| /* |
| * Copyright (C) 2013 Reimar Döffinger <Reimar.Doeffinger@gmx.de> |
| * |
| * This file is part of FFmpeg. |
| * |
| * FFmpeg is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * FFmpeg is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with FFmpeg; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
| */ |
| |
| /** |
| * @file |
| * @ingroup lavu_hash_generic |
| * Generic hashing API |
| */ |
| |
| #ifndef AVUTIL_HASH_H |
| #define AVUTIL_HASH_H |
| |
| #include <stdint.h> |
| |
| #include "version.h" |
| |
| /** |
| * @defgroup lavu_hash Hash Functions |
| * @ingroup lavu_crypto |
| * Hash functions useful in multimedia. |
| * |
| * Hash functions are widely used in multimedia, from error checking and |
| * concealment to internal regression testing. libavutil has efficient |
| * implementations of a variety of hash functions that may be useful for |
| * FFmpeg and other multimedia applications. |
| * |
| * @{ |
| * |
| * @defgroup lavu_hash_generic Generic Hashing API |
| * An abstraction layer for all hash functions supported by libavutil. |
| * |
| * If your application needs to support a wide range of different hash |
| * functions, then the Generic Hashing API is for you. It provides a generic, |
| * reusable API for @ref lavu_hash "all hash functions" implemented in libavutil. |
| * If you just need to use one particular hash function, use the @ref lavu_hash |
| * "individual hash" directly. |
| * |
| * @section Sample Code |
| * |
| * A basic template for using the Generic Hashing API follows: |
| * |
| * @code |
| * struct AVHashContext *ctx = NULL; |
| * const char *hash_name = NULL; |
| * uint8_t *output_buf = NULL; |
| * |
| * // Select from a string returned by av_hash_names() |
| * hash_name = ...; |
| * |
| * // Allocate a hash context |
| * ret = av_hash_alloc(&ctx, hash_name); |
| * if (ret < 0) |
| * return ret; |
| * |
| * // Initialize the hash context |
| * av_hash_init(ctx); |
| * |
| * // Update the hash context with data |
| * while (data_left) { |
| * av_hash_update(ctx, data, size); |
| * } |
| * |
| * // Now we have no more data, so it is time to finalize the hash and get the |
| * // output. But we need to first allocate an output buffer. Note that you can |
| * // use any memory allocation function, including malloc(), not just |
| * // av_malloc(). |
| * output_buf = av_malloc(av_hash_get_size(ctx)); |
| * if (!output_buf) |
| * return AVERROR(ENOMEM); |
| * |
| * // Finalize the hash context. |
| * // You can use any of the av_hash_final*() functions provided, for other |
| * // output formats. If you do so, be sure to adjust the memory allocation |
| * // above. See the function documentation below for the exact amount of extra |
| * // memory needed. |
| * av_hash_final(ctx, output_buffer); |
| * |
| * // Free the context |
| * av_hash_freep(&ctx); |
| * @endcode |
| * |
| * @section Hash Function-Specific Information |
| * If the CRC32 hash is selected, the #AV_CRC_32_IEEE polynomial will be |
| * used. |
| * |
| * If the Murmur3 hash is selected, the default seed will be used. See @ref |
| * lavu_murmur3_seedinfo "Murmur3" for more information. |
| * |
| * @{ |
| */ |
| |
| /** |
| * @example ffhash.c |
| * This example is a simple command line application that takes one or more |
| * arguments. It demonstrates a typical use of the hashing API with allocation, |
| * initialization, updating, and finalizing. |
| */ |
| |
| struct AVHashContext; |
| |
| /** |
| * Allocate a hash context for the algorithm specified by name. |
| * |
| * @return >= 0 for success, a negative error code for failure |
| * |
| * @note The context is not initialized after a call to this function; you must |
| * call av_hash_init() to do so. |
| */ |
| int av_hash_alloc(struct AVHashContext **ctx, const char *name); |
| |
| /** |
| * Get the names of available hash algorithms. |
| * |
| * This function can be used to enumerate the algorithms. |
| * |
| * @param[in] i Index of the hash algorithm, starting from 0 |
| * @return Pointer to a static string or `NULL` if `i` is out of range |
| */ |
| const char *av_hash_names(int i); |
| |
| /** |
| * Get the name of the algorithm corresponding to the given hash context. |
| */ |
| const char *av_hash_get_name(const struct AVHashContext *ctx); |
| |
| /** |
| * Maximum value that av_hash_get_size() will currently return. |
| * |
| * You can use this if you absolutely want or need to use static allocation for |
| * the output buffer and are fine with not supporting hashes newly added to |
| * libavutil without recompilation. |
| * |
| * @warning |
| * Adding new hashes with larger sizes, and increasing the macro while doing |
| * so, will not be considered an ABI change. To prevent your code from |
| * overflowing a buffer, either dynamically allocate the output buffer with |
| * av_hash_get_size(), or limit your use of the Hashing API to hashes that are |
| * already in FFmpeg during the time of compilation. |
| */ |
| #define AV_HASH_MAX_SIZE 64 |
| |
| /** |
| * Get the size of the resulting hash value in bytes. |
| * |
| * The maximum value this function will currently return is available as macro |
| * #AV_HASH_MAX_SIZE. |
| * |
| * @param[in] ctx Hash context |
| * @return Size of the hash value in bytes |
| */ |
| int av_hash_get_size(const struct AVHashContext *ctx); |
| |
| /** |
| * Initialize or reset a hash context. |
| * |
| * @param[in,out] ctx Hash context |
| */ |
| void av_hash_init(struct AVHashContext *ctx); |
| |
| /** |
| * Update a hash context with additional data. |
| * |
| * @param[in,out] ctx Hash context |
| * @param[in] src Data to be added to the hash context |
| * @param[in] len Size of the additional data |
| */ |
| #if FF_API_CRYPTO_SIZE_T |
| void av_hash_update(struct AVHashContext *ctx, const uint8_t *src, int len); |
| #else |
| void av_hash_update(struct AVHashContext *ctx, const uint8_t *src, size_t len); |
| #endif |
| |
| /** |
| * Finalize a hash context and compute the actual hash value. |
| * |
| * The minimum size of `dst` buffer is given by av_hash_get_size() or |
| * #AV_HASH_MAX_SIZE. The use of the latter macro is discouraged. |
| * |
| * It is not safe to update or finalize a hash context again, if it has already |
| * been finalized. |
| * |
| * @param[in,out] ctx Hash context |
| * @param[out] dst Where the final hash value will be stored |
| * |
| * @see av_hash_final_bin() provides an alternative API |
| */ |
| void av_hash_final(struct AVHashContext *ctx, uint8_t *dst); |
| |
| /** |
| * Finalize a hash context and store the actual hash value in a buffer. |
| * |
| * It is not safe to update or finalize a hash context again, if it has already |
| * been finalized. |
| * |
| * If `size` is smaller than the hash size (given by av_hash_get_size()), the |
| * hash is truncated; if size is larger, the buffer is padded with 0. |
| * |
| * @param[in,out] ctx Hash context |
| * @param[out] dst Where the final hash value will be stored |
| * @param[in] size Number of bytes to write to `dst` |
| */ |
| void av_hash_final_bin(struct AVHashContext *ctx, uint8_t *dst, int size); |
| |
| /** |
| * Finalize a hash context and store the hexadecimal representation of the |
| * actual hash value as a string. |
| * |
| * It is not safe to update or finalize a hash context again, if it has already |
| * been finalized. |
| * |
| * The string is always 0-terminated. |
| * |
| * If `size` is smaller than `2 * hash_size + 1`, where `hash_size` is the |
| * value returned by av_hash_get_size(), the string will be truncated. |
| * |
| * @param[in,out] ctx Hash context |
| * @param[out] dst Where the string will be stored |
| * @param[in] size Maximum number of bytes to write to `dst` |
| */ |
| void av_hash_final_hex(struct AVHashContext *ctx, uint8_t *dst, int size); |
| |
| /** |
| * Finalize a hash context and store the Base64 representation of the |
| * actual hash value as a string. |
| * |
| * It is not safe to update or finalize a hash context again, if it has already |
| * been finalized. |
| * |
| * The string is always 0-terminated. |
| * |
| * If `size` is smaller than AV_BASE64_SIZE(hash_size), where `hash_size` is |
| * the value returned by av_hash_get_size(), the string will be truncated. |
| * |
| * @param[in,out] ctx Hash context |
| * @param[out] dst Where the final hash value will be stored |
| * @param[in] size Maximum number of bytes to write to `dst` |
| */ |
| void av_hash_final_b64(struct AVHashContext *ctx, uint8_t *dst, int size); |
| |
| /** |
| * Free hash context and set hash context pointer to `NULL`. |
| * |
| * @param[in,out] ctx Pointer to hash context |
| */ |
| void av_hash_freep(struct AVHashContext **ctx); |
| |
| /** |
| * @} |
| * @} |
| */ |
| |
| #endif /* AVUTIL_HASH_H */ |