXPECT_EQ(1000, (*samples())[1]); |
| } |
| |
| |
| TEST_F(AggregatedMemoryHistogramTest, TwoSamples2) { |
| FLAG_histogram_interval = 10; |
| AddSample(10, 1000); |
| AddSample(20, 1000); |
| AddSample(30, 1000); |
| EXPECT_EQ(2U, samples()->size()); |
| EXPECT_EQ(1000, (*samples())[0]); |
| EXPECT_EQ(1000, (*samples())[1]); |
| } |
| |
| |
| TEST_F(AggregatedMemoryHistogramTest, TwoSamples3) { |
| FLAG_histogram_interval = 10; |
| AddSample(10, 1000); |
| AddSample(20, 1000); |
| AddSample(20, 500); |
| AddSample(30, 500); |
| EXPECT_EQ(2U, samples()->size()); |
| EXPECT_EQ(1000, (*samples())[0]); |
| EXPECT_EQ(500, (*samples())[1]); |
| } |
| |
| |
| TEST_F(AggregatedMemoryHistogramTest, TwoSamples4) { |
| FLAG_histogram_interval = 10; |
| AddSample(10, 1000); |
| AddSample(30, 0); |
| EXPECT_EQ(2U, samples()->size()); |
| EXPECT_EQ(750, (*samples())[0]); |
| EXPECT_EQ(250, (*samples())[1]); |
| } |
| |
| |
| TEST_F(AggregatedMemoryHistogramTest, TwoSamples5) { |
| FLAG_histogram_interval = 10; |
| AddSample(10, 0); |
| AddSample(30, 1000); |
| EXPECT_EQ(2U, samples()->size()); |
| EXPECT_EQ(250, (*samples())[0]); |
| EXPECT_EQ(750, (*samples())[1]); |
| } |
| |
| |
| TEST_F(AggregatedMemoryHistogramTest, TwoSamples6) { |
| FLAG_histogram_interval = 10; |
| AddSample(10, 0); |
| AddSample(15, 1000); |
| AddSample(30, 1000); |
| EXPECT_EQ(2U, samples()->size()); |
| EXPECT_EQ((500 + 1000) / 2, (*samples())[0]); |
| EXPECT_EQ(1000, (*samples())[1]); |
| } |
| |
| |
| TEST_F(AggregatedMemoryHistogramTest, TwoSamples7) { |
| FLAG_histogram_interval = 10; |
| AddSample(10, 0); |
| AddSample(15, 1000); |
| AddSample(25, 0); |
| AddSample(30, 1000); |
| EXPECT_EQ(2U, samples()->size()); |
| EXPECT_EQ((500 + 750) / 2, (*samples())[0]); |
| EXPECT_EQ((250 + 500) / 2, (*samples())[1]); |
| } |
| |
| |
| TEST_F(AggregatedMemoryHistogramTest, TwoSamples8) { |
| FLAG_histogram_interval = 10; |
| AddSample(10, 1000); |
| AddSample(15, 0); |
| AddSample(25, 1000); |
| AddSample(30, 0); |
| EXPECT_EQ(2U, samples()->size()); |
| EXPECT_EQ((500 + 250) / 2, (*samples())[0]); |
| EXPECT_EQ((750 + 500) / 2, (*samples())[1]); |
| } |
| |
| |
| TEST_F(AggregatedMemoryHistogramTest, ManySamples1) { |
| FLAG_histogram_interval = 10; |
| const int kMaxSamples = 1000; |
| AddSample(0, 0); |
| AddSample(10 * kMaxSamples, 10 * kMaxSamples); |
| EXPECT_EQ(static_cast<unsigned>(kMaxSamples), samples()->size()); |
| for (int i = 0; i < kMaxSamples; i++) { |
| EXPECT_EQ(i * 10 + 5, (*samples())[i]); |
| } |
| } |
| |
| |
| TEST_F(AggregatedMemoryHistogramTest, ManySamples2) { |
| FLAG_histogram_interval = 10; |
| const int kMaxSamples = 1000; |
| AddSample(0, 0); |
| AddSample(10 * (2 * kMaxSamples), 10 * (2 * kMaxSamples)); |
| EXPECT_EQ(static_cast<unsigned>(kMaxSamples), samples()->size()); |
| for (int i = 0; i < kMaxSamples; i++) { |
| EXPECT_EQ(i * 10 + 5, (*samples())[i]); |
| } |
| } |
| |
| #define EXPECT_IN_RANGE(start, value, end) \ |
| EXPECT_LE(start, value); \ |
| EXPECT_GE(end, value) |
| |
| TEST_F(RuntimeCallStatsTest, RuntimeCallTimer) { |
| RuntimeCallTimer timer; |
| |
| Sleep(50); |
| RuntimeCallStats::Enter(stats(), &timer, counter_id()); |
| EXPECT_EQ(counter(), timer.counter()); |
| EXPECT_EQ(nullptr, timer.parent()); |
| EXPECT_TRUE(timer.IsStarted()); |
| EXPECT_EQ(&timer, stats()->current_timer()); |
| |
| Sleep(100); |
| |
| RuntimeCallStats::Leave(stats(), &timer); |
| Sleep(50); |
| EXPECT_FALSE(timer.IsStarted()); |
| EXPECT_EQ(1, counter()->count()); |
| EXPECT_IN_RANGE(100, counter()->time().InMilliseconds(), 100 + kEpsilonMs); |
| } |
| |
| TEST_F(RuntimeCallStatsTest, RuntimeCallTimerSubTimer) { |
| RuntimeCallTimer timer; |
| RuntimeCallTimer timer2; |
| |
| RuntimeCallStats::Enter(stats(), &timer, counter_id()); |
| EXPECT_TRUE(timer.IsStarted()); |
| EXPECT_FALSE(timer2.IsStarted()); |
| EXPECT_EQ(counter(), timer.counter()); |
| EXPECT_EQ(nullptr, timer.parent()); |
| EXPECT_EQ(&timer, stats()->current_timer()); |
| |
| Sleep(50); |
| |
| RuntimeCallStats::Enter(stats(), &timer2, counter_id2()); |
| // timer 1 is paused, while timer 2 is active. |
| EXPECT_TRUE(timer2.IsStarted()); |
| EXPECT_EQ(counter(), timer.counter()); |
| EXPECT_EQ(counter2(), timer2.counter()); |
| EXPECT_EQ(nullptr, timer.parent()); |
| EXPECT_EQ(&timer, timer2.parent()); |
| EXPECT_EQ(&timer2, stats()->current_timer()); |
| |
| Sleep(100); |
| RuntimeCallStats::Leave(stats(), &timer2); |
| |
| // The subtimer subtracts its time from the parent timer. |
| EXPECT_TRUE(timer.IsStarted()); |
| EXPECT_FALSE(timer2.IsStarted()); |
| EXPECT_EQ(0, counter()->count()); |
| EXPECT_EQ(1, counter2()->count()); |
| EXPECT_EQ(0, counter()->time().InMilliseconds()); |
| EXPECT_IN_RANGE(100, counter2()->time().InMilliseconds(), 100 + kEpsilonMs); |
| EXPECT_EQ(&timer, stats()->current_timer()); |
| |
| Sleep(100); |
| |
| RuntimeCallStats::Leave(stats(), &timer); |
| EXPECT_FALSE(timer.IsStarted()); |
| EXPECT_EQ(1, counter()->count()); |
| EXPECT_EQ(1, counter2()->count()); |
| EXPECT_IN_RANGE(150, counter()->time().InMilliseconds(), 150 + kEpsilonMs); |
| EXPECT_IN_RANGE(100, counter2()->time().InMilliseconds(), 100 + kEpsilonMs); |
| EXPECT_EQ(nullptr, stats()->current_timer()); |
| } |
| |
| TEST_F(RuntimeCallStatsTest, RuntimeCallTimerRecursive) { |
| RuntimeCallTimer timer; |
| RuntimeCallTimer timer2; |
| |
| RuntimeCallStats::Enter(stats(), &timer, counter_id()); |
| EXPECT_EQ(counter(), timer.counter()); |
| EXPECT_EQ(nullptr, timer.parent()); |
| EXPECT_TRUE(timer.IsStarted()); |
| EXPECT_EQ(&timer, stats()->current_timer()); |
| |
| RuntimeCallStats::Enter(stats(), &timer2, counter_id()); |
| EXPECT_EQ(counter(), timer2.counter()); |
| EXPECT_EQ(nullptr, timer.parent()); |
| EXPECT_EQ(&timer, timer2.parent()); |
| EXPECT_TRUE(timer2.IsStarted()); |
| EXPECT_EQ(&timer2, stats()->current_timer()); |
| |
| Sleep(50); |
| |
| RuntimeCallStats::Leave(stats(), &timer2); |
| EXPECT_EQ(nullptr, timer.parent()); |
| EXPECT_FALSE(timer2.IsStarted()); |
| EXPECT_TRUE(timer.IsStarted()); |
| EXPECT_EQ(1, counter()->count()); |
| EXPECT_IN_RANGE(50, counter()->time().InMilliseconds(), 50 + kEpsilonMs); |
| |
| Sleep(100); |
| |
| RuntimeCallStats::Leave(stats(), &timer); |
| EXPECT_FALSE(timer.IsStarted()); |
| EXPECT_EQ(2, counter()->count()); |
| EXPECT_IN_RANGE(150, counter()->time().InMilliseconds(), |
| 150 + 2 * kEpsilonMs); |
| } |
| |
| TEST_F(RuntimeCallStatsTest, RuntimeCallTimerScope) { |
| { |
| RuntimeCallTimerScope scope(stats(), counter_id()); |
| Sleep(50); |
| } |
| Sleep(100); |
| EXPECT_EQ(1, counter()->count()); |
| EXPECT_IN_RANGE(50, counter()->time().InMilliseconds(), 50 + kEpsilonMs); |
| { |
| RuntimeCallTimerScope scope(stats(), counter_id()); |
| Sleep(50); |
| } |
| EXPECT_EQ(2, counter()->count()); |
| EXPECT_IN_RANGE(100, counter()->time().InMilliseconds(), |
| 100 + 2 * kEpsilonMs); |
| } |
| |
| TEST_F(RuntimeCallStatsTest, RuntimeCallTimerScopeRecursive) { |
| { |
| RuntimeCallTimerScope scope(stats(), counter_id()); |
| Sleep(50); |
| EXPECT_EQ(0, counter()->count()); |
| EXPECT_EQ(0, counter()->time().InMilliseconds()); |
| { |
| RuntimeCallTimerScope scope(stats(), counter_id()); |
| Sleep(50); |
| } |
| EXPECT_EQ(1, counter()->count()); |
| EXPECT_IN_RANGE(50, counter()->time().InMilliseconds(), 50 + kEpsilonMs); |
| } |
| EXPECT_EQ(2, counter()->count()); |
| EXPECT_IN_RANGE(100, counter()->time().InMilliseconds(), |
| 100 + 2 * kEpsilonMs); |
| } |
| |
| TEST_F(RuntimeCallStatsTest, RenameTimer) { |
| { |
| RuntimeCallTimerScope scope(stats(), counter_id()); |
| Sleep(50); |
| EXPECT_EQ(0, counter()->count()); |
| EXPECT_EQ(0, counter2()->count()); |
| EXPECT_EQ(0, counter()->time().InMilliseconds()); |
| EXPECT_EQ(0, counter2()->time().InMilliseconds()); |
| { |
| RuntimeCallTimerScope scope(stats(), counter_id()); |
| Sleep(100); |
| } |
| CHANGE_CURRENT_RUNTIME_COUNTER(stats(), TestCounter2); |
| EXPECT_EQ(1, counter()->count()); |
| EXPECT_EQ(0, counter2()->count()); |
| EXPECT_IN_RANGE(100, counter()->time().InMilliseconds(), 100 + kEpsilonMs); |
| EXPECT_IN_RANGE(0, counter2()->time().InMilliseconds(), 0); |
| } |
| EXPECT_EQ(1, counter()->count()); |
| EXPECT_EQ(1, counter2()->count()); |
| EXPECT_IN_RANGE(100, counter()->time().InMilliseconds(), 100 + kEpsilonMs); |
| EXPECT_IN_RANGE(50, counter2()->time().InMilliseconds(), 50 + kEpsilonMs); |
| } |
| |
| TEST_F(RuntimeCallStatsTest, BasicPrintAndSnapshot) { |
| std::ostringstream out; |
| stats()->Print(out); |
| EXPECT_EQ(0, counter()->count()); |
| EXPECT_EQ(0, counter2()->count()); |
| EXPECT_EQ(0, counter3()->count()); |
| EXPECT_EQ(0, counter()->time().InMilliseconds()); |
| EXPECT_EQ(0, counter2()->time().InMilliseconds()); |
| EXPECT_EQ(0, counter3()->time().InMilliseconds()); |
| |
| { |
| RuntimeCallTimerScope scope(stats(), counter_id()); |
| Sleep(50); |
| stats()->Print(out); |
| } |
| stats()->Print(out); |
| EXPECT_EQ(1, counter()->count()); |
| EXPECT_EQ(0, counter2()->count()); |
| EXPECT_EQ(0, counter3()->count()); |
| EXPECT_IN_RANGE(50, counter()->time().InMilliseconds(), 50 + kEpsilonMs); |
| EXPECT_EQ(0, counter2()->time().InMilliseconds()); |
| EXPECT_EQ(0, counter3()->time().InMilliseconds()); |
| } |
| |
| TEST_F(RuntimeCallStatsTest, PrintAndSnapshot) { |
| { |
| RuntimeCallTimerScope scope(stats(), counter_id()); |
| Sleep(100); |
| EXPECT_EQ(0, counter()->count()); |
| EXPECT_EQ(0, counter()->time().InMilliseconds()); |
| { |
| RuntimeCallTimerScope scope(stats(), counter_id2()); |
| EXPECT_EQ(0, counter2()->count()); |
| EXPECT_EQ(0, counter2()->time().InMilliseconds()); |
| Sleep(50); |
| |
| // This calls Snapshot on the current active timer and sychronizes and |
| // commits the whole timer stack. |
| std::ostringstream out; |
| stats()->Print(out); |
| EXPECT_EQ(0, counter()->count()); |
| EXPECT_EQ(0, counter2()->count()); |
| EXPECT_IN_RANGE(100, counter()->time().InMilliseconds(), |
| 100 + kEpsilonMs); |
| EXPECT_IN_RANGE(50, counter2()->time().InMilliseconds(), 50 + kEpsilonMs); |
| // Calling Print several times shouldn't have a (big) impact on the |
| // measured times. |
| stats()->Print(out); |
| EXPECT_EQ(0, counter()->count()); |
| EXPECT_EQ(0, counter2()->count()); |
| EXPECT_IN_RANGE(100, counter()->time().InMilliseconds(), |
| 100 + kEpsilonMs); |
| EXPECT_IN_RANGE(50, counter2()->time().InMilliseconds(), 50 + kEpsilonMs); |
| |
| Sleep(50); |
| stats()->Print(out); |
| EXPECT_EQ(0, counter()->count()); |
| EXPECT_EQ(0, counter2()->count()); |
| EXPECT_IN_RANGE(100, counter()->time().InMilliseconds(), |
| 100 + kEpsilonMs); |
| EXPECT_IN_RANGE(100, counter2()->time().InMilliseconds(), |
| 100 + kEpsilonMs); |
| Sleep(50); |
| } |
| Sleep(50); |
| EXPECT_EQ(0, counter()->count()); |
| EXPECT_EQ(1, counter2()->count()); |
| EXPECT_IN_RANGE(100, counter()->time().InMilliseconds(), 100 + kEpsilonMs); |
| EXPECT_IN_RANGE(150, counter2()->time().InMilliseconds(), 150 + kEpsilonMs); |
| Sleep(50); |
| } |
| EXPECT_EQ(1, counter()->count()); |
| EXPECT_EQ(1, counter2()->count()); |
| EXPECT_IN_RANGE(200, counter()->time().InMilliseconds(), 200 + kEpsilonMs); |
| EXPECT_IN_RANGE(150, counter2()->time().InMilliseconds(), |
| 150 + 2 * kEpsilonMs); |
| } |
| |
| TEST_F(RuntimeCallStatsTest, NestedScopes) { |
| { |
| RuntimeCallTimerScope scope(stats(), counter_id()); |
| Sleep(100); |
| { |
| RuntimeCallTimerScope scope(stats(), counter_id2()); |
| Sleep(100); |
| { |
| RuntimeCallTimerScope scope(stats(), counter_id3()); |
| Sleep(50); |
| } |
| Sleep(50); |
| { |
| RuntimeCallTimerScope scope(stats(), counter_id3()); |
| Sleep(50); |
| } |
| Sleep(50); |
| } |
| Sleep(100); |
| { |
| RuntimeCallTimerScope scope(stats(), counter_id2()); |
| Sleep(100); |
| } |
| Sleep(50); |
| } |
| EXPECT_EQ(1, counter()->count()); |
| EXPECT_EQ(2, counter2()->count()); |
| EXPECT_EQ(2, counter3()->count()); |
| EXPECT_IN_RANGE(250, counter()->time().InMilliseconds(), 250 + kEpsilonMs); |
| EXPECT_IN_RANGE(300, counter2()->time().InMilliseconds(), 300 + kEpsilonMs); |
| EXPECT_IN_RANGE(100, counter3()->time().InMilliseconds(), 100 + kEpsilonMs); |
| } |
| |
| } // namespace internal |
| } // namespace v8 |