blob: 8deb1fb6da909cb180778260d62446c8b8f019de [file] [log] [blame]
/*
* kmp_lock.cpp -- lock-related functions
*/
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.txt for details.
//
//===----------------------------------------------------------------------===//
#include <stddef.h>
#include <atomic>
#include "kmp.h"
#include "kmp_i18n.h"
#include "kmp_io.h"
#include "kmp_itt.h"
#include "kmp_lock.h"
#include "kmp_wait_release.h"
#include "kmp_wrapper_getpid.h"
#include "tsan_annotations.h"
#if KMP_USE_FUTEX
#include <sys/syscall.h>
#include <unistd.h>
// We should really include <futex.h>, but that causes compatibility problems on
// different Linux* OS distributions that either require that you include (or
// break when you try to include) <pci/types.h>. Since all we need is the two
// macros below (which are part of the kernel ABI, so can't change) we just
// define the constants here and don't include <futex.h>
#ifndef FUTEX_WAIT
#define FUTEX_WAIT 0
#endif
#ifndef FUTEX_WAKE
#define FUTEX_WAKE 1
#endif
#endif
/* Implement spin locks for internal library use. */
/* The algorithm implemented is Lamport's bakery lock [1974]. */
void __kmp_validate_locks(void) {
int i;
kmp_uint32 x, y;
/* Check to make sure unsigned arithmetic does wraps properly */
x = ~((kmp_uint32)0) - 2;
y = x - 2;
for (i = 0; i < 8; ++i, ++x, ++y) {
kmp_uint32 z = (x - y);
KMP_ASSERT(z == 2);
}
KMP_ASSERT(offsetof(kmp_base_queuing_lock, tail_id) % 8 == 0);
}
/* ------------------------------------------------------------------------ */
/* test and set locks */
// For the non-nested locks, we can only assume that the first 4 bytes were
// allocated, since gcc only allocates 4 bytes for omp_lock_t, and the Intel
// compiler only allocates a 4 byte pointer on IA-32 architecture. On
// Windows* OS on Intel(R) 64, we can assume that all 8 bytes were allocated.
//
// gcc reserves >= 8 bytes for nested locks, so we can assume that the
// entire 8 bytes were allocated for nested locks on all 64-bit platforms.
static kmp_int32 __kmp_get_tas_lock_owner(kmp_tas_lock_t *lck) {
return KMP_LOCK_STRIP(KMP_ATOMIC_LD_RLX(&lck->lk.poll)) - 1;
}
static inline bool __kmp_is_tas_lock_nestable(kmp_tas_lock_t *lck) {
return lck->lk.depth_locked != -1;
}
__forceinline static int
__kmp_acquire_tas_lock_timed_template(kmp_tas_lock_t *lck, kmp_int32 gtid) {
KMP_MB();
#ifdef USE_LOCK_PROFILE
kmp_uint32 curr = KMP_LOCK_STRIP(lck->lk.poll);
if ((curr != 0) && (curr != gtid + 1))
__kmp_printf("LOCK CONTENTION: %p\n", lck);
/* else __kmp_printf( "." );*/
#endif /* USE_LOCK_PROFILE */
kmp_int32 tas_free = KMP_LOCK_FREE(tas);
kmp_int32 tas_busy = KMP_LOCK_BUSY(gtid + 1, tas);
if (KMP_ATOMIC_LD_RLX(&lck->lk.poll) == tas_free &&
__kmp_atomic_compare_store_acq(&lck->lk.poll, tas_free, tas_busy)) {
KMP_FSYNC_ACQUIRED(lck);
return KMP_LOCK_ACQUIRED_FIRST;
}
kmp_uint32 spins;
KMP_FSYNC_PREPARE(lck);
KMP_INIT_YIELD(spins);
if (TCR_4(__kmp_nth) > (__kmp_avail_proc ? __kmp_avail_proc : __kmp_xproc)) {
KMP_YIELD(TRUE);
} else {
KMP_YIELD_SPIN(spins);
}
kmp_backoff_t backoff = __kmp_spin_backoff_params;
while (KMP_ATOMIC_LD_RLX(&lck->lk.poll) != tas_free ||
!__kmp_atomic_compare_store_acq(&lck->lk.poll, tas_free, tas_busy)) {
__kmp_spin_backoff(&backoff);
if (TCR_4(__kmp_nth) >
(__kmp_avail_proc ? __kmp_avail_proc : __kmp_xproc)) {
KMP_YIELD(TRUE);
} else {
KMP_YIELD_SPIN(spins);
}
}
KMP_FSYNC_ACQUIRED(lck);
return KMP_LOCK_ACQUIRED_FIRST;
}
int __kmp_acquire_tas_lock(kmp_tas_lock_t *lck, kmp_int32 gtid) {
int retval = __kmp_acquire_tas_lock_timed_template(lck, gtid);
ANNOTATE_TAS_ACQUIRED(lck);
return retval;
}
static int __kmp_acquire_tas_lock_with_checks(kmp_tas_lock_t *lck,
kmp_int32 gtid) {
char const *const func = "omp_set_lock";
if ((sizeof(kmp_tas_lock_t) <= OMP_LOCK_T_SIZE) &&
__kmp_is_tas_lock_nestable(lck)) {
KMP_FATAL(LockNestableUsedAsSimple, func);
}
if ((gtid >= 0) && (__kmp_get_tas_lock_owner(lck) == gtid)) {
KMP_FATAL(LockIsAlreadyOwned, func);
}
return __kmp_acquire_tas_lock(lck, gtid);
}
int __kmp_test_tas_lock(kmp_tas_lock_t *lck, kmp_int32 gtid) {
kmp_int32 tas_free = KMP_LOCK_FREE(tas);
kmp_int32 tas_busy = KMP_LOCK_BUSY(gtid + 1, tas);
if (KMP_ATOMIC_LD_RLX(&lck->lk.poll) == tas_free &&
__kmp_atomic_compare_store_acq(&lck->lk.poll, tas_free, tas_busy)) {
KMP_FSYNC_ACQUIRED(lck);
return TRUE;
}
return FALSE;
}
static int __kmp_test_tas_lock_with_checks(kmp_tas_lock_t *lck,
kmp_int32 gtid) {
char const *const func = "omp_test_lock";
if ((sizeof(kmp_tas_lock_t) <= OMP_LOCK_T_SIZE) &&
__kmp_is_tas_lock_nestable(lck)) {
KMP_FATAL(LockNestableUsedAsSimple, func);
}
return __kmp_test_tas_lock(lck, gtid);
}
int __kmp_release_tas_lock(kmp_tas_lock_t *lck, kmp_int32 gtid) {
KMP_MB(); /* Flush all pending memory write invalidates. */
KMP_FSYNC_RELEASING(lck);
ANNOTATE_TAS_RELEASED(lck);
KMP_ATOMIC_ST_REL(&lck->lk.poll, KMP_LOCK_FREE(tas));
KMP_MB(); /* Flush all pending memory write invalidates. */
KMP_YIELD(TCR_4(__kmp_nth) >
(__kmp_avail_proc ? __kmp_avail_proc : __kmp_xproc));
return KMP_LOCK_RELEASED;
}
static int __kmp_release_tas_lock_with_checks(kmp_tas_lock_t *lck,
kmp_int32 gtid) {
char const *const func = "omp_unset_lock";
KMP_MB(); /* in case another processor initialized lock */
if ((sizeof(kmp_tas_lock_t) <= OMP_LOCK_T_SIZE) &&
__kmp_is_tas_lock_nestable(lck)) {
KMP_FATAL(LockNestableUsedAsSimple, func);
}
if (__kmp_get_tas_lock_owner(lck) == -1) {
KMP_FATAL(LockUnsettingFree, func);
}
if ((gtid >= 0) && (__kmp_get_tas_lock_owner(lck) >= 0) &&
(__kmp_get_tas_lock_owner(lck) != gtid)) {
KMP_FATAL(LockUnsettingSetByAnother, func);
}
return __kmp_release_tas_lock(lck, gtid);
}
void __kmp_init_tas_lock(kmp_tas_lock_t *lck) {
lck->lk.poll = KMP_LOCK_FREE(tas);
}
static void __kmp_init_tas_lock_with_checks(kmp_tas_lock_t *lck) {
__kmp_init_tas_lock(lck);
}
void __kmp_destroy_tas_lock(kmp_tas_lock_t *lck) { lck->lk.poll = 0; }
static void __kmp_destroy_tas_lock_with_checks(kmp_tas_lock_t *lck) {
char const *const func = "omp_destroy_lock";
if ((sizeof(kmp_tas_lock_t) <= OMP_LOCK_T_SIZE) &&
__kmp_is_tas_lock_nestable(lck)) {
KMP_FATAL(LockNestableUsedAsSimple, func);
}
if (__kmp_get_tas_lock_owner(lck) != -1) {
KMP_FATAL(LockStillOwned, func);
}
__kmp_destroy_tas_lock(lck);
}
// nested test and set locks
int __kmp_acquire_nested_tas_lock(kmp_tas_lock_t *lck, kmp_int32 gtid) {
KMP_DEBUG_ASSERT(gtid >= 0);
if (__kmp_get_tas_lock_owner(lck) == gtid) {
lck->lk.depth_locked += 1;
return KMP_LOCK_ACQUIRED_NEXT;
} else {
__kmp_acquire_tas_lock_timed_template(lck, gtid);
ANNOTATE_TAS_ACQUIRED(lck);
lck->lk.depth_locked = 1;
return KMP_LOCK_ACQUIRED_FIRST;
}
}
static int __kmp_acquire_nested_tas_lock_with_checks(kmp_tas_lock_t *lck,
kmp_int32 gtid) {
char const *const func = "omp_set_nest_lock";
if (!__kmp_is_tas_lock_nestable(lck)) {
KMP_FATAL(LockSimpleUsedAsNestable, func);
}
return __kmp_acquire_nested_tas_lock(lck, gtid);
}
int __kmp_test_nested_tas_lock(kmp_tas_lock_t *lck, kmp_int32 gtid) {
int retval;
KMP_DEBUG_ASSERT(gtid >= 0);
if (__kmp_get_tas_lock_owner(lck) == gtid) {
retval = ++lck->lk.depth_locked;
} else if (!__kmp_test_tas_lock(lck, gtid)) {
retval = 0;
} else {
KMP_MB();
retval = lck->lk.depth_locked = 1;
}
return retval;
}
static int __kmp_test_nested_tas_lock_with_checks(kmp_tas_lock_t *lck,
kmp_int32 gtid) {
char const *const func = "omp_test_nest_lock";
if (!__kmp_is_tas_lock_nestable(lck)) {
KMP_FATAL(LockSimpleUsedAsNestable, func);
}
return __kmp_test_nested_tas_lock(lck, gtid);
}
int __kmp_release_nested_tas_lock(kmp_tas_lock_t *lck, kmp_int32 gtid) {
KMP_DEBUG_ASSERT(gtid >= 0);
KMP_MB();
if (--(lck->lk.depth_locked) == 0) {
__kmp_release_tas_lock(lck, gtid);
return KMP_LOCK_RELEASED;
}
return KMP_LOCK_STILL_HELD;
}
static int __kmp_release_nested_tas_lock_with_checks(kmp_tas_lock_t *lck,
kmp_int32 gtid) {
char const *const func = "omp_unset_nest_lock";
KMP_MB(); /* in case another processor initialized lock */
if (!__kmp_is_tas_lock_nestable(lck)) {
KMP_FATAL(LockSimpleUsedAsNestable, func);
}
if (__kmp_get_tas_lock_owner(lck) == -1) {
KMP_FATAL(LockUnsettingFree, func);
}
if (__kmp_get_tas_lock_owner(lck) != gtid) {
KMP_FATAL(LockUnsettingSetByAnother, func);
}
return __kmp_release_nested_tas_lock(lck, gtid);
}
void __kmp_init_nested_tas_lock(kmp_tas_lock_t *lck) {
__kmp_init_tas_lock(lck);
lck->lk.depth_locked = 0; // >= 0 for nestable locks, -1 for simple locks
}
static void __kmp_init_nested_tas_lock_with_checks(kmp_tas_lock_t *lck) {
__kmp_init_nested_tas_lock(lck);
}
void __kmp_destroy_nested_tas_lock(kmp_tas_lock_t *lck) {
__kmp_destroy_tas_lock(lck);
lck->lk.depth_locked = 0;
}
static void __kmp_destroy_nested_tas_lock_with_checks(kmp_tas_lock_t *lck) {
char const *const func = "omp_destroy_nest_lock";
if (!__kmp_is_tas_lock_nestable(lck)) {
KMP_FATAL(LockSimpleUsedAsNestable, func);
}
if (__kmp_get_tas_lock_owner(lck) != -1) {
KMP_FATAL(LockStillOwned, func);
}
__kmp_destroy_nested_tas_lock(lck);
}
#if KMP_USE_FUTEX
/* ------------------------------------------------------------------------ */
/* futex locks */
// futex locks are really just test and set locks, with a different method
// of handling contention. They take the same amount of space as test and
// set locks, and are allocated the same way (i.e. use the area allocated by
// the compiler for non-nested locks / allocate nested locks on the heap).
static kmp_int32 __kmp_get_futex_lock_owner(kmp_futex_lock_t *lck) {
return KMP_LOCK_STRIP((TCR_4(lck->lk.poll) >> 1)) - 1;
}
static inline bool __kmp_is_futex_lock_nestable(kmp_futex_lock_t *lck) {
return lck->lk.depth_locked != -1;
}
__forceinline static int
__kmp_acquire_futex_lock_timed_template(kmp_futex_lock_t *lck, kmp_int32 gtid) {
kmp_int32 gtid_code = (gtid + 1) << 1;
KMP_MB();
#ifdef USE_LOCK_PROFILE
kmp_uint32 curr = KMP_LOCK_STRIP(TCR_4(lck->lk.poll));
if ((curr != 0) && (curr != gtid_code))
__kmp_printf("LOCK CONTENTION: %p\n", lck);
/* else __kmp_printf( "." );*/
#endif /* USE_LOCK_PROFILE */
KMP_FSYNC_PREPARE(lck);
KA_TRACE(1000, ("__kmp_acquire_futex_lock: lck:%p(0x%x), T#%d entering\n",
lck, lck->lk.poll, gtid));
kmp_int32 poll_val;
while ((poll_val = KMP_COMPARE_AND_STORE_RET32(
&(lck->lk.poll), KMP_LOCK_FREE(futex),
KMP_LOCK_BUSY(gtid_code, futex))) != KMP_LOCK_FREE(futex)) {
kmp_int32 cond = KMP_LOCK_STRIP(poll_val) & 1;
KA_TRACE(
1000,
("__kmp_acquire_futex_lock: lck:%p, T#%d poll_val = 0x%x cond = 0x%x\n",
lck, gtid, poll_val, cond));
// NOTE: if you try to use the following condition for this branch
//
// if ( poll_val & 1 == 0 )
//
// Then the 12.0 compiler has a bug where the following block will
// always be skipped, regardless of the value of the LSB of poll_val.
if (!cond) {
// Try to set the lsb in the poll to indicate to the owner
// thread that they need to wake this thread up.
if (!KMP_COMPARE_AND_STORE_REL32(&(lck->lk.poll), poll_val,
poll_val | KMP_LOCK_BUSY(1, futex))) {
KA_TRACE(
1000,
("__kmp_acquire_futex_lock: lck:%p(0x%x), T#%d can't set bit 0\n",
lck, lck->lk.poll, gtid));
continue;
}
poll_val |= KMP_LOCK_BUSY(1, futex);
KA_TRACE(1000,
("__kmp_acquire_futex_lock: lck:%p(0x%x), T#%d bit 0 set\n", lck,
lck->lk.poll, gtid));
}
KA_TRACE(
1000,
("__kmp_acquire_futex_lock: lck:%p, T#%d before futex_wait(0x%x)\n",
lck, gtid, poll_val));
kmp_int32 rc;
if ((rc = syscall(__NR_futex, &(lck->lk.poll), FUTEX_WAIT, poll_val, NULL,
NULL, 0)) != 0) {
KA_TRACE(1000, ("__kmp_acquire_futex_lock: lck:%p, T#%d futex_wait(0x%x) "
"failed (rc=%d errno=%d)\n",
lck, gtid, poll_val, rc, errno));
continue;
}
KA_TRACE(1000,
("__kmp_acquire_futex_lock: lck:%p, T#%d after futex_wait(0x%x)\n",
lck, gtid, poll_val));
// This thread has now done a successful futex wait call and was entered on
// the OS futex queue. We must now perform a futex wake call when releasing
// the lock, as we have no idea how many other threads are in the queue.
gtid_code |= 1;
}
KMP_FSYNC_ACQUIRED(lck);
KA_TRACE(1000, ("__kmp_acquire_futex_lock: lck:%p(0x%x), T#%d exiting\n", lck,
lck->lk.poll, gtid));
return KMP_LOCK_ACQUIRED_FIRST;
}
int __kmp_acquire_futex_lock(kmp_futex_lock_t *lck, kmp_int32 gtid) {
int retval = __kmp_acquire_futex_lock_timed_template(lck, gtid);
ANNOTATE_FUTEX_ACQUIRED(lck);
return retval;
}
static int __kmp_acquire_futex_lock_with_checks(kmp_futex_lock_t *lck,
kmp_int32 gtid) {
char const *const func = "omp_set_lock";
if ((sizeof(kmp_futex_lock_t) <= OMP_LOCK_T_SIZE) &&
__kmp_is_futex_lock_nestable(lck)) {
KMP_FATAL(LockNestableUsedAsSimple, func);
}
if ((gtid >= 0) && (__kmp_get_futex_lock_owner(lck) == gtid)) {
KMP_FATAL(LockIsAlreadyOwned, func);
}
return __kmp_acquire_futex_lock(lck, gtid);
}
int __kmp_test_futex_lock(kmp_futex_lock_t *lck, kmp_int32 gtid) {
if (KMP_COMPARE_AND_STORE_ACQ32(&(lck->lk.poll), KMP_LOCK_FREE(futex),
KMP_LOCK_BUSY((gtid + 1) << 1, futex))) {
KMP_FSYNC_ACQUIRED(lck);
return TRUE;
}
return FALSE;
}
static int __kmp_test_futex_lock_with_checks(kmp_futex_lock_t *lck,
kmp_int32 gtid) {
char const *const func = "omp_test_lock";
if ((sizeof(kmp_futex_lock_t) <= OMP_LOCK_T_SIZE) &&
__kmp_is_futex_lock_nestable(lck)) {
KMP_FATAL(LockNestableUsedAsSimple, func);
}
return __kmp_test_futex_lock(lck, gtid);
}
int __kmp_release_futex_lock(kmp_futex_lock_t *lck, kmp_int32 gtid) {
KMP_MB(); /* Flush all pending memory write invalidates. */
KA_TRACE(1000, ("__kmp_release_futex_lock: lck:%p(0x%x), T#%d entering\n",
lck, lck->lk.poll, gtid));
KMP_FSYNC_RELEASING(lck);
ANNOTATE_FUTEX_RELEASED(lck);
kmp_int32 poll_val = KMP_XCHG_FIXED32(&(lck->lk.poll), KMP_LOCK_FREE(futex));
KA_TRACE(1000,
("__kmp_release_futex_lock: lck:%p, T#%d released poll_val = 0x%x\n",
lck, gtid, poll_val));
if (KMP_LOCK_STRIP(poll_val) & 1) {
KA_TRACE(1000,
("__kmp_release_futex_lock: lck:%p, T#%d futex_wake 1 thread\n",
lck, gtid));
syscall(__NR_futex, &(lck->lk.poll), FUTEX_WAKE, KMP_LOCK_BUSY(1, futex),
NULL, NULL, 0);
}
KMP_MB(); /* Flush all pending memory write invalidates. */
KA_TRACE(1000, ("__kmp_release_futex_lock: lck:%p(0x%x), T#%d exiting\n", lck,
lck->lk.poll, gtid));
KMP_YIELD(TCR_4(__kmp_nth) >
(__kmp_avail_proc ? __kmp_avail_proc : __kmp_xproc));
return KMP_LOCK_RELEASED;
}
static int __kmp_release_futex_lock_with_checks(kmp_futex_lock_t *lck,
kmp_int32 gtid) {
char const *const func = "omp_unset_lock";
KMP_MB(); /* in case another processor initialized lock */
if ((sizeof(kmp_futex_lock_t) <= OMP_LOCK_T_SIZE) &&
__kmp_is_futex_lock_nestable(lck)) {
KMP_FATAL(LockNestableUsedAsSimple, func);
}
if (__kmp_get_futex_lock_owner(lck) == -1) {
KMP_FATAL(LockUnsettingFree, func);
}
if ((gtid >= 0) && (__kmp_get_futex_lock_owner(lck) >= 0) &&
(__kmp_get_futex_lock_owner(lck) != gtid)) {
KMP_FATAL(LockUnsettingSetByAnother, func);
}
return __kmp_release_futex_lock(lck, gtid);
}
void __kmp_init_futex_lock(kmp_futex_lock_t *lck) {
TCW_4(lck->lk.poll, KMP_LOCK_FREE(futex));
}
static void __kmp_init_futex_lock_with_checks(kmp_futex_lock_t *lck) {
__kmp_init_futex_lock(lck);
}
void __kmp_destroy_futex_lock(kmp_futex_lock_t *lck) { lck->lk.poll = 0; }
static void __kmp_destroy_futex_lock_with_checks(kmp_futex_lock_t *lck) {
char const *const func = "omp_destroy_lock";
if ((sizeof(kmp_futex_lock_t) <= OMP_LOCK_T_SIZE) &&
__kmp_is_futex_lock_nestable(lck)) {
KMP_FATAL(LockNestableUsedAsSimple, func);
}
if (__kmp_get_futex_lock_owner(lck) != -1) {
KMP_FATAL(LockStillOwned, func);
}
__kmp_destroy_futex_lock(lck);
}
// nested futex locks
int __kmp_acquire_nested_futex_lock(kmp_futex_lock_t *lck, kmp_int32 gtid) {
KMP_DEBUG_ASSERT(gtid >= 0);
if (__kmp_get_futex_lock_owner(lck) == gtid) {
lck->lk.depth_locked += 1;
return KMP_LOCK_ACQUIRED_NEXT;
} else {
__kmp_acquire_futex_lock_timed_template(lck, gtid);
ANNOTATE_FUTEX_ACQUIRED(lck);
lck->lk.depth_locked = 1;
return KMP_LOCK_ACQUIRED_FIRST;
}
}
static int __kmp_acquire_nested_futex_lock_with_checks(kmp_futex_lock_t *lck,
kmp_int32 gtid) {
char const *const func = "omp_set_nest_lock";
if (!__kmp_is_futex_lock_nestable(lck)) {
KMP_FATAL(LockSimpleUsedAsNestable, func);
}
return __kmp_acquire_nested_futex_lock(lck, gtid);
}
int __kmp_test_nested_futex_lock(kmp_futex_lock_t *lck, kmp_int32 gtid) {
int retval;
KMP_DEBUG_ASSERT(gtid >= 0);
if (__kmp_get_futex_lock_owner(lck) == gtid) {
retval = ++lck->lk.depth_locked;
} else if (!__kmp_test_futex_lock(lck, gtid)) {
retval = 0;
} else {
KMP_MB();
retval = lck->lk.depth_locked = 1;
}
return retval;
}
static int __kmp_test_nested_futex_lock_with_checks(kmp_futex_lock_t *lck,
kmp_int32 gtid) {
char const *const func = "omp_test_nest_lock";
if (!__kmp_is_futex_lock_nestable(lck)) {
KMP_FATAL(LockSimpleUsedAsNestable, func);
}
return __kmp_test_nested_futex_lock(lck, gtid);
}
int __kmp_release_nested_futex_lock(kmp_futex_lock_t *lck, kmp_int32 gtid) {
KMP_DEBUG_ASSERT(gtid >= 0);
KMP_MB();
if (--(lck->lk.depth_locked) == 0) {
__kmp_release_futex_lock(lck, gtid);
return KMP_LOCK_RELEASED;
}
return KMP_LOCK_STILL_HELD;
}
static int __kmp_release_nested_futex_lock_with_checks(kmp_futex_lock_t *lck,
kmp_int32 gtid) {
char const *const func = "omp_unset_nest_lock";
KMP_MB(); /* in case another processor initialized lock */
if (!__kmp_is_futex_lock_nestable(lck)) {
KMP_FATAL(LockSimpleUsedAsNestable, func);
}
if (__kmp_get_futex_lock_owner(lck) == -1) {
KMP_FATAL(LockUnsettingFree, func);
}
if (__kmp_get_futex_lock_owner(lck) != gtid) {
KMP_FATAL(LockUnsettingSetByAnother, func);
}
return __kmp_release_nested_futex_lock(lck, gtid);
}
void __kmp_init_nested_futex_lock(kmp_futex_lock_t *lck) {
__kmp_init_futex_lock(lck);
lck->lk.depth_locked = 0; // >= 0 for nestable locks, -1 for simple locks
}
static void __kmp_init_nested_futex_lock_with_checks(kmp_futex_lock_t *lck) {
__kmp_init_nested_futex_lock(lck);
}
void __kmp_destroy_nested_futex_lock(kmp_futex_lock_t *lck) {
__kmp_destroy_futex_lock(lck);
lck->lk.depth_locked = 0;
}
static void __kmp_destroy_nested_futex_lock_with_checks(kmp_futex_lock_t *lck) {
char const *const func = "omp_destroy_nest_lock";
if (!__kmp_is_futex_lock_nestable(lck)) {
KMP_FATAL(LockSimpleUsedAsNestable, func);
}
if (__kmp_get_futex_lock_owner(lck) != -1) {
KMP_FATAL(LockStillOwned, func);
}
__kmp_destroy_nested_futex_lock(lck);
}
#endif // KMP_USE_FUTEX
/* ------------------------------------------------------------------------ */
/* ticket (bakery) locks */
static kmp_int32 __kmp_get_ticket_lock_owner(kmp_ticket_lock_t *lck) {
return std::atomic_load_explicit(&lck->lk.owner_id,
std::memory_order_relaxed) -
1;
}
static inline bool __kmp_is_ticket_lock_nestable(kmp_ticket_lock_t *lck) {
return std::atomic_load_explicit(&lck->lk.depth_locked,
std::memory_order_relaxed) != -1;
}
static kmp_uint32 __kmp_bakery_check(void *now_serving, kmp_uint32 my_ticket) {
return std::atomic_load_explicit((std::atomic<unsigned> *)now_serving,
std::memory_order_acquire) == my_ticket;
}
__forceinline static int
__kmp_acquire_ticket_lock_timed_template(kmp_ticket_lock_t *lck,
kmp_int32 gtid) {
kmp_uint32 my_ticket = std::atomic_fetch_add_explicit(
&lck->lk.next_ticket, 1U, std::memory_order_relaxed);
#ifdef USE_LOCK_PROFILE
if (std::atomic_load_explicit(&lck->lk.now_serving,
std::memory_order_relaxed) != my_ticket)
__kmp_printf("LOCK CONTENTION: %p\n", lck);
/* else __kmp_printf( "." );*/
#endif /* USE_LOCK_PROFILE */
if (std::atomic_load_explicit(&lck->lk.now_serving,
std::memory_order_acquire) == my_ticket) {
return KMP_LOCK_ACQUIRED_FIRST;
}
KMP_WAIT_YIELD_PTR(&lck->lk.now_serving, my_ticket, __kmp_bakery_check, lck);
return KMP_LOCK_ACQUIRED_FIRST;
}
int __kmp_acquire_ticket_lock(kmp_ticket_lock_t *lck, kmp_int32 gtid) {
int retval = __kmp_acquire_ticket_lock_timed_template(lck, gtid);
ANNOTATE_TICKET_ACQUIRED(lck);
return retval;
}
static int __kmp_acquire_ticket_lock_with_checks(kmp_ticket_lock_t *lck,
kmp_int32 gtid) {
char const *const func = "omp_set_lock";
if (!std::atomic_load_explicit(&lck->lk.initialized,
std::memory_order_relaxed)) {
KMP_FATAL(LockIsUninitialized, func);
}
if (lck->lk.self != lck) {
KMP_FATAL(LockIsUninitialized, func);
}
if (__kmp_is_ticket_lock_nestable(lck)) {
KMP_FATAL(LockNestableUsedAsSimple, func);
}
if ((gtid >= 0) && (__kmp_get_ticket_lock_owner(lck) == gtid)) {
KMP_FATAL(LockIsAlreadyOwned, func);
}
__kmp_acquire_ticket_lock(lck, gtid);
std::atomic_store_explicit(&lck->lk.owner_id, gtid + 1,
std::memory_order_relaxed);
return KMP_LOCK_ACQUIRED_FIRST;
}
int __kmp_test_ticket_lock(kmp_ticket_lock_t *lck, kmp_int32 gtid) {
kmp_uint32 my_ticket = std::atomic_load_explicit(&lck->lk.next_ticket,
std::memory_order_relaxed);
if (std::atomic_load_explicit(&lck->lk.now_serving,
std::memory_order_relaxed) == my_ticket) {
kmp_uint32 next_ticket = my_ticket + 1;
if (std::atomic_compare_exchange_strong_explicit(
&lck->lk.next_ticket, &my_ticket, next_ticket,
std::memory_order_acquire, std::memory_order_acquire)) {
return TRUE;
}
}
return FALSE;
}
static int __kmp_test_ticket_lock_with_checks(kmp_ticket_lock_t *lck,
kmp_int32 gtid) {
char const *const func = "omp_test_lock";
if (!std::atomic_load_explicit(&lck->lk.initialized,
std::memory_order_relaxed)) {
KMP_FATAL(LockIsUninitialized, func);
}
if (lck->lk.self != lck) {
KMP_FATAL(LockIsUninitialized, func);
}
if (__kmp_is_ticket_lock_nestable(lck)) {
KMP_FATAL(LockNestableUsedAsSimple, func);
}
int retval = __kmp_test_ticket_lock(lck, gtid);
if (retval) {
std::atomic_store_explicit(&lck->lk.owner_id, gtid + 1,
std::memory_order_relaxed);
}
return retval;
}
int __kmp_release_ticket_lock(kmp_ticket_lock_t *lck, kmp_int32 gtid) {
kmp_uint32 distance = std::atomic_load_explicit(&lck->lk.next_ticket,
std::memory_order_relaxed) -
std::atomic_load_explicit(&lck->lk.now_serving,
std::memory_order_relaxed);
ANNOTATE_TICKET_RELEASED(lck);
std::atomic_fetch_add_explicit(&lck->lk.now_serving, 1U,
std::memory_order_release);
KMP_YIELD(distance >
(kmp_uint32)(__kmp_avail_proc ? __kmp_avail_proc : __kmp_xproc));
return KMP_LOCK_RELEASED;
}
static int __kmp_release_ticket_lock_with_checks(kmp_ticket_lock_t *lck,
kmp_int32 gtid) {
char const *const func = "omp_unset_lock";
if (!std::atomic_load_explicit(&lck->lk.initialized,
std::memory_order_relaxed)) {
KMP_FATAL(LockIsUninitialized, func);
}
if (lck->lk.self != lck) {
KMP_FATAL(LockIsUninitialized, func);
}
if (__kmp_is_ticket_lock_nestable(lck)) {
KMP_FATAL(LockNestableUsedAsSimple, func);
}
if (__kmp_get_ticket_lock_owner(lck) == -1) {
KMP_FATAL(LockUnsettingFree, func);
}
if ((gtid >= 0) && (__kmp_get_ticket_lock_owner(lck) >= 0) &&
(__kmp_get_ticket_lock_owner(lck) != gtid)) {
KMP_FATAL(LockUnsettingSetByAnother, func);
}
std::atomic_store_explicit(&lck->lk.owner_id, 0, std::memory_order_relaxed);
return __kmp_release_ticket_lock(lck, gtid);
}
void __kmp_init_ticket_lock(kmp_ticket_lock_t *lck) {
lck->lk.location = NULL;
lck->lk.self = lck;
std::atomic_store_explicit(&lck->lk.next_ticket, 0U,
std::memory_order_relaxed);
std::atomic_store_explicit(&lck->lk.now_serving, 0U,
std::memory_order_relaxed);
std::atomic_store_explicit(
&lck->lk.owner_id, 0,
std::memory_order_relaxed); // no thread owns the lock.
std::atomic_store_explicit(
&lck->lk.depth_locked, -1,
std::memory_order_relaxed); // -1 => not a nested lock.
std::atomic_store_explicit(&lck->lk.initialized, true,
std::memory_order_release);
}
static void __kmp_init_ticket_lock_with_checks(kmp_ticket_lock_t *lck) {
__kmp_init_ticket_lock(lck);
}
void __kmp_destroy_ticket_lock(kmp_ticket_lock_t *lck) {
std::atomic_store_explicit(&lck->lk.initialized, false,
std::memory_order_release);
lck->lk.self = NULL;
lck->lk.location = NULL;
std::atomic_store_explicit(&lck->lk.next_ticket, 0U,
std::memory_order_relaxed);
std::atomic_store_explicit(&lck->lk.now_serving, 0U,
std::memory_order_relaxed);
std::atomic_store_explicit(&lck->lk.owner_id, 0, std::memory_order_relaxed);
std::atomic_store_explicit(&lck->lk.depth_locked, -1,
std::memory_order_relaxed);
}
static void __kmp_destroy_ticket_lock_with_checks(kmp_ticket_lock_t *lck) {
char const *const func = "omp_destroy_lock";
if (!std::atomic_load_explicit(&lck->lk.initialized,
std::memory_order_relaxed)) {
KMP_FATAL(LockIsUninitialized, func);
}
if (lck->lk.self != lck) {
KMP_FATAL(LockIsUninitialized, func);
}
if (__kmp_is_ticket_lock_nestable(lck)) {
KMP_FATAL(LockNestableUsedAsSimple, func);
}
if (__kmp_get_ticket_lock_owner(lck) != -1) {
KMP_FATAL(LockStillOwned, func);
}
__kmp_destroy_ticket_lock(lck);
}
// nested ticket locks
int __kmp_acquire_nested_ticket_lock(kmp_ticket_lock_t *lck, kmp_int32 gtid) {
KMP_DEBUG_ASSERT(gtid >= 0);
if (__kmp_get_ticket_lock_owner(lck) == gtid) {
std::atomic_fetch_add_explicit(&lck->lk.depth_locked, 1,
std::memory_order_relaxed);
return KMP_LOCK_ACQUIRED_NEXT;
} else {
__kmp_acquire_ticket_lock_timed_template(lck, gtid);
ANNOTATE_TICKET_ACQUIRED(lck);
std::atomic_store_explicit(&lck->lk.depth_locked, 1,
std::memory_order_relaxed);
std::atomic_store_explicit(&lck->lk.owner_id, gtid + 1,
std::memory_order_relaxed);
return KMP_LOCK_ACQUIRED_FIRST;
}
}
static int __kmp_acquire_nested_ticket_lock_with_checks(kmp_ticket_lock_t *lck,
kmp_int32 gtid) {
char const *const func = "omp_set_nest_lock";
if (!std::atomic_load_explicit(&lck->lk.initialized,
std::memory_order_relaxed)) {
KMP_FATAL(LockIsUninitialized, func);
}
if (lck->lk.self != lck) {
KMP_FATAL(LockIsUninitialized, func);
}
if (!__kmp_is_ticket_lock_nestable(lck)) {
KMP_FATAL(LockSimpleUsedAsNestable, func);
}
return __kmp_acquire_nested_ticket_lock(lck, gtid);
}
int __kmp_test_nested_ticket_lock(kmp_ticket_lock_t *lck, kmp_int32 gtid) {
int retval;
KMP_DEBUG_ASSERT(gtid >= 0);
if (__kmp_get_ticket_lock_owner(lck) == gtid) {
retval = std::atomic_fetch_add_explicit(&lck->lk.depth_locked, 1,
std::memory_order_relaxed) +
1;
} else if (!__kmp_test_ticket_lock(lck, gtid)) {
retval = 0;
} else {
std::atomic_store_explicit(&lck->lk.depth_locked, 1,
std::memory_order_relaxed);
std::atomic_store_explicit(&lck->lk.owner_id, gtid + 1,
std::memory_order_relaxed);
retval = 1;
}
return retval;
}
static int __kmp_test_nested_ticket_lock_with_checks(kmp_ticket_lock_t *lck,
kmp_int32 gtid) {
char const *const func = "omp_test_nest_lock";
if (!std::atomic_load_explicit(&lck->lk.initialized,
std::memory_order_relaxed)) {
KMP_FATAL(LockIsUninitialized, func);
}
if (lck->lk.self != lck) {
KMP_FATAL(LockIsUninitialized, func);
}
if (!__kmp_is_ticket_lock_nestable(lck)) {
KMP_FATAL(LockSimpleUsedAsNestable, func);
}
return __kmp_test_nested_ticket_lock(lck, gtid);
}
int __kmp_release_nested_ticket_lock(kmp_ticket_lock_t *lck, kmp_int32 gtid) {
KMP_DEBUG_ASSERT(gtid >= 0);
if ((std::atomic_fetch_add_explicit(&lck->lk.depth_locked, -1,
std::memory_order_relaxed) -
1) == 0) {
std::atomic_store_explicit(&lck->lk.owner_id, 0, std::memory_order_relaxed);
__kmp_release_ticket_lock(lck, gtid);
return KMP_LOCK_RELEASED;
}
return KMP_LOCK_STILL_HELD;
}
static int __kmp_release_nested_ticket_lock_with_checks(kmp_ticket_lock_t *lck,
kmp_int32 gtid) {
char const *const func = "omp_unset_nest_lock";
if (!std::atomic_load_explicit(&lck->lk.initialized,
std::memory_order_relaxed)) {
KMP_FATAL(LockIsUninitialized, func);
}
if (lck->lk.self != lck) {
KMP_FATAL(LockIsUninitialized, func);
}
if (!__kmp_is_ticket_lock_nestable(lck)) {
KMP_FATAL(LockSimpleUsedAsNestable, func);
}
if (__kmp_get_ticket_lock_owner(lck) == -1) {
KMP_FATAL(LockUnsettingFree, func);
}
if (__kmp_get_ticket_lock_owner(lck) != gtid) {
KMP_FATAL(LockUnsettingSetByAnother, func);
}
return __kmp_release_nested_ticket_lock(lck, gtid);
}
void __kmp_init_nested_ticket_lock(kmp_ticket_lock_t *lck) {
__kmp_init_ticket_lock(lck);
std::atomic_store_explicit(&lck->lk.depth_locked, 0,
std::memory_order_relaxed);
// >= 0 for nestable locks, -1 for simple locks
}
static void __kmp_init_nested_ticket_lock_with_checks(kmp_ticket_lock_t *lck) {
__kmp_init_nested_ticket_lock(lck);
}
void __kmp_destroy_nested_ticket_lock(kmp_ticket_lock_t *lck) {
__kmp_destroy_ticket_lock(lck);
std::atomic_store_explicit(&lck->lk.depth_locked, 0,
std::memory_order_relaxed);
}
static void
__kmp_destroy_nested_ticket_lock_with_checks(kmp_ticket_lock_t *lck) {
char const *const func = "omp_destroy_nest_lock";
if (!std::atomic_load_explicit(&lck->lk.initialized,
std::memory_order_relaxed)) {
KMP_FATAL(LockIsUninitialized, func);
}
if (lck->lk.self != lck) {
KMP_FATAL(LockIsUninitialized, func);
}
if (!__kmp_is_ticket_lock_nestable(lck)) {
KMP_FATAL(LockSimpleUsedAsNestable, func);
}
if (__kmp_get_ticket_lock_owner(lck) != -1) {
KMP_FATAL(LockStillOwned, func);
}
__kmp_destroy_nested_ticket_lock(lck);
}
// access functions to fields which don't exist for all lock kinds.
static int __kmp_is_ticket_lock_initialized(kmp_ticket_lock_t *lck) {
return std::atomic_load_explicit(&lck->lk.initialized,
std::memory_order_relaxed) &&
(lck->lk.self == lck);
}
static const ident_t *__kmp_get_ticket_lock_location(kmp_ticket_lock_t *lck) {
return lck->lk.location;
}
static void __kmp_set_ticket_lock_location(kmp_ticket_lock_t *lck,
const ident_t *loc) {
lck->lk.location = loc;
}
static kmp_lock_flags_t __kmp_get_ticket_lock_flags(kmp_ticket_lock_t *lck) {
return lck->lk.flags;
}
static void __kmp_set_ticket_lock_flags(kmp_ticket_lock_t *lck,
kmp_lock_flags_t flags) {
lck->lk.flags = flags;
}
/* ------------------------------------------------------------------------ */
/* queuing locks */
/* First the states
(head,tail) = 0, 0 means lock is unheld, nobody on queue
UINT_MAX or -1, 0 means lock is held, nobody on queue
h, h means lock held or about to transition,
1 element on queue
h, t h <> t, means lock is held or about to
transition, >1 elements on queue
Now the transitions
Acquire(0,0) = -1 ,0
Release(0,0) = Error
Acquire(-1,0) = h ,h h > 0
Release(-1,0) = 0 ,0
Acquire(h,h) = h ,t h > 0, t > 0, h <> t
Release(h,h) = -1 ,0 h > 0
Acquire(h,t) = h ,t' h > 0, t > 0, t' > 0, h <> t, h <> t', t <> t'
Release(h,t) = h',t h > 0, t > 0, h <> t, h <> h', h' maybe = t
And pictorially
+-----+
| 0, 0|------- release -------> Error
+-----+
| ^
acquire| |release
| |
| |
v |
+-----+
|-1, 0|
+-----+
| ^
acquire| |release
| |
| |
v |
+-----+
| h, h|
+-----+
| ^
acquire| |release
| |
| |
v |
+-----+
| h, t|----- acquire, release loopback ---+
+-----+ |
^ |
| |
+------------------------------------+
*/
#ifdef DEBUG_QUEUING_LOCKS
/* Stuff for circular trace buffer */
#define TRACE_BUF_ELE 1024
static char traces[TRACE_BUF_ELE][128] = {0};
static int tc = 0;
#define TRACE_LOCK(X, Y) \
KMP_SNPRINTF(traces[tc++ % TRACE_BUF_ELE], 128, "t%d at %s\n", X, Y);
#define TRACE_LOCK_T(X, Y, Z) \
KMP_SNPRINTF(traces[tc++ % TRACE_BUF_ELE], 128, "t%d at %s%d\n", X, Y, Z);
#define TRACE_LOCK_HT(X, Y, Z, Q) \
KMP_SNPRINTF(traces[tc++ % TRACE_BUF_ELE], 128, "t%d at %s %d,%d\n", X, Y, \
Z, Q);
static void __kmp_dump_queuing_lock(kmp_info_t *this_thr, kmp_int32 gtid,
kmp_queuing_lock_t *lck, kmp_int32 head_id,
kmp_int32 tail_id) {
kmp_int32 t, i;
__kmp_printf_no_lock("\n__kmp_dump_queuing_lock: TRACE BEGINS HERE! \n");
i = tc % TRACE_BUF_ELE;
__kmp_printf_no_lock("%s\n", traces[i]);
i = (i + 1) % TRACE_BUF_ELE;
while (i != (tc % TRACE_BUF_ELE)) {
__kmp_printf_no_lock("%s", traces[i]);
i = (i + 1) % TRACE_BUF_ELE;
}
__kmp_printf_no_lock("\n");
__kmp_printf_no_lock("\n__kmp_dump_queuing_lock: gtid+1:%d, spin_here:%d, "
"next_wait:%d, head_id:%d, tail_id:%d\n",
gtid + 1, this_thr->th.th_spin_here,
this_thr->th.th_next_waiting, head_id, tail_id);
__kmp_printf_no_lock("\t\thead: %d ", lck->lk.head_id);
if (lck->lk.head_id >= 1) {
t = __kmp_threads[lck->lk.head_id - 1]->th.th_next_waiting;
while (t > 0) {
__kmp_printf_no_lock("-> %d ", t);
t = __kmp_threads[t - 1]->th.th_next_waiting;
}
}
__kmp_printf_no_lock("; tail: %d ", lck->lk.tail_id);
__kmp_printf_no_lock("\n\n");
}
#endif /* DEBUG_QUEUING_LOCKS */
static kmp_int32 __kmp_get_queuing_lock_owner(kmp_queuing_lock_t *lck) {
return TCR_4(lck->lk.owner_id) - 1;
}
static inline bool __kmp_is_queuing_lock_nestable(kmp_queuing_lock_t *lck) {
return lck->lk.depth_locked != -1;
}
/* Acquire a lock using a the queuing lock implementation */
template <bool takeTime>
/* [TLW] The unused template above is left behind because of what BEB believes
is a potential compiler problem with __forceinline. */
__forceinline static int
__kmp_acquire_queuing_lock_timed_template(kmp_queuing_lock_t *lck,
kmp_int32 gtid) {
kmp_info_t *this_thr = __kmp_thread_from_gtid(gtid);
volatile kmp_int32 *head_id_p = &lck->lk.head_id;
volatile kmp_int32 *tail_id_p = &lck->lk.tail_id;
volatile kmp_uint32 *spin_here_p;
kmp_int32 need_mf = 1;
#if OMPT_SUPPORT
omp_state_t prev_state = omp_state_undefined;
#endif
KA_TRACE(1000,
("__kmp_acquire_queuing_lock: lck:%p, T#%d entering\n", lck, gtid));
KMP_FSYNC_PREPARE(lck);
KMP_DEBUG_ASSERT(this_thr != NULL);
spin_here_p = &this_thr->th.th_spin_here;
#ifdef DEBUG_QUEUING_LOCKS
TRACE_LOCK(gtid + 1, "acq ent");
if (*spin_here_p)
__kmp_dump_queuing_lock(this_thr, gtid, lck, *head_id_p, *tail_id_p);
if (this_thr->th.th_next_waiting != 0)
__kmp_dump_queuing_lock(this_thr, gtid, lck, *head_id_p, *tail_id_p);
#endif
KMP_DEBUG_ASSERT(!*spin_here_p);
KMP_DEBUG_ASSERT(this_thr->th.th_next_waiting == 0);
/* The following st.rel to spin_here_p needs to precede the cmpxchg.acq to
head_id_p that may follow, not just in execution order, but also in
visibility order. This way, when a releasing thread observes the changes to
the queue by this thread, it can rightly assume that spin_here_p has
already been set to TRUE, so that when it sets spin_here_p to FALSE, it is
not premature. If the releasing thread sets spin_here_p to FALSE before
this thread sets it to TRUE, this thread will hang. */
*spin_here_p = TRUE; /* before enqueuing to prevent race */
while (1) {
kmp_int32 enqueued;
kmp_int32 head;
kmp_int32 tail;
head = *head_id_p;
switch (head) {
case -1: {
#ifdef DEBUG_QUEUING_LOCKS
tail = *tail_id_p;
TRACE_LOCK_HT(gtid + 1, "acq read: ", head, tail);
#endif
tail = 0; /* to make sure next link asynchronously read is not set
accidentally; this assignment prevents us from entering the
if ( t > 0 ) condition in the enqueued case below, which is not
necessary for this state transition */
need_mf = 0;
/* try (-1,0)->(tid,tid) */
enqueued = KMP_COMPARE_AND_STORE_ACQ64((volatile kmp_int64 *)tail_id_p,
KMP_PACK_64(-1, 0),
KMP_PACK_64(gtid + 1, gtid + 1));
#ifdef DEBUG_QUEUING_LOCKS
if (enqueued)
TRACE_LOCK(gtid + 1, "acq enq: (-1,0)->(tid,tid)");
#endif
} break;
default: {
tail = *tail_id_p;
KMP_DEBUG_ASSERT(tail != gtid + 1);
#ifdef DEBUG_QUEUING_LOCKS
TRACE_LOCK_HT(gtid + 1, "acq read: ", head, tail);
#endif
if (tail == 0) {
enqueued = FALSE;
} else {
need_mf = 0;
/* try (h,t) or (h,h)->(h,tid) */
enqueued = KMP_COMPARE_AND_STORE_ACQ32(tail_id_p, tail, gtid + 1);
#ifdef DEBUG_QUEUING_LOCKS
if (enqueued)
TRACE_LOCK(gtid + 1, "acq enq: (h,t)->(h,tid)");
#endif
}
} break;
case 0: /* empty queue */
{
kmp_int32 grabbed_lock;
#ifdef DEBUG_QUEUING_LOCKS
tail = *tail_id_p;
TRACE_LOCK_HT(gtid + 1, "acq read: ", head, tail);
#endif
/* try (0,0)->(-1,0) */
/* only legal transition out of head = 0 is head = -1 with no change to
* tail */
grabbed_lock = KMP_COMPARE_AND_STORE_ACQ32(head_id_p, 0, -1);
if (grabbed_lock) {
*spin_here_p = FALSE;
KA_TRACE(
1000,
("__kmp_acquire_queuing_lock: lck:%p, T#%d exiting: no queuing\n",
lck, gtid));
#ifdef DEBUG_QUEUING_LOCKS
TRACE_LOCK_HT(gtid + 1, "acq exit: ", head, 0);
#endif
#if OMPT_SUPPORT
if (ompt_enabled.enabled && prev_state != omp_state_undefined) {
/* change the state before clearing wait_id */
this_thr->th.ompt_thread_info.state = prev_state;
this_thr->th.ompt_thread_info.wait_id = 0;
}
#endif
KMP_FSYNC_ACQUIRED(lck);
return KMP_LOCK_ACQUIRED_FIRST; /* lock holder cannot be on queue */
}
enqueued = FALSE;
} break;
}
#if OMPT_SUPPORT
if (ompt_enabled.enabled && prev_state == omp_state_undefined) {
/* this thread will spin; set wait_id before entering wait state */
prev_state = this_thr->th.ompt_thread_info.state;
this_thr->th.ompt_thread_info.wait_id = (uint64_t)lck;
this_thr->th.ompt_thread_info.state = omp_state_wait_lock;
}
#endif
if (enqueued) {
if (tail > 0) {
kmp_info_t *tail_thr = __kmp_thread_from_gtid(tail - 1);
KMP_ASSERT(tail_thr != NULL);
tail_thr->th.th_next_waiting = gtid + 1;
/* corresponding wait for this write in release code */
}
KA_TRACE(1000,
("__kmp_acquire_queuing_lock: lck:%p, T#%d waiting for lock\n",
lck, gtid));
/* ToDo: May want to consider using __kmp_wait_sleep or something that
sleeps for throughput only here. */
KMP_MB();
KMP_WAIT_YIELD(spin_here_p, FALSE, KMP_EQ, lck);
#ifdef DEBUG_QUEUING_LOCKS
TRACE_LOCK(gtid + 1, "acq spin");
if (this_thr->th.th_next_waiting != 0)
__kmp_dump_queuing_lock(this_thr, gtid, lck, *head_id_p, *tail_id_p);
#endif
KMP_DEBUG_ASSERT(this_thr->th.th_next_waiting == 0);
KA_TRACE(1000, ("__kmp_acquire_queuing_lock: lck:%p, T#%d exiting: after "
"waiting on queue\n",
lck, gtid));
#ifdef DEBUG_QUEUING_LOCKS
TRACE_LOCK(gtid + 1, "acq exit 2");
#endif
#if OMPT_SUPPORT
/* change the state before clearing wait_id */
this_thr->th.ompt_thread_info.state = prev_state;
this_thr->th.ompt_thread_info.wait_id = 0;
#endif
/* got lock, we were dequeued by the thread that released lock */
return KMP_LOCK_ACQUIRED_FIRST;
}
/* Yield if number of threads > number of logical processors */
/* ToDo: Not sure why this should only be in oversubscription case,
maybe should be traditional YIELD_INIT/YIELD_WHEN loop */
KMP_YIELD(TCR_4(__kmp_nth) >
(__kmp_avail_proc ? __kmp_avail_proc : __kmp_xproc));
#ifdef DEBUG_QUEUING_LOCKS
TRACE_LOCK(gtid + 1, "acq retry");
#endif
}
KMP_ASSERT2(0, "should not get here");
return KMP_LOCK_ACQUIRED_FIRST;
}
int __kmp_acquire_queuing_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid) {
KMP_DEBUG_ASSERT(gtid >= 0);
int retval = __kmp_acquire_queuing_lock_timed_template<false>(lck, gtid);
ANNOTATE_QUEUING_ACQUIRED(lck);
return retval;
}
static int __kmp_acquire_queuing_lock_with_checks(kmp_queuing_lock_t *lck,
kmp_int32 gtid) {
char const *const func = "omp_set_lock";
if (lck->lk.initialized != lck) {
KMP_FATAL(LockIsUninitialized, func);
}
if (__kmp_is_queuing_lock_nestable(lck)) {
KMP_FATAL(LockNestableUsedAsSimple, func);
}
if (__kmp_get_queuing_lock_owner(lck) == gtid) {
KMP_FATAL(LockIsAlreadyOwned, func);
}
__kmp_acquire_queuing_lock(lck, gtid);
lck->lk.owner_id = gtid + 1;
return KMP_LOCK_ACQUIRED_FIRST;
}
int __kmp_test_queuing_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid) {
volatile kmp_int32 *head_id_p = &lck->lk.head_id;
kmp_int32 head;
#ifdef KMP_DEBUG
kmp_info_t *this_thr;
#endif
KA_TRACE(1000, ("__kmp_test_queuing_lock: T#%d entering\n", gtid));
KMP_DEBUG_ASSERT(gtid >= 0);
#ifdef KMP_DEBUG
this_thr = __kmp_thread_from_gtid(gtid);
KMP_DEBUG_ASSERT(this_thr != NULL);
KMP_DEBUG_ASSERT(!this_thr->th.th_spin_here);
#endif
head = *head_id_p;
if (head == 0) { /* nobody on queue, nobody holding */
/* try (0,0)->(-1,0) */
if (KMP_COMPARE_AND_STORE_ACQ32(head_id_p, 0, -1)) {
KA_TRACE(1000,
("__kmp_test_queuing_lock: T#%d exiting: holding lock\n", gtid));
KMP_FSYNC_ACQUIRED(lck);
ANNOTATE_QUEUING_ACQUIRED(lck);
return TRUE;
}
}
KA_TRACE(1000,
("__kmp_test_queuing_lock: T#%d exiting: without lock\n", gtid));
return FALSE;
}
static int __kmp_test_queuing_lock_with_checks(kmp_queuing_lock_t *lck,
kmp_int32 gtid) {
char const *const func = "omp_test_lock";
if (lck->lk.initialized != lck) {
KMP_FATAL(LockIsUninitialized, func);
}
if (__kmp_is_queuing_lock_nestable(lck)) {
KMP_FATAL(LockNestableUsedAsSimple, func);
}
int retval = __kmp_test_queuing_lock(lck, gtid);
if (retval) {
lck->lk.owner_id = gtid + 1;
}
return retval;
}
int __kmp_release_queuing_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid) {
kmp_info_t *this_thr;
volatile kmp_int32 *head_id_p = &lck->lk.head_id;
volatile kmp_int32 *tail_id_p = &lck->lk.tail_id;
KA_TRACE(1000,
("__kmp_release_queuing_lock: lck:%p, T#%d entering\n", lck, gtid));
KMP_DEBUG_ASSERT(gtid >= 0);
this_thr = __kmp_thread_from_gtid(gtid);
KMP_DEBUG_ASSERT(this_thr != NULL);
#ifdef DEBUG_QUEUING_LOCKS
TRACE_LOCK(gtid + 1, "rel ent");
if (this_thr->th.th_spin_here)
__kmp_dump_queuing_lock(this_thr, gtid, lck, *head_id_p, *tail_id_p);
if (this_thr->th.th_next_waiting != 0)
__kmp_dump_queuing_lock(this_thr, gtid, lck, *head_id_p, *tail_id_p);
#endif
KMP_DEBUG_ASSERT(!this_thr->th.th_spin_here);
KMP_DEBUG_ASSERT(this_thr->th.th_next_waiting == 0);
KMP_FSYNC_RELEASING(lck);
ANNOTATE_QUEUING_RELEASED(lck);
while (1) {
kmp_int32 dequeued;
kmp_int32 head;
kmp_int32 tail;
head = *head_id_p;
#ifdef DEBUG_QUEUING_LOCKS
tail = *tail_id_p;
TRACE_LOCK_HT(gtid + 1, "rel read: ", head, tail);
if (head == 0)
__kmp_dump_queuing_lock(this_thr, gtid, lck, head, tail);
#endif
KMP_DEBUG_ASSERT(head !=
0); /* holding the lock, head must be -1 or queue head */
if (head == -1) { /* nobody on queue */
/* try (-1,0)->(0,0) */
if (KMP_COMPARE_AND_STORE_REL32(head_id_p, -1, 0)) {
KA_TRACE(
1000,
("__kmp_release_queuing_lock: lck:%p, T#%d exiting: queue empty\n",
lck, gtid));
#ifdef DEBUG_QUEUING_LOCKS
TRACE_LOCK_HT(gtid + 1, "rel exit: ", 0, 0);
#endif
#if OMPT_SUPPORT
/* nothing to do - no other thread is trying to shift blame */
#endif
return KMP_LOCK_RELEASED;
}
dequeued = FALSE;
} else {
KMP_MB();
tail = *tail_id_p;
if (head == tail) { /* only one thread on the queue */
#ifdef DEBUG_QUEUING_LOCKS
if (head <= 0)
__kmp_dump_queuing_lock(this_thr, gtid, lck, head, tail);
#endif
KMP_DEBUG_ASSERT(head > 0);
/* try (h,h)->(-1,0) */
dequeued = KMP_COMPARE_AND_STORE_REL64(
RCAST(volatile kmp_int64 *, tail_id_p), KMP_PACK_64(head, head),
KMP_PACK_64(-1, 0));
#ifdef DEBUG_QUEUING_LOCKS
TRACE_LOCK(gtid + 1, "rel deq: (h,h)->(-1,0)");
#endif
} else {
volatile kmp_int32 *waiting_id_p;
kmp_info_t *head_thr = __kmp_thread_from_gtid(head - 1);
KMP_DEBUG_ASSERT(head_thr != NULL);
waiting_id_p = &head_thr->th.th_next_waiting;
/* Does this require synchronous reads? */
#ifdef DEBUG_QUEUING_LOCKS
if (head <= 0 || tail <= 0)
__kmp_dump_queuing_lock(this_thr, gtid, lck, head, tail);
#endif
KMP_DEBUG_ASSERT(head > 0 && tail > 0);
/* try (h,t)->(h',t) or (t,t) */
KMP_MB();
/* make sure enqueuing thread has time to update next waiting thread
* field */
*head_id_p = KMP_WAIT_YIELD((volatile kmp_uint32 *)waiting_id_p, 0,
KMP_NEQ, NULL);
#ifdef DEBUG_QUEUING_LOCKS
TRACE_LOCK(gtid + 1, "rel deq: (h,t)->(h',t)");
#endif
dequeued = TRUE;
}
}
if (dequeued) {
kmp_info_t *head_thr = __kmp_thread_from_gtid(head - 1);
KMP_DEBUG_ASSERT(head_thr != NULL);
/* Does this require synchronous reads? */
#ifdef DEBUG_QUEUING_LOCKS
if (head <= 0 || tail <= 0)
__kmp_dump_queuing_lock(this_thr, gtid, lck, head, tail);
#endif
KMP_DEBUG_ASSERT(head > 0 && tail > 0);
/* For clean code only. Thread not released until next statement prevents
race with acquire code. */
head_thr->th.th_next_waiting = 0;
#ifdef DEBUG_QUEUING_LOCKS
TRACE_LOCK_T(gtid + 1, "rel nw=0 for t=", head);
#endif
KMP_MB();
/* reset spin value */
head_thr->th.th_spin_here = FALSE;
KA_TRACE(1000, ("__kmp_release_queuing_lock: lck:%p, T#%d exiting: after "
"dequeuing\n",
lck, gtid));
#ifdef DEBUG_QUEUING_LOCKS
TRACE_LOCK(gtid + 1, "rel exit 2");
#endif
return KMP_LOCK_RELEASED;
}
/* KMP_CPU_PAUSE(); don't want to make releasing thread hold up acquiring
threads */
#ifdef DEBUG_QUEUING_LOCKS
TRACE_LOCK(gtid + 1, "rel retry");
#endif
} /* while */
KMP_ASSERT2(0, "should not get here");
return KMP_LOCK_RELEASED;
}
static int __kmp_release_queuing_lock_with_checks(kmp_queuing_lock_t *lck,
kmp_int32 gtid) {
char const *const func = "omp_unset_lock";
KMP_MB(); /* in case another processor initialized lock */
if (lck->lk.initialized != lck) {
KMP_FATAL(LockIsUninitialized, func);
}
if (__kmp_is_queuing_lock_nestable(lck)) {
KMP_FATAL(LockNestableUsedAsSimple, func);
}
if (__kmp_get_queuing_lock_owner(lck) == -1) {
KMP_FATAL(LockUnsettingFree, func);
}
if (__kmp_get_queuing_lock_owner(lck) != gtid) {
KMP_FATAL(LockUnsettingSetByAnother, func);
}
lck->lk.owner_id = 0;
return __kmp_release_queuing_lock(lck, gtid);
}
void __kmp_init_queuing_lock(kmp_queuing_lock_t *lck) {
lck->lk.location = NULL;
lck->lk.head_id = 0;
lck->lk.tail_id = 0;
lck->lk.next_ticket = 0;
lck->lk.now_serving = 0;
lck->lk.owner_id = 0; // no thread owns the lock.
lck->lk.depth_locked = -1; // >= 0 for nestable locks, -1 for simple locks.
lck->lk.initialized = lck;
KA_TRACE(1000, ("__kmp_init_queuing_lock: lock %p initialized\n", lck));
}
static void __kmp_init_queuing_lock_with_checks(kmp_queuing_lock_t *lck) {
__kmp_init_queuing_lock(lck);
}
void __kmp_destroy_queuing_lock(kmp_queuing_lock_t *lck) {
lck->lk.initialized = NULL;
lck->lk.location = NULL;
lck->lk.head_id = 0;
lck->lk.tail_id = 0;
lck->lk.next_ticket = 0;
lck->lk.now_serving = 0;
lck->lk.owner_id = 0;
lck->lk.depth_locked = -1;
}
static void __kmp_destroy_queuing_lock_with_checks(kmp_queuing_lock_t *lck) {
char const *const func = "omp_destroy_lock";
if (lck->lk.initialized != lck) {
KMP_FATAL(LockIsUninitialized, func);
}
if (__kmp_is_queuing_lock_nestable(lck)) {
KMP_FATAL(LockNestableUsedAsSimple, func);
}
if (__kmp_get_queuing_lock_owner(lck) != -1) {
KMP_FATAL(LockStillOwned, func);
}
__kmp_destroy_queuing_lock(lck);
}
// nested queuing locks
int __kmp_acquire_nested_queuing_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid) {
KMP_DEBUG_ASSERT(gtid >= 0);
if (__kmp_get_queuing_lock_owner(lck) == gtid) {
lck->lk.depth_locked += 1;
return KMP_LOCK_ACQUIRED_NEXT;
} else {
__kmp_acquire_queuing_lock_timed_template<false>(lck, gtid);
ANNOTATE_QUEUING_ACQUIRED(lck);
KMP_MB();
lck->lk.depth_locked = 1;
KMP_MB();
lck->lk.owner_id = gtid + 1;
return KMP_LOCK_ACQUIRED_FIRST;
}
}
static int
__kmp_acquire_nested_queuing_lock_with_checks(kmp_queuing_lock_t *lck,
kmp_int32 gtid) {
char const *const func = "omp_set_nest_lock";
if (lck->lk.initialized != lck) {
KMP_FATAL(LockIsUninitialized, func);
}
if (!__kmp_is_queuing_lock_nestable(lck)) {
KMP_FATAL(LockSimpleUsedAsNestable, func);
}
return __kmp_acquire_nested_queuing_lock(lck, gtid);
}
int __kmp_test_nested_queuing_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid) {
int retval;
KMP_DEBUG_ASSERT(gtid >= 0);
if (__kmp_get_queuing_lock_owner(lck) == gtid) {
retval = ++lck->lk.depth_locked;
} else if (!__kmp_test_queuing_lock(lck, gtid)) {
retval = 0;
} else {
KMP_MB();
retval = lck->lk.depth_locked = 1;
KMP_MB();
lck->lk.owner_id = gtid + 1;
}
return retval;
}
static int __kmp_test_nested_queuing_lock_with_checks(kmp_queuing_lock_t *lck,
kmp_int32 gtid) {
char const *const func = "omp_test_nest_lock";
if (lck->lk.initialized != lck) {
KMP_FATAL(LockIsUninitialized, func);
}
if (!__kmp_is_queuing_lock_nestable(lck)) {
KMP_FATAL(LockSimpleUsedAsNestable, func);
}
return __kmp_test_nested_queuing_lock(lck, gtid);
}
int __kmp_release_nested_queuing_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid) {
KMP_DEBUG_ASSERT(gtid >= 0);
KMP_MB();
if (--(lck->lk.depth_locked) == 0) {
KMP_MB();
lck->lk.owner_id = 0;
__kmp_release_queuing_lock(lck, gtid);
return KMP_LOCK_RELEASED;
}
return KMP_LOCK_STILL_HELD;
}
static int
__kmp_release_nested_queuing_lock_with_checks(kmp_queuing_lock_t *lck,
kmp_int32 gtid) {
char const *const func = "omp_unset_nest_lock";
KMP_MB(); /* in case another processor initialized lock */
if (lck->lk.initialized != lck) {
KMP_FATAL(LockIsUninitialized, func);
}
if (!__kmp_is_queuing_lock_nestable(lck)) {
KMP_FATAL(LockSimpleUsedAsNestable, func);
}
if (__kmp_get_queuing_lock_owner(lck) == -1) {
KMP_FATAL(LockUnsettingFree, func);
}
if (__kmp_get_queuing_lock_owner(lck) != gtid) {
KMP_FATAL(LockUnsettingSetByAnother, func);
}
return __kmp_release_nested_queuing_lock(lck, gtid);
}
void __kmp_init_nested_queuing_lock(kmp_queuing_lock_t *lck) {
__kmp_init_queuing_lock(lck);
lck->lk.depth_locked = 0; // >= 0 for nestable locks, -1 for simple locks
}
static void
__kmp_init_nested_queuing_lock_with_checks(kmp_queuing_lock_t *lck) {
__kmp_init_nested_queuing_lock(lck);
}
void __kmp_destroy_nested_queuing_lock(kmp_queuing_lock_t *lck) {
__kmp_destroy_queuing_lock(lck);
lck->lk.depth_locked = 0;
}
static void
__kmp_destroy_nested_queuing_lock_with_checks(kmp_queuing_lock_t *lck) {
char const *const func = "omp_destroy_nest_lock";
if (lck->lk.initialized != lck) {
KMP_FATAL(LockIsUninitialized, func);
}
if (!__kmp_is_queuing_lock_nestable(lck)) {
KMP_FATAL(LockSimpleUsedAsNestable, func);
}
if (__kmp_get_queuing_lock_owner(lck) != -1) {
KMP_FATAL(LockStillOwned, func);
}
__kmp_destroy_nested_queuing_lock(lck);
}
// access functions to fields which don't exist for all lock kinds.
static int __kmp_is_queuing_lock_initialized(kmp_queuing_lock_t *lck) {
return lck == lck->lk.initialized;
}
static const ident_t *__kmp_get_queuing_lock_location(kmp_queuing_lock_t *lck) {
return lck->lk.location;
}
static void __kmp_set_queuing_lock_location(kmp_queuing_lock_t *lck,
const ident_t *loc) {
lck->lk.location = loc;
}
static kmp_lock_flags_t __kmp_get_queuing_lock_flags(kmp_queuing_lock_t *lck) {
return lck->lk.flags;
}
static void __kmp_set_queuing_lock_flags(kmp_queuing_lock_t *lck,
kmp_lock_flags_t flags) {
lck->lk.flags = flags;
}
#if KMP_USE_ADAPTIVE_LOCKS
/* RTM Adaptive locks */
#if KMP_COMPILER_ICC && __INTEL_COMPILER >= 1300
#include <immintrin.h>
#define SOFT_ABORT_MASK (_XABORT_RETRY | _XABORT_CONFLICT | _XABORT_EXPLICIT)
#else
// Values from the status register after failed speculation.
#define _XBEGIN_STARTED (~0u)
#define _XABORT_EXPLICIT (1 << 0)
#define _XABORT_RETRY (1 << 1)
#define _XABORT_CONFLICT (1 << 2)
#define _XABORT_CAPACITY (1 << 3)
#define _XABORT_DEBUG (1 << 4)
#define _XABORT_NESTED (1 << 5)
#define _XABORT_CODE(x) ((unsigned char)(((x) >> 24) & 0xFF))
// Aborts for which it's worth trying again immediately
#define SOFT_ABORT_MASK (_XABORT_RETRY | _XABORT_CONFLICT | _XABORT_EXPLICIT)
#define STRINGIZE_INTERNAL(arg) #arg
#define STRINGIZE(arg) STRINGIZE_INTERNAL(arg)
// Access to RTM instructions
/*A version of XBegin which returns -1 on speculation, and the value of EAX on
an abort. This is the same definition as the compiler intrinsic that will be
supported at some point. */
static __inline int _xbegin() {
int res = -1;
#if KMP_OS_WINDOWS
#if KMP_ARCH_X86_64
_asm {
_emit 0xC7
_emit 0xF8
_emit 2
_emit 0
_emit 0
_emit 0
jmp L2
mov res, eax
L2:
}
#else /* IA32 */
_asm {
_emit 0xC7
_emit 0xF8
_emit 2
_emit 0
_emit 0
_emit 0
jmp L2
mov res, eax
L2:
}
#endif // KMP_ARCH_X86_64
#else
/* Note that %eax must be noted as killed (clobbered), because the XSR is
returned in %eax(%rax) on abort. Other register values are restored, so
don't need to be killed.
We must also mark 'res' as an input and an output, since otherwise
'res=-1' may be dropped as being dead, whereas we do need the assignment on
the successful (i.e., non-abort) path. */
__asm__ volatile("1: .byte 0xC7; .byte 0xF8;\n"
" .long 1f-1b-6\n"
" jmp 2f\n"
"1: movl %%eax,%0\n"
"2:"
: "+r"(res)::"memory", "%eax");
#endif // KMP_OS_WINDOWS
return res;
}
/* Transaction end */
static __inline void _xend() {
#if KMP_OS_WINDOWS
__asm {
_emit 0x0f
_emit 0x01
_emit 0xd5
}
#else
__asm__ volatile(".byte 0x0f; .byte 0x01; .byte 0xd5" ::: "memory");
#endif
}
/* This is a macro, the argument must be a single byte constant which can be
evaluated by the inline assembler, since it is emitted as a byte into the
assembly code. */
// clang-format off
#if KMP_OS_WINDOWS
#define _xabort(ARG) _asm _emit 0xc6 _asm _emit 0xf8 _asm _emit ARG
#else
#define _xabort(ARG) \
__asm__ volatile(".byte 0xC6; .byte 0xF8; .byte " STRINGIZE(ARG):::"memory");
#endif
// clang-format on
#endif // KMP_COMPILER_ICC && __INTEL_COMPILER >= 1300
// Statistics is collected for testing purpose
#if KMP_DEBUG_ADAPTIVE_LOCKS
// We accumulate speculative lock statistics when the lock is destroyed. We
// keep locks that haven't been destroyed in the liveLocks list so that we can
// grab their statistics too.
static kmp_adaptive_lock_statistics_t destroyedStats;
// To hold the list of live locks.
static kmp_adaptive_lock_info_t liveLocks;
// A lock so we can safely update the list of locks.
static kmp_bootstrap_lock_t chain_lock =
KMP_BOOTSTRAP_LOCK_INITIALIZER(chain_lock);
// Initialize the list of stats.
void __kmp_init_speculative_stats() {
kmp_adaptive_lock_info_t *lck = &liveLocks;
memset(CCAST(kmp_adaptive_lock_statistics_t *, &(lck->stats)), 0,
sizeof(lck->stats));
lck->stats.next = lck;
lck->stats.prev = lck;
KMP_ASSERT(lck->stats.next->stats.prev == lck);
KMP_ASSERT(lck->stats.prev->stats.next == lck);
__kmp_init_bootstrap_lock(&chain_lock);
}
// Insert the lock into the circular list
static void __kmp_remember_lock(kmp_adaptive_lock_info_t *lck) {
__kmp_acquire_bootstrap_lock(&chain_lock);
lck->stats.next = liveLocks.stats.next;
lck->stats.prev = &liveLocks;
liveLocks.stats.next = lck;
lck->stats.next->stats.prev = lck;
KMP_ASSERT(lck->stats.next->stats.prev == lck);
KMP_ASSERT(lck->stats.prev->stats.next == lck);
__kmp_release_bootstrap_lock(&chain_lock);
}
static void __kmp_forget_lock(kmp_adaptive_lock_info_t *lck) {
KMP_ASSERT(lck->stats.next->stats.prev == lck);
KMP_ASSERT(lck->stats.prev->stats.next == lck);
kmp_adaptive_lock_info_t *n = lck->stats.next;
kmp_adaptive_lock_info_t *p = lck->stats.prev;
n->stats.prev = p;
p->stats.next = n;
}
static void __kmp_zero_speculative_stats(kmp_adaptive_lock_info_t *lck) {
memset(CCAST(kmp_adaptive_lock_statistics_t *, &lck->stats), 0,
sizeof(lck->stats));
__kmp_remember_lock(lck);
}
static void __kmp_add_stats(kmp_adaptive_lock_statistics_t *t,
kmp_adaptive_lock_info_t *lck) {
kmp_adaptive_lock_statistics_t volatile *s = &lck->stats;
t->nonSpeculativeAcquireAttempts += lck->acquire_attempts;
t->successfulSpeculations += s->successfulSpeculations;
t->hardFailedSpeculations += s->hardFailedSpeculations;
t->softFailedSpeculations += s->softFailedSpeculations;
t->nonSpeculativeAcquires += s->nonSpeculativeAcquires;
t->lemmingYields += s->lemmingYields;
}
static void __kmp_accumulate_speculative_stats(kmp_adaptive_lock_info_t *lck) {
__kmp_acquire_bootstrap_lock(&chain_lock);
__kmp_add_stats(&destroyedStats, lck);
__kmp_forget_lock(lck);
__kmp_release_bootstrap_lock(&chain_lock);
}
static float percent(kmp_uint32 count, kmp_uint32 total) {
return (total == 0) ? 0.0 : (100.0 * count) / total;
}
static FILE *__kmp_open_stats_file() {
if (strcmp(__kmp_speculative_statsfile, "-") == 0)
return stdout;
size_t buffLen = KMP_STRLEN(__kmp_speculative_statsfile) + 20;
char buffer[buffLen];
KMP_SNPRINTF(&buffer[0], buffLen, __kmp_speculative_statsfile,
(kmp_int32)getpid());
FILE *result = fopen(&buffer[0], "w");
// Maybe we should issue a warning here...
return result ? result : stdout;
}
void __kmp_print_speculative_stats() {
kmp_adaptive_lock_statistics_t total = destroyedStats;
kmp_adaptive_lock_info_t *lck;
for (lck = liveLocks.stats.next; lck != &liveLocks; lck = lck->stats.next) {
__kmp_add_stats(&total, lck);
}
kmp_adaptive_lock_statistics_t *t = &total;
kmp_uint32 totalSections =
t->nonSpeculativeAcquires + t->successfulSpeculations;
kmp_uint32 totalSpeculations = t->successfulSpeculations +
t->hardFailedSpeculations +
t->softFailedSpeculations;
if (totalSections <= 0)
return;
FILE *statsFile = __kmp_open_stats_file();
fprintf(statsFile, "Speculative lock statistics (all approximate!)\n");
fprintf(statsFile, " Lock parameters: \n"
" max_soft_retries : %10d\n"
" max_badness : %10d\n",
__kmp_adaptive_backoff_params.max_soft_retries,
__kmp_adaptive_backoff_params.max_badness);
fprintf(statsFile, " Non-speculative acquire attempts : %10d\n",
t->nonSpeculativeAcquireAttempts);
fprintf(statsFile, " Total critical sections : %10d\n",
totalSections);
fprintf(statsFile, " Successful speculations : %10d (%5.1f%%)\n",
t->successfulSpeculations,
percent(t->successfulSpeculations, totalSections));
fprintf(statsFile, " Non-speculative acquires : %10d (%5.1f%%)\n",
t->nonSpeculativeAcquires,
percent(t->nonSpeculativeAcquires, totalSections));
fprintf(statsFile, " Lemming yields : %10d\n\n",
t->lemmingYields);
fprintf(statsFile, " Speculative acquire attempts : %10d\n",
totalSpeculations);
fprintf(statsFile, " Successes : %10d (%5.1f%%)\n",
t->successfulSpeculations,
percent(t->successfulSpeculations, totalSpeculations));
fprintf(statsFile, " Soft failures : %10d (%5.1f%%)\n",
t->softFailedSpeculations,
percent(t->softFailedSpeculations, totalSpeculations));
fprintf(statsFile, " Hard failures : %10d (%5.1f%%)\n",
t->hardFailedSpeculations,
percent(t->hardFailedSpeculations, totalSpeculations));
if (statsFile != stdout)
fclose(statsFile);
}
#define KMP_INC_STAT(lck, stat) (lck->lk.adaptive.stats.stat++)
#else
#define KMP_INC_STAT(lck, stat)
#endif // KMP_DEBUG_ADAPTIVE_LOCKS
static inline bool __kmp_is_unlocked_queuing_lock(kmp_queuing_lock_t *lck) {
// It is enough to check that the head_id is zero.
// We don't also need to check the tail.
bool res = lck->lk.head_id == 0;
// We need a fence here, since we must ensure that no memory operations
// from later in this thread float above that read.
#if KMP_COMPILER_ICC
_mm_mfence();
#else
__sync_synchronize();
#endif
return res;
}
// Functions for manipulating the badness
static __inline void
__kmp_update_badness_after_success(kmp_adaptive_lock_t *lck) {
// Reset the badness to zero so we eagerly try to speculate again
lck->lk.adaptive.badness = 0;
KMP_INC_STAT(lck, successfulSpeculations);
}
// Create a bit mask with one more set bit.
static __inline void __kmp_step_badness(kmp_adaptive_lock_t *lck) {
kmp_uint32 newBadness = (lck->lk.adaptive.badness << 1) | 1;
if (newBadness > lck->lk.adaptive.max_badness) {
return;
} else {
lck->lk.adaptive.badness = newBadness;
}
}
// Check whether speculation should be attempted.
static __inline int __kmp_should_speculate(kmp_adaptive_lock_t *lck,
kmp_int32 gtid) {
kmp_uint32 badness = lck->lk.adaptive.badness;
kmp_uint32 attempts = lck->lk.adaptive.acquire_attempts;
int res = (attempts & badness) == 0;
return res;
}
// Attempt to acquire only the speculative lock.
// Does not back off to the non-speculative lock.
static int __kmp_test_adaptive_lock_only(kmp_adaptive_lock_t *lck,
kmp_int32 gtid) {
int retries = lck->lk.adaptive.max_soft_retries;
// We don't explicitly count the start of speculation, rather we record the
// results (success, hard fail, soft fail). The sum of all of those is the
// total number of times we started speculation since all speculations must
// end one of those ways.
do {
kmp_uint32 status = _xbegin();
// Switch this in to disable actual speculation but exercise at least some
// of the rest of the code. Useful for debugging...
// kmp_uint32 status = _XABORT_NESTED;
if (status == _XBEGIN_STARTED) {
/* We have successfully started speculation. Check that no-one acquired
the lock for real between when we last looked and now. This also gets
the lock cache line into our read-set, which we need so that we'll
abort if anyone later claims it for real. */
if (!__kmp_is_unlocked_queuing_lock(GET_QLK_PTR(lck))) {
// Lock is now visibly acquired, so someone beat us to it. Abort the
// transaction so we'll restart from _xbegin with the failure status.
_xabort(0x01);
KMP_ASSERT2(0, "should not get here");
}
return 1; // Lock has been acquired (speculatively)
} else {
// We have aborted, update the statistics
if (status & SOFT_ABORT_MASK) {
KMP_INC_STAT(lck, softFailedSpeculations);
// and loop round to retry.
} else {
KMP_INC_STAT(lck, hardFailedSpeculations);
// Give up if we had a hard failure.
break;
}
}
} while (retries--); // Loop while we have retries, and didn't fail hard.
// Either we had a hard failure or we didn't succeed softly after
// the full set of attempts, so back off the badness.
__kmp_step_badness(lck);
return 0;
}
// Attempt to acquire the speculative lock, or back off to the non-speculative
// one if the speculative lock cannot be acquired.
// We can succeed speculatively, non-speculatively, or fail.
static int __kmp_test_adaptive_lock(kmp_adaptive_lock_t *lck, kmp_int32 gtid) {
// First try to acquire the lock speculatively
if (__kmp_should_speculate(lck, gtid) &&
__kmp_test_adaptive_lock_only(lck, gtid))
return 1;
// Speculative acquisition failed, so try to acquire it non-speculatively.
// Count the non-speculative acquire attempt
lck->lk.adaptive.acquire_attempts++;
// Use base, non-speculative lock.
if (__kmp_test_queuing_lock(GET_QLK_PTR(lck), gtid)) {
KMP_INC_STAT(lck, nonSpeculativeAcquires);
return 1; // Lock is acquired (non-speculatively)
} else {
return 0; // Failed to acquire the lock, it's already visibly locked.
}
}
static int __kmp_test_adaptive_lock_with_checks(kmp_adaptive_lock_t *lck,
kmp_int32 gtid) {
char const *const func = "omp_test_lock";
if (lck->lk.qlk.initialized != GET_QLK_PTR(lck)) {
KMP_FATAL(LockIsUninitialized, func);
}
int retval = __kmp_test_adaptive_lock(lck, gtid);
if (retval) {
lck->lk.qlk.owner_id = gtid + 1;
}
return retval;
}
// Block until we can acquire a speculative, adaptive lock. We check whether we
// should be trying to speculate. If we should be, we check the real lock to see
// if it is free, and, if not, pause without attempting to acquire it until it
// is. Then we try the speculative acquire. This means that although we suffer
// from lemmings a little (because all we can't acquire the lock speculatively
// until the queue of threads waiting has cleared), we don't get into a state
// where we can never acquire the lock speculatively (because we force the queue
// to clear by preventing new arrivals from entering the queue). This does mean
// that when we're trying to break lemmings, the lock is no longer fair. However
// OpenMP makes no guarantee that its locks are fair, so this isn't a real
// problem.
static void __kmp_acquire_adaptive_lock(kmp_adaptive_lock_t *lck,
kmp_int32 gtid) {
if (__kmp_should_speculate(lck, gtid)) {
if (__kmp_is_unlocked_queuing_lock(GET_QLK_PTR(lck))) {
if (__kmp_test_adaptive_lock_only(lck, gtid))
return;
// We tried speculation and failed, so give up.
} else {
// We can't try speculation until the lock is free, so we pause here
// (without suspending on the queueing lock, to allow it to drain, then
// try again. All other threads will also see the same result for
// shouldSpeculate, so will be doing the same if they try to claim the
// lock from now on.
while (!__kmp_is_unlocked_queuing_lock(GET_QLK_PTR(lck))) {
KMP_INC_STAT(lck, lemmingYields);
__kmp_yield(TRUE);
}
if (__kmp_test_adaptive_lock_only(lck, gtid))
return;
}
}
// Speculative acquisition failed, so acquire it non-speculatively.
// Count the non-speculative acquire attempt
lck->lk.adaptive.acquire_attempts++;
__kmp_acquire_queuing_lock_timed_template<FALSE>(GET_QLK_PTR(lck), gtid);
// We have acquired the base lock, so count that.
KMP_INC_STAT(lck, nonSpeculativeAcquires);
ANNOTATE_QUEUING_ACQUIRED(lck);
}
static void __kmp_acquire_adaptive_lock_with_checks(kmp_adaptive_lock_t *lck,
kmp_int32 gtid) {
char const *const func = "omp_set_lock";
if (lck->lk.qlk.initialized != GET_QLK_PTR(lck)) {
KMP_FATAL(LockIsUninitialized, func);
}
if (__kmp_get_queuing_lock_owner(GET_QLK_PTR(lck)) == gtid) {
KMP_FATAL(LockIsAlreadyOwned, func);
}
__kmp_acquire_adaptive_lock(lck, gtid);
lck->lk.qlk.owner_id = gtid + 1;
}
static int __kmp_release_adaptive_lock(kmp_adaptive_lock_t *lck,
kmp_int32 gtid) {
if (__kmp_is_unlocked_queuing_lock(GET_QLK_PTR(
lck))) { // If the lock doesn't look claimed we must be speculating.
// (Or the user's code is buggy and they're releasing without locking;
// if we had XTEST we'd be able to check that case...)
_xend(); // Exit speculation
__kmp_update_badness_after_success(lck);
} else { // Since the lock *is* visibly locked we're not speculating,
// so should use the underlying lock's release scheme.
__kmp_release_queuing_lock(GET_QLK_PTR(lck), gtid);
}
return KMP_LOCK_RELEASED;
}
static int __kmp_release_adaptive_lock_with_checks(kmp_adaptive_lock_t *lck,
kmp_int32 gtid) {
char const *const func = "omp_unset_lock";
KMP_MB(); /* in case another processor initialized lock */
if (lck->lk.qlk.initialized != GET_QLK_PTR(lck)) {
KMP_FATAL(LockIsUninitialized, func);
}
if (__kmp_get_queuing_lock_owner(GET_QLK_PTR(lck)) == -1) {
KMP_FATAL(LockUnsettingFree, func);
}
if (__kmp_get_queuing_lock_owner(GET_QLK_PTR(lck)) != gtid) {
KMP_FATAL(LockUnsettingSetByAnother, func);
}
lck->lk.qlk.owner_id = 0;
__kmp_release_adaptive_lock(lck, gtid);
return KMP_LOCK_RELEASED;
}
static void __kmp_init_adaptive_lock(kmp_adaptive_lock_t *lck) {
__kmp_init_queuing_lock(GET_QLK_PTR(lck));
lck->lk.adaptive.badness = 0;
lck->lk.adaptive.acquire_attempts = 0; // nonSpeculativeAcquireAttempts = 0;
lck->lk.adaptive.max_soft_retries =
__kmp_adaptive_backoff_params.max_soft_retries;
lck->lk.adaptive.max_badness = __kmp_adaptive_backoff_params.max_badness;
#if KMP_DEBUG_ADAPTIVE_LOCKS
__kmp_zero_speculative_stats(&lck->lk.adaptive);
#endif
KA_TRACE(1000, ("__kmp_init_adaptive_lock: lock %p initialized\n", lck));
}
static void __kmp_init_adaptive_lock_with_checks(kmp_adaptive_lock_t *lck) {
__kmp_init_adaptive_lock(lck);
}
static void __kmp_destroy_adaptive_lock(kmp_adaptive_lock_t *lck) {
#if KMP_DEBUG_ADAPTIVE_LOCKS
__kmp_accumulate_speculative_stats(&lck->lk.adaptive);
#endif
__kmp_destroy_queuing_lock(GET_QLK_PTR(lck));
// Nothing needed for the speculative part.
}
static void __kmp_destroy_adaptive_lock_with_checks(kmp_adaptive_lock_t *lck) {
char const *const func = "omp_destroy_lock";
if (lck->lk.qlk.initialized != GET_QLK_PTR(lck)) {
KMP_FATAL(LockIsUninitialized, func);
}
if (__kmp_get_queuing_lock_owner(GET_QLK_PTR(lck)) != -1) {
KMP_FATAL(LockStillOwned, func);
}
__kmp_destroy_adaptive_lock(lck);
}
#endif // KMP_USE_ADAPTIVE_LOCKS
/* ------------------------------------------------------------------------ */
/* DRDPA ticket locks */
/* "DRDPA" means Dynamically Reconfigurable Distributed Polling Area */
static kmp_int32 __kmp_get_drdpa_lock_owner(kmp_drdpa_lock_t *lck) {
return lck->lk.owner_id - 1;
}
static inline bool __kmp_is_drdpa_lock_nestable(kmp_drdpa_lock_t *lck) {
return lck->lk.depth_locked != -1;
}
__forceinline static int
__kmp_acquire_drdpa_lock_timed_template(kmp_drdpa_lock_t *lck, kmp_int32 gtid) {
kmp_uint64 ticket = KMP_ATOMIC_INC(&lck->lk.next_ticket);
kmp_uint64 mask = lck->lk.mask; // atomic load
std::atomic<kmp_uint64> *polls = lck->lk.polls;
#ifdef USE_LOCK_PROFILE
if (polls[ticket & mask] != ticket)
__kmp_printf("LOCK CONTENTION: %p\n", lck);
/* else __kmp_printf( "." );*/
#endif /* USE_LOCK_PROFILE */
// Now spin-wait, but reload the polls pointer and mask, in case the
// polling area has been reconfigured. Unless it is reconfigured, the
// reloads stay in L1 cache and are cheap.
//
// Keep this code in sync with KMP_WAIT_YIELD, in kmp_dispatch.cpp !!!
//
// The current implementation of KMP_WAIT_YIELD doesn't allow for mask
// and poll to be re-read every spin iteration.
kmp_uint32 spins;
KMP_FSYNC_PREPARE(lck);
KMP_INIT_YIELD(spins);
while (polls[ticket & mask] < ticket) { // atomic load
// If we are oversubscribed,
// or have waited a bit (and KMP_LIBRARY=turnaround), then yield.
// CPU Pause is in the macros for yield.
//
KMP_YIELD(TCR_4(__kmp_nth) >
(__kmp_avail_proc ? __kmp_avail_proc : __kmp_xproc));
KMP_YIELD_SPIN(spins);
// Re-read the mask and the poll pointer from the lock structure.
//
// Make certain that "mask" is read before "polls" !!!
//
// If another thread picks reconfigures the polling area and updates their
// values, and we get the new value of mask and the old polls pointer, we
// could access memory beyond the end of the old polling area.
mask = lck->lk.mask; // atomic load
polls = lck->lk.polls; // atomic load
}
// Critical section starts here
KMP_FSYNC_ACQUIRED(lck);
KA_TRACE(1000, ("__kmp_acquire_drdpa_lock: ticket #%lld acquired lock %p\n",
ticket, lck));
lck->lk.now_serving = ticket; // non-volatile store
// Deallocate a garbage polling area if we know that we are the last
// thread that could possibly access it.
//
// The >= check is in case __kmp_test_drdpa_lock() allocated the cleanup
// ticket.
if ((lck->lk.old_polls != NULL) && (ticket >= lck->lk.cleanup_ticket)) {
__kmp_free(lck->lk.old_polls);
lck->lk.old_polls = NULL;
lck->lk.cleanup_ticket = 0;
}
// Check to see if we should reconfigure the polling area.
// If there is still a garbage polling area to be deallocated from a
// previous reconfiguration, let a later thread reconfigure it.
if (lck->lk.old_polls == NULL) {
bool reconfigure = false;
std::atomic<kmp_uint64> *old_polls = polls;
kmp_uint32 num_polls = TCR_4(lck->lk.num_polls);
if (TCR_4(__kmp_nth) >
(__kmp_avail_proc ? __kmp_avail_proc : __kmp_xproc)) {
// We are in oversubscription mode. Contract the polling area
// down to a single location, if that hasn't been done already.
if (num_polls > 1) {
reconfigure = true;
num_polls = TCR_4(lck->lk.num_polls);
mask = 0;
num_polls = 1;
polls = (std::atomic<kmp_uint64> *)__kmp_allocate(num_polls *
sizeof(*polls));
polls[0] = ticket;
}
} else {
// We are in under/fully subscribed mode. Check the number of
// threads waiting on the lock. The size of the polling area
// should be at least the number of threads waiting.
kmp_uint64 num_waiting = TCR_8(lck->lk.next_ticket) - ticket - 1;
if (num_waiting > num_polls) {
kmp_uint32 old_num_polls = num_polls;
reconfigure = true;
do {
mask = (mask << 1) | 1;
num_polls *= 2;
} while (num_polls <= num_waiting);
// Allocate the new polling area, and copy the relevant portion
// of the old polling area to the new area. __kmp_allocate()
// zeroes the memory it allocates, and most of the old area is
// just zero padding, so we only copy the release counters.
polls = (std::atomic<kmp_uint64> *)__kmp_allocate(num_polls *
sizeof(*polls));
kmp_uint32 i;
for (i = 0; i < old_num_polls; i++) {
polls[i].store(old_polls[i]);
}
}
}
if (reconfigure) {
// Now write the updated fields back to the lock structure.
//
// Make certain that "polls" is written before "mask" !!!
//
// If another thread picks up the new value of mask and the old polls
// pointer , it could access memory beyond the end of the old polling
// area.
//
// On x86, we need memory fences.
KA_TRACE(1000, ("__kmp_acquire_drdpa_lock: ticket #%lld reconfiguring "
"lock %p to %d polls\n",
ticket, lck, num_polls));
lck->lk.old_polls = old_polls;
lck->lk.polls = polls; // atomic store
KMP_MB();
lck->lk.num_polls = num_polls;
lck->lk.mask = mask; // atomic store
KMP_MB();
// Only after the new polling area and mask have been flushed
// to main memory can we update the cleanup ticket field.
//
// volatile load / non-volatile store
lck->lk.cleanup_ticket = lck->lk.next_ticket;
}
}
return KMP_LOCK_ACQUIRED_FIRST;
}
int __kmp_acquire_drdpa_lock(kmp_drdpa_lock_t *lck, kmp_int32 gtid) {
int retval = __kmp_acquire_drdpa_lock_timed_template(lck, gtid);
ANNOTATE_DRDPA_ACQUIRED(lck);
return retval;
}
static int __kmp_acquire_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck,
kmp_int32 gtid) {
char const *const func = "omp_set_lock";
if (lck->lk.initialized != lck) {
KMP_FATAL(LockIsUninitialized, func);
}
if (__kmp_is_drdpa_lock_nestable(lck)) {
KMP_FATAL(LockNestableUsedAsSimple, func);
}
if ((gtid >= 0) && (__kmp_get_drdpa_lock_owner(lck) == gtid)) {
KMP_FATAL(LockIsAlreadyOwned, func);
}
__kmp_acquire_drdpa_lock(lck, gtid);
lck->lk.owner_id = gtid + 1;
return KMP_LOCK_ACQUIRED_FIRST;
}
int __kmp_test_drdpa_lock(kmp_drdpa_lock_t *lck, kmp_int32 gtid) {
// First get a ticket, then read the polls pointer and the mask.
// The polls pointer must be read before the mask!!! (See above)
kmp_uint64 ticket = lck->lk.next_ticket; // atomic load
std::atomic<kmp_uint64> *polls = lck->lk.polls;
kmp_uint64 mask = lck->lk.mask; // atomic load
if (polls[ticket & mask] == ticket) {
kmp_uint64 next_ticket = ticket + 1;
if (__kmp_atomic_compare_store_acq(&lck->lk.next_ticket, ticket,
next_ticket)) {
KMP_FSYNC_ACQUIRED(lck);
KA_TRACE(1000, ("__kmp_test_drdpa_lock: ticket #%lld acquired lock %p\n",
ticket, lck));
lck->lk.now_serving = ticket; // non-volatile store
// Since no threads are waiting, there is no possibility that we would
// want to reconfigure the polling area. We might have the cleanup ticket
// value (which says that it is now safe to deallocate old_polls), but
// we'll let a later thread which calls __kmp_acquire_lock do that - this
// routine isn't supposed to block, and we would risk blocks if we called
// __kmp_free() to do the deallocation.
return TRUE;
}
}
return FALSE;
}
static int __kmp_test_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck,
kmp_int32 gtid) {
char const *const func = "omp_test_lock";
if (lck->lk.initialized != lck) {
KMP_FATAL(LockIsUninitialized, func);
}
if (__kmp_is_drdpa_lock_nestable(lck)) {
KMP_FATAL(LockNestableUsedAsSimple, func);
}
int retval = __kmp_test_drdpa_lock(lck, gtid);
if (retval) {
lck->lk.owner_id = gtid + 1;
}
return retval;
}
int __kmp_release_drdpa_lock(kmp_drdpa_lock_t *lck, kmp_int32 gtid) {
// Read the ticket value from the lock data struct, then the polls pointer and
// the mask. The polls pointer must be read before the mask!!! (See above)
kmp_uint64 ticket = lck->lk.now_serving + 1; // non-atomic load
std::atomic<kmp_uint64> *polls = lck->lk.polls; // atomic load
kmp_uint64 mask = lck->lk.mask; // atomic load
KA_TRACE(1000, ("__kmp_release_drdpa_lock: ticket #%lld released lock %p\n",
ticket - 1, lck));
KMP_FSYNC_RELEASING(lck);
ANNOTATE_DRDPA_RELEASED(lck);
polls[ticket & mask] = ticket; // atomic store
return KMP_LOCK_RELEASED;
}
static int __kmp_release_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck,
kmp_int32 gtid) {
char const *const func = "omp_unset_lock";
KMP_MB(); /* in case another processor initialized lock */
if (lck->lk.initialized != lck) {
KMP_FATAL(LockIsUninitialized, func);
}
if (__kmp_is_drdpa_lock_nestable(lck)) {
KMP_FATAL(LockNestableUsedAsSimple, func);
}
if (__kmp_get_drdpa_lock_owner(lck) == -1) {
KMP_FATAL(LockUnsettingFree, func);
}
if ((gtid >= 0) && (__kmp_get_drdpa_lock_owner(lck) >= 0) &&
(__kmp_get_drdpa_lock_owner(lck) != gtid)) {
KMP_FATAL(LockUnsettingSetByAnother, func);
}
lck->lk.owner_id = 0;
return __kmp_release_drdpa_lock(lck, gtid);
}
void __kmp_init_drdpa_lock(kmp_drdpa_lock_t *lck) {
lck->lk.location = NULL;
lck->lk.mask = 0;
lck->lk.num_polls = 1;
lck->lk.polls = (std::atomic<kmp_uint64> *)__kmp_allocate(
lck->lk.num_polls * sizeof(*(lck->lk.polls)));
lck->lk.cleanup_ticket = 0;
lck->lk.old_polls = NULL;
lck->lk.next_ticket = 0;
lck->lk.now_serving = 0;
lck->lk.owner_id = 0; // no thread owns the lock.
lck->lk.depth_locked = -1; // >= 0 for nestable locks, -1 for simple locks.
lck->lk.initialized = lck;
KA_TRACE(1000, ("__kmp_init_drdpa_lock: lock %p initialized\n", lck));
}
static void __kmp_init_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck) {
__kmp_init_drdpa_lock(lck);
}
void __kmp_destroy_drdpa_lock(kmp_drdpa_lock_t *lck) {
lck->lk.initialized = NULL;
lck->lk.location = NULL;
if (lck->lk.polls.load() != NULL) {
__kmp_free(lck->lk.polls.load());
lck->lk.polls = NULL;
}
if (lck->lk.old_polls != NULL) {
__kmp_free(lck->lk.old_polls);
lck->lk.old_polls = NULL;
}
lck->lk.mask = 0;
lck->lk.num_polls = 0;
lck->lk.cleanup_ticket = 0;
lck->lk.next_ticket = 0;
lck->lk.now_serving = 0;
lck->lk.owner_id = 0;
lck->lk.depth_locked = -1;
}
static void __kmp_destroy_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck) {
char const *const func = "omp_destroy_lock";
if (lck->lk.initialized != lck) {
KMP_FATAL(LockIsUninitialized, func);
}
if (__kmp_is_drdpa_lock_nestable(lck)) {
KMP_FATAL(LockNestableUsedAsSimple, func);
}
if (__kmp_get_drdpa_lock_owner(lck) != -1) {
KMP_FATAL(LockStillOwned, func);
}
__kmp_destroy_drdpa_lock(lck);
}
// nested drdpa ticket locks
int __kmp_acquire_nested_drdpa_lock(kmp_drdpa_lock_t *lck, kmp_int32 gtid) {
KMP_DEBUG_ASSERT(gtid >= 0);
if (__kmp_get_drdpa_lock_owner(lck) == gtid) {
lck->lk.depth_locked += 1;
return KMP_LOCK_ACQUIRED_NEXT;
} else {
__kmp_acquire_drdpa_lock_timed_template(lck, gtid);
ANNOTATE_DRDPA_ACQUIRED(lck);
KMP_MB();
lck->lk.depth_locked = 1;
KMP_MB();
lck->lk.owner_id = gtid + 1;
return KMP_LOCK_ACQUIRED_FIRST;
}
}
static void __kmp_acquire_nested_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck,
kmp_int32 gtid) {
char const *const func = "omp_set_nest_lock";
if (lck->lk.initialized != lck) {
KMP_FATAL(LockIsUninitialized, func);
}
if (!__kmp_is_drdpa_lock_nestable(lck)) {
KMP_FATAL(LockSimpleUsedAsNestable, func);
}
__kmp_acquire_nested_drdpa_lock(lck, gtid);
}
int __kmp_test_nested_drdpa_lock(kmp_drdpa_lock_t *lck, kmp_int32 gtid) {
int retval;
KMP_DEBUG_ASSERT(gtid >= 0);
if (__kmp_get_drdpa_lock_owner(lck) == gtid) {
retval = ++lck->lk.depth_locked;
} else if (!__kmp_test_drdpa_lock(lck, gtid)) {
retval = 0;
} else {
KMP_MB();
retval = lck->lk.depth_locked = 1;
KMP_MB();
lck->lk.owner_id = gtid + 1;
}
return retval;
}
static int __kmp_test_nested_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck,
kmp_int32 gtid) {
char const *const func = "omp_test_nest_lock";
if (lck->lk.initialized != lck) {
KMP_FATAL(LockIsUninitialized, func);
}
if (!__kmp_is_drdpa_lock_nestable(lck)) {
KMP_FATAL(LockSimpleUsedAsNestable, func);
}
return __kmp_test_nested_drdpa_lock(lck, gtid);
}
int __kmp_release_nested_drdpa_lock(kmp_drdpa_lock_t *lck, kmp_int32 gtid) {
KMP_DEBUG_ASSERT(gtid >= 0);
KMP_MB();
if (--(lck->lk.depth_locked) == 0) {
KMP_MB();
lck->lk.owner_id = 0;
__kmp_release_drdpa_lock(lck, gtid);
return KMP_LOCK_RELEASED;
}
return KMP_LOCK_STILL_HELD;
}
static int __kmp_release_nested_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck,
kmp_int32 gtid) {
char const *const func = "omp_unset_nest_lock";
KMP_MB(); /* in case another processor initialized lock */
if (lck->lk.initialized != lck) {
KMP_FATAL(LockIsUninitialized, func);
}
if (!__kmp_is_drdpa_lock_nestable(lck)) {
KMP_FATAL(LockSimpleUsedAsNestable, func);
}
if (__kmp_get_drdpa_lock_owner(lck) == -1) {
KMP_FATAL(LockUnsettingFree, func);
}
if (__kmp_get_drdpa_lock_owner(lck) != gtid) {
KMP_FATAL(LockUnsettingSetByAnother, func);
}
return __kmp_release_nested_drdpa_lock(lck, gtid);
}
void __kmp_init_nested_drdpa_lock(kmp_drdpa_lock_t *lck) {
__kmp_init_drdpa_lock(lck);
lck->lk.depth_locked = 0; // >= 0 for nestable locks, -1 for simple locks
}
static void __kmp_init_nested_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck) {
__kmp_init_nested_drdpa_lock(lck);
}
void __kmp_destroy_nested_drdpa_lock(kmp_drdpa_lock_t *lck) {
__kmp_destroy_drdpa_lock(lck);
lck->lk.depth_locked = 0;
}
static void __kmp_destroy_nested_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck) {
char const *const func = "omp_destroy_nest_lock";
if (lck->lk.initialized != lck) {
KMP_FATAL(LockIsUninitialized, func);
}
if (!__kmp_is_drdpa_lock_nestable(lck)) {
KMP_FATAL(LockSimpleUsedAsNestable, func);
}
if (__kmp_get_drdpa_lock_owner(lck) != -1) {
KMP_FATAL(LockStillOwned, func);
}
__kmp_destroy_nested_drdpa_lock(lck);
}
// access functions to fields which don't exist for all lock kinds.
static int __kmp_is_drdpa_lock_initialized(kmp_drdpa_lock_t *lck) {
return lck == lck->lk.initialized;
}
static const ident_t *__kmp_get_drdpa_lock_location(kmp_drdpa_lock_t *lck) {
return lck->lk.location;
}
static void __kmp_set_drdpa_lock_location(kmp_drdpa_lock_t *lck,
const ident_t *loc) {
lck->lk.location = loc;
}
static kmp_lock_flags_t __kmp_get_drdpa_lock_flags(kmp_drdpa_lock_t *lck) {
return lck->lk.flags;
}
static void __kmp_set_drdpa_lock_flags(kmp_drdpa_lock_t *lck,
kmp_lock_flags_t flags) {
lck->lk.flags = flags;
}
// Time stamp counter
#if KMP_ARCH_X86 || KMP_ARCH_X86_64
#define __kmp_tsc() __kmp_hardware_timestamp()
// Runtime's default backoff parameters
kmp_backoff_t __kmp_spin_backoff_params = {1, 4096, 100};
#else
// Use nanoseconds for other platforms
extern kmp_uint64 __kmp_now_nsec();
kmp_backoff_t __kmp_spin_backoff_params = {1, 256, 100};
#define __kmp_tsc() __kmp_now_nsec()
#endif
// A useful predicate for dealing with timestamps that may wrap.
// Is a before b? Since the timestamps may wrap, this is asking whether it's
// shorter to go clockwise from a to b around the clock-face, or anti-clockwise.
// Times where going clockwise is less distance than going anti-clockwise
// are in the future, others are in the past. e.g. a = MAX-1, b = MAX+1 (=0),
// then a > b (true) does not mean a reached b; whereas signed(a) = -2,
// signed(b) = 0 captures the actual difference
static inline bool before(kmp_uint64 a, kmp_uint64 b) {
return ((kmp_int64)b - (kmp_int64)a) > 0;
}
// Truncated binary exponential backoff function
void __kmp_spin_backoff(kmp_backoff_t *boff) {
// We could flatten this loop, but making it a nested loop gives better result
kmp_uint32 i;
for (i = boff->step; i > 0; i--) {
kmp_uint64 goal = __kmp_tsc() + boff->min_tick;
do {
KMP_CPU_PAUSE();
} while (before(__kmp_tsc(), goal));
}
boff->step = (boff->step << 1 | 1) & (boff->max_backoff - 1);
}
#if KMP_USE_DYNAMIC_LOCK
// Direct lock initializers. It simply writes a tag to the low 8 bits of the
// lock word.
static void __kmp_init_direct_lock(kmp_dyna_lock_t *lck,
kmp_dyna_lockseq_t seq) {
TCW_4(*lck, KMP_GET_D_TAG(seq));
KA_TRACE(
20,
("__kmp_init_direct_lock: initialized direct lock with type#%d\n", seq));
}
#if KMP_USE_TSX
// HLE lock functions - imported from the testbed runtime.
#define HLE_ACQUIRE ".byte 0xf2;"
#define HLE_RELEASE ".byte 0xf3;"
static inline kmp_uint32 swap4(kmp_uint32 volatile *p, kmp_uint32 v) {
__asm__ volatile(HLE_ACQUIRE "xchg %1,%0" : "+r"(v), "+m"(*p) : : "memory");
return v;
}
static void __kmp_destroy_hle_lock(kmp_dyna_lock_t *lck) { TCW_4(*lck, 0); }
static void __kmp_acquire_hle_lock(kmp_dyna_lock_t *lck, kmp_int32 gtid) {
// Use gtid for KMP_LOCK_BUSY if necessary
if (swap4(lck, KMP_LOCK_BUSY(1, hle)) != KMP_LOCK_FREE(hle)) {
int delay = 1;
do {
while (*(kmp_uint32 volatile *)lck != KMP_LOCK_FREE(hle)) {
for (int i = delay; i != 0; --i)
KMP_CPU_PAUSE();
delay = ((delay << 1) | 1) & 7;
}
} while (swap4(lck, KMP_LOCK_BUSY(1, hle)) != KMP_LOCK_FREE(hle));
}
}
static void __kmp_acquire_hle_lock_with_checks(kmp_dyna_lock_t *lck,
kmp_int32 gtid) {
__kmp_acquire_hle_lock(lck, gtid); // TODO: add checks
}
static int __kmp_release_hle_lock(kmp_dyna_lock_t *lck, kmp_int32 gtid) {
__asm__ volatile(HLE_RELEASE "movl %1,%0"
: "=m"(*lck)
: "r"(KMP_LOCK_FREE(hle))
: "memory");
return KMP_LOCK_RELEASED;
}
static int __kmp_release_hle_lock_with_checks(kmp_dyna_lock_t *lck,
kmp_int32 gtid) {
return __kmp_release_hle_lock(lck, gtid); // TODO: add checks
}
static int __kmp_test_hle_lock(kmp_dyna_lock_t *lck, kmp_int32 gtid) {
return swap4(lck, KMP_LOCK_BUSY(1, hle)) == KMP_LOCK_FREE(hle);
}
static int __kmp_test_hle_lock_with_checks(kmp_dyna_lock_t *lck,
kmp_int32 gtid) {
return __kmp_test_hle_lock(lck, gtid); // TODO: add checks
}
static void __kmp_init_rtm_lock(kmp_queuing_lock_t *lck) {
__kmp_init_queuing_lock(lck);
}
static void __kmp_destroy_rtm_lock(kmp_queuing_lock_t *lck) {
__kmp_destroy_queuing_lock(lck);
}
static void __kmp_acquire_rtm_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid) {
unsigned retries = 3, status;
do {
status = _xbegin();
if (status == _XBEGIN_STARTED) {
if (__kmp_is_unlocked_queuing_lock(lck))
return;
_xabort(0xff);
}
if ((status & _XABORT_EXPLICIT) && _XABORT_CODE(status) == 0xff) {
// Wait until lock becomes free
while (!__kmp_is_unlocked_queuing_lock(lck))
__kmp_yield(TRUE);
} else if (!(status & _XABORT_RETRY))
break;
} while (retries--);
// Fall-back non-speculative lock (xchg)
__kmp_acquire_queuing_lock(lck, gtid);
}
static void __kmp_acquire_rtm_lock_with_checks(kmp_queuing_lock_t *lck,
kmp_int32 gtid) {
__kmp_acquire_rtm_lock(lck, gtid);
}
static int __kmp_release_rtm_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid) {
if (__kmp_is_unlocked_queuing_lock(lck)) {
// Releasing from speculation
_xend();
} else {
// Releasing from a real lock
__kmp_release_queuing_lock(lck, gtid);
}
return KMP_LOCK_RELEASED;
}
static int __kmp_release_rtm_lock_with_checks(kmp_queuing_lock_t *lck,
kmp_int32 gtid) {
return __kmp_release_rtm_lock(lck, gtid);
}
static int __kmp_test_rtm_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid) {
unsigned retries = 3, status;
do {
status = _xbegin();
if (status == _XBEGIN_STARTED && __kmp_is_unlocked_queuing_lock(lck)) {
return 1;
}
if (!(status & _XABORT_RETRY))
break;
} while (retries--);
return (__kmp_is_unlocked_queuing_lock(lck)) ? 1 : 0;
}
static int __kmp_test_rtm_lock_with_checks(kmp_queuing_lock_t *lck,
kmp_int32 gtid) {
return __kmp_test_rtm_lock(lck, gtid);
}
#endif // KMP_USE_TSX
// Entry functions for indirect locks (first element of direct lock jump tables)
static void __kmp_init_indirect_lock(kmp_dyna_lock_t *l,
kmp_dyna_lockseq_t tag);
static void __kmp_destroy_indirect_lock(kmp_dyna_lock_t *lock);
static int __kmp_set_indirect_lock(kmp_dyna_lock_t *lock, kmp_int32);
static int __kmp_unset_indirect_lock(kmp_dyna_lock_t *lock, kmp_int32);
static int __kmp_test_indirect_lock(kmp_dyna_lock_t *lock, kmp_int32);
static int __kmp_set_indirect_lock_with_checks(kmp_dyna_lock_t *lock,
kmp_int32);
static int __kmp_unset_indirect_lock_with_checks(kmp_dyna_lock_t *lock,
kmp_int32);
static int __kmp_test_indirect_lock_with_checks(kmp_dyna_lock_t *lock,
kmp_int32);
// Jump tables for the indirect lock functions
// Only fill in the odd entries, that avoids the need to shift out the low bit
// init functions
#define expand(l, op) 0, __kmp_init_direct_lock,
void (*__kmp_direct_init[])(kmp_dyna_lock_t *, kmp_dyna_lockseq_t) = {
__kmp_init_indirect_lock, 0, KMP_FOREACH_D_LOCK(expand, init)};
#undef expand
// destroy functions
#define expand(l, op) 0, (void (*)(kmp_dyna_lock_t *))__kmp_##op##_##l##_lock,
void (*__kmp_direct_destroy[])(kmp_dyna_lock_t *) = {
__kmp_destroy_indirect_lock, 0, KMP_FOREACH_D_LOCK(expand, destroy)};
#undef expand
// set/acquire functions
#define expand(l, op) \
0, (int (*)(kmp_dyna_lock_t *, kmp_int32))__kmp_##op##_##l##_lock,
static int (*direct_set[])(kmp_dyna_lock_t *, kmp_int32) = {
__kmp_set_indirect_lock, 0, KMP_FOREACH_D_LOCK(expand, acquire)};
#undef expand
#define expand(l, op) \
0, (int (*)(kmp_dyna_lock_t *, kmp_int32))__kmp_##op##_##l##_lock_with_checks,
static int (*direct_set_check[])(kmp_dyna_lock_t *, kmp_int32) = {
__kmp_set_indirect_lock_with_checks, 0,
KMP_FOREACH_D_LOCK(expand, acquire)};
#undef expand
// unset/release and test functions
#define expand(l, op) \
0, (int (*)(kmp_dyna_lock_t *, kmp_int32))__kmp_##op##_##l##_lock,
static int (*direct_unset[])(kmp_dyna_lock_t *, kmp_int32) = {
__kmp_unset_indirect_lock, 0, KMP_FOREACH_D_LOCK(expand, release)};
static int (*direct_test[])(kmp_dyna_lock_t *, kmp_int32) = {
__kmp_test_indirect_lock, 0, KMP_FOREACH_D_LOCK(expand, test)};
#undef expand
#define expand(l, op) \
0, (int (*)(kmp_dyna_lock_t *, kmp_int32))__kmp_##op##_##l##_lock_with_checks,
static int (*direct_unset_check[])(kmp_dyna_lock_t *, kmp_int32) = {
__kmp_unset_indirect_lock_with_checks, 0,
KMP_FOREACH_D_LOCK(expand, release)};
static int (*direct_test_check[])(kmp_dyna_lock_t *, kmp_int32) = {
__kmp_test_indirect_lock_with_checks, 0, KMP_FOREACH_D_LOCK(expand, test)};
#undef expand
// Exposes only one set of jump tables (*lock or *lock_with_checks).
int (*(*__kmp_direct_set))(kmp_dyna_lock_t *, kmp_int32) = 0;
int (*(*__kmp_direct_unset))(kmp_dyna_lock_t *, kmp_int32) = 0;
int (*(*__kmp_direct_test))(kmp_dyna_lock_t *, kmp_int32) = 0;
// Jump tables for the indirect lock functions
#define expand(l, op) (void (*)(kmp_user_lock_p)) __kmp_##op##_##l##_##lock,
void (*__kmp_indirect_init[])(kmp_user_lock_p) = {
KMP_FOREACH_I_LOCK(expand, init)};
void (*__kmp_indirect_destroy[])(kmp_user_lock_p) = {
KMP_FOREACH_I_LOCK(expand, destroy)};
#undef expand
// set/acquire functions
#define expand(l, op) \
(int (*)(kmp_user_lock_p, kmp_int32)) __kmp_##op##_##l##_##lock,
static int (*indirect_set[])(kmp_user_lock_p,
kmp_int32) = {KMP_FOREACH_I_LOCK(expand, acquire)};
#undef expand
#define expand(l, op) \
(int (*)(kmp_user_lock_p, kmp_int32)) __kmp_##op##_##l##_##lock_with_checks,
static int (*indirect_set_check[])(kmp_user_lock_p, kmp_int32) = {
KMP_FOREACH_I_LOCK(expand, acquire)};
#undef expand
// unset/release and test functions
#define expand(l, op) \
(int (*)(kmp_user_lock_p, kmp_int32)) __kmp_##op##_##l##_##lock,
static int (*indirect_unset[])(kmp_user_lock_p, kmp_int32) = {
KMP_FOREACH_I_LOCK(expand, release)};
static int (*indirect_test[])(kmp_user_lock_p,
kmp_int32) = {KMP_FOREACH_I_LOCK(expand, test)};
#undef expand
#define expand(l, op) \
(int (*)(kmp_user_lock_p, kmp_int32)) __kmp_##op##_##l##_##lock_with_checks,
static int (*indirect_unset_check[])(kmp_user_lock_p, kmp_int32) = {
KMP_FOREACH_I_LOCK(expand, release)};
static int (*indirect_test_check[])(kmp_user_lock_p, kmp_int32) = {
KMP_FOREACH_I_LOCK(expand, test)};
#undef expand
// Exposes only one jump tables (*lock or *lock_with_checks).
int (*(*__kmp_indirect_set))(kmp_user_lock_p, kmp_int32) = 0;
int (*(*__kmp_indirect_unset))(kmp_user_lock_p, kmp_int32) = 0;
int (*(*__kmp_indirect_test))(kmp_user_lock_p, kmp_int32) = 0;
// Lock index table.
kmp_indirect_lock_table_t __kmp_i_lock_table;
// Size of indirect locks.
static kmp_uint32 __kmp_indirect_lock_size[KMP_NUM_I_LOCKS] = {0};
// Jump tables for lock accessor/modifier.
void (*__kmp_indirect_set_location[KMP_NUM_I_LOCKS])(kmp_user_lock_p,
const ident_t *) = {0};
void (*__kmp_indirect_set_flags[KMP_NUM_I_LOCKS])(kmp_user_lock_p,
kmp_lock_flags_t) = {0};
const ident_t *(*__kmp_indirect_get_location[KMP_NUM_I_LOCKS])(
kmp_user_lock_p) = {0};
kmp_lock_flags_t (*__kmp_indirect_get_flags[KMP_NUM_I_LOCKS])(
kmp_user_lock_p) = {0};
// Use different lock pools for different lock types.
static kmp_indirect_lock_t *__kmp_indirect_lock_pool[KMP_NUM_I_LOCKS] = {0};
// User lock allocator for dynamically dispatched indirect locks. Every entry of
// the indirect lock table holds the address and type of the allocated indrect
// lock (kmp_indirect_lock_t), and the size of the table doubles when it is
// full. A destroyed indirect lock object is returned to the reusable pool of
// locks, unique to each lock type.
kmp_indirect_lock_t *__kmp_allocate_indirect_lock(void **user_lock,
kmp_int32 gtid,
kmp_indirect_locktag_t tag) {
kmp_indirect_lock_t *lck;
kmp_lock_index_t idx;
__kmp_acquire_lock(&__kmp_global_lock, gtid);
if (__kmp_indirect_lock_pool[tag] != NULL) {
// Reuse the allocated and destroyed lock object
lck = __kmp_indirect_lock_pool[tag];
if (OMP_LOCK_T_SIZE < sizeof(void *))
idx = lck->lock->pool.index;
__kmp_indirect_lock_pool[tag] = (kmp_indirect_lock_t *)lck->lock->pool.next;
KA_TRACE(20, ("__kmp_allocate_indirect_lock: reusing an existing lock %p\n",
lck));
} else {
idx = __kmp_i_lock_table.next;
// Check capacity and double the size if it is full
if (idx == __kmp_i_lock_table.size) {
// Double up the space for block pointers
int row = __kmp_i_lock_table.size / KMP_I_LOCK_CHUNK;
kmp_indirect_lock_t **new_table = (kmp_indirect_lock_t **)__kmp_allocate(
2 * row * sizeof(kmp_indirect_lock_t *));
KMP_MEMCPY(new_table, __kmp_i_lock_table.table,
row * sizeof(kmp_indirect_lock_t *));
kmp_indirect_lock_t **old_table = __kmp_i_lock_table.table;
__kmp_i_lock_table.table = new_table;
__kmp_free(old_table);
// Allocate new objects in the new blocks
for (int i = row; i < 2 * row; ++i)
*(__kmp_i_lock_table.table + i) = (kmp_indirect_lock_t *)__kmp_allocate(
KMP_I_LOCK_CHUNK * sizeof(kmp_indirect_lock_t));
__kmp_i_lock_table.size = 2 * idx;
}
__kmp_i_lock_table.next++;
lck = KMP_GET_I_LOCK(idx);
// Allocate a new base lock object
lck->lock = (kmp_user_lock_p)__kmp_allocate(__kmp_indirect_lock_size[tag]);
KA_TRACE(20,
("__kmp_allocate_indirect_lock: allocated a new lock %p\n", lck));
}
__kmp_release_lock(&__kmp_global_lock, gtid);
lck->type = tag;
if (OMP_LOCK_T_SIZE < sizeof(void *)) {
*((kmp_lock_index_t *)user_lock) = idx
<< 1; // indirect lock word must be even
} else {
*((kmp_indirect_lock_t **)user_lock) = lck;
}
return lck;
}
// User lock lookup for dynamically dispatched locks.
static __forceinline kmp_indirect_lock_t *
__kmp_lookup_indirect_lock(void **user_lock, const char *func) {
if (__kmp_env_consistency_check) {
kmp_indirect_lock_t *lck = NULL;
if (user_lock == NULL) {
KMP_FATAL(LockIsUninitialized, func);
}
if (OMP_LOCK_T_SIZE < sizeof(void *)) {
kmp_lock_index_t idx = KMP_EXTRACT_I_INDEX(user_lock);
if (idx >= __kmp_i_lock_table.size) {
KMP_FATAL(LockIsUninitialized, func);
}
lck = KMP_GET_I_LOCK(idx);
} else {
lck = *((kmp_indirect_lock_t **)user_lock);
}
if (lck == NULL) {
KMP_FATAL(LockIsUninitialized, func);
}
return lck;
} else {
if (OMP_LOCK_T_SIZE < sizeof(void *)) {
return KMP_GET_I_LOCK(KMP_EXTRACT_I_INDEX(user_lock));
} else {
return *((kmp_indirect_lock_t **)user_lock);
}
}
}
static void __kmp_init_indirect_lock(kmp_dyna_lock_t *lock,
kmp_dyna_lockseq_t seq) {
#if KMP_USE_ADAPTIVE_LOCKS
if (seq == lockseq_adaptive && !__kmp_cpuinfo.rtm) {
KMP_WARNING(AdaptiveNotSupported, "kmp_lockseq_t", "adaptive");
seq = lockseq_queuing;
}
#endif
#if KMP_USE_TSX
if (seq == lockseq_rtm && !__kmp_cpuinfo.rtm) {
seq = lockseq_queuing;
}
#endif
kmp_indirect_locktag_t tag = KMP_GET_I_TAG(seq);
kmp_indirect_lock_t *l =
__kmp_allocate_indirect_lock((void **)lock, __kmp_entry_gtid(), tag);
KMP_I_LOCK_FUNC(l, init)(l->lock);
KA_TRACE(
20, ("__kmp_init_indirect_lock: initialized indirect lock with type#%d\n",
seq));
}
static void __kmp_destroy_indirect_lock(kmp_dyna_lock_t *lock) {
kmp_uint32 gtid = __kmp_entry_gtid();
kmp_indirect_lock_t *l =
__kmp_lookup_indirect_lock((void **)lock, "omp_destroy_lock");
KMP_I_LOCK_FUNC(l, destroy)(l->lock);
kmp_indirect_locktag_t tag = l->type;
__kmp_acquire_lock(&__kmp_global_lock, gtid);
// Use the base lock's space to keep the pool chain.
l->lock->pool.next = (kmp_user_lock_p)__kmp_indirect_lock_pool[tag];
if (OMP_LOCK_T_SIZE < sizeof(void *)) {
l->lock->pool.index = KMP_EXTRACT_I_INDEX(lock);
}
__kmp_indirect_lock_pool[tag] = l;
__kmp_release_lock(&__kmp_global_lock, gtid);
}
static int __kmp_set_indirect_lock(kmp_dyna_lock_t *lock, kmp_int32 gtid) {
kmp_indirect_lock_t *l = KMP_LOOKUP_I_LOCK(lock);
return KMP_I_LOCK_FUNC(l, set)(l->lock, gtid);
}
static int __kmp_unset_indirect_lock(kmp_dyna_lock_t *lock, kmp_int32 gtid) {
kmp_indirect_lock_t *l = KMP_LOOKUP_I_LOCK(lock);
return KMP_I_LOCK_FUNC(l, unset)(l->lock, gtid);
}
static int __kmp_test_indirect_lock(kmp_dyna_lock_t *lock, kmp_int32 gtid) {
kmp_indirect_lock_t *l = KMP_LOOKUP_I_LOCK(lock);
return KMP_I_LOCK_FUNC(l, test)(l->lock, gtid);
}
static int __kmp_set_indirect_lock_with_checks(kmp_dyna_lock_t *lock,
kmp_int32 gtid) {
kmp_indirect_lock_t *l =
__kmp_lookup_indirect_lock((void **)lock, "omp_set_lock");
return KMP_I_LOCK_FUNC(l, set)(l->lock, gtid);
}
static int __kmp_unset_indirect_lock_with_checks(kmp_dyna_lock_t *lock,
kmp_int32 gtid) {
kmp_indirect_lock_t *l =
__kmp_lookup_indirect_lock((void **)lock, "omp_unset_lock");
return KMP_I_LOCK_FUNC(l, unset)(l->lock, gtid);
}
static int __kmp_test_indirect_lock_with_checks(kmp_dyna_lock_t *lock,
kmp_int32 gtid) {
kmp_indirect_lock_t *l =
__kmp_lookup_indirect_lock((void **)lock, "omp_test_lock");
return KMP_I_LOCK_FUNC(l, test)(l->lock, gtid);
}
kmp_dyna_lockseq_t __kmp_user_lock_seq = lockseq_queuing;
// This is used only in kmp_error.cpp when consistency checking is on.
kmp_int32 __kmp_get_user_lock_owner(kmp_user_lock_p lck, kmp_uint32 seq) {
switch (seq) {
case lockseq_tas:
case lockseq_nested_tas:
return __kmp_get_tas_lock_owner((kmp_tas_lock_t *)lck);
#if KMP_USE_FUTEX
case lockseq_futex:
case lockseq_nested_futex:
return __kmp_get_futex_lock_owner((kmp_futex_lock_t *)lck);
#endif
case lockseq_ticket:
case lockseq_nested_ticket:
return __kmp_get_ticket_lock_owner((kmp_ticket_lock_t *)lck);
case lockseq_queuing:
case lockseq_nested_queuing:
#if KMP_USE_ADAPTIVE_LOCKS
case lockseq_adaptive:
#endif
return __kmp_get_queuing_lock_owner((kmp_queuing_lock_t *)lck);
case lockseq_drdpa:
case lockseq_nested_drdpa:
return __kmp_get_drdpa_lock_owner((kmp_drdpa_lock_t *)lck);
default:
return 0;
}
}
// Initializes data for dynamic user locks.
void __kmp_init_dynamic_user_locks() {
// Initialize jump table for the lock functions
if (__kmp_env_consistency_check) {
__kmp_direct_set = direct_set_check;
__kmp_direct_unset = direct_unset_check;
__kmp_direct_test = direct_test_check;
__kmp_indirect_set = indirect_set_check;
__kmp_indirect_unset = indirect_unset_check;
__kmp_indirect_test = indirect_test_check;
} else {
__kmp_direct_set = direct_set;
__kmp_direct_unset = direct_unset;
__kmp_direct_test = direct_test;
__kmp_indirect_set = indirect_set;
__kmp_indirect_unset = indirect_unset;
__kmp_indirect_test = indirect_test;
}
// If the user locks have already been initialized, then return. Allow the
// switch between different KMP_CONSISTENCY_CHECK values, but do not allocate
// new lock tables if they have already been allocated.
if (__kmp_init_user_locks)
return;
// Initialize lock index table
__kmp_i_lock_table.size = KMP_I_LOCK_CHUNK;
__kmp_i_lock_table.table =
(kmp_indirect_lock_t **)__kmp_allocate(sizeof(kmp_indirect_lock_t *));
*(__kmp_i_lock_table.table) = (kmp_indirect_lock_t *)__kmp_allocate(
KMP_I_LOCK_CHUNK * sizeof(kmp_indirect_lock_t));
__kmp_i_lock_table.next = 0;
// Indirect lock size
__kmp_indirect_lock_size[locktag_ticket] = sizeof(kmp_ticket_lock_t);
__kmp_indirect_lock_size[locktag_queuing] = sizeof(kmp_queuing_lock_t);
#if KMP_USE_ADAPTIVE_LOCKS
__kmp_indirect_lock_size[locktag_adaptive] = sizeof(kmp_adaptive_lock_t);
#endif
__kmp_indirect_lock_size[locktag_drdpa] = sizeof(kmp_drdpa_lock_t);
#if KMP_USE_TSX
__kmp_indirect_lock_size[locktag_rtm] = sizeof(kmp_queuing_lock_t);
#endif
__kmp_indirect_lock_size[locktag_nested_tas] = sizeof(kmp_tas_lock_t);
#if KMP_USE_FUTEX
__kmp_indirect_lock_size[locktag_nested_futex] = sizeof(kmp_futex_lock_t);
#endif
__kmp_indirect_lock_size[locktag_nested_ticket] = sizeof(kmp_ticket_lock_t);
__kmp_indirect_lock_size[locktag_nested_queuing] = sizeof(kmp_queuing_lock_t);
__kmp_indirect_lock_size[locktag_nested_drdpa] = sizeof(kmp_drdpa_lock_t);
// Initialize lock accessor/modifier
#define fill_jumps(table, expand, sep) \
{ \
table[locktag##sep##ticket] = expand(ticket); \
table[locktag##sep##queuing] = expand(queuing); \
table[locktag##sep##drdpa] = expand(drdpa); \
}
#if KMP_USE_ADAPTIVE_LOCKS
#define fill_table(table, expand) \
{ \
fill_jumps(table, expand, _); \
table[locktag_adaptive] = expand(queuing); \
fill_jumps(table, expand, _nested_); \
}
#else
#define fill_table(table, expand) \
{ \
fill_jumps(table, expand, _); \
fill_jumps(table, expand, _nested_); \
}
#endif // KMP_USE_ADAPTIVE_LOCKS
#define expand(l) \
(void (*)(kmp_user_lock_p, const ident_t *)) __kmp_set_##l##_lock_location
fill_table(__kmp_indirect_set_location, expand);
#undef expand
#define expand(l) \
(void (*)(kmp_user_lock_p, kmp_lock_flags_t)) __kmp_set_##l##_lock_flags
fill_table(__kmp_indirect_set_flags, expand);
#undef expand
#define expand(l) \
(const ident_t *(*)(kmp_user_lock_p)) __kmp_get_##l##_lock_location
fill_table(__kmp_indirect_get_location, expand);
#undef expand
#define expand(l) \
(kmp_lock_flags_t(*)(kmp_user_lock_p)) __kmp_get_##l##_lock_flags
fill_table(__kmp_indirect_get_flags, expand);
#undef expand
__kmp_init_user_locks = TRUE;
}
// Clean up the lock table.
void __kmp_cleanup_indirect_user_locks() {
kmp_lock_index_t i;
int k;
// Clean up locks in the pools first (they were already destroyed before going
// into the pools).
for (k = 0; k < KMP_NUM_I_LOCKS; ++k) {
kmp_indirect_lock_t *l = __kmp_indirect_lock_pool[k];
while (l != NULL) {
kmp_indirect_lock_t *ll = l;
l = (kmp_indirect_lock_t *)l->lock->pool.next;
KA_TRACE(20, ("__kmp_cleanup_indirect_user_locks: freeing %p from pool\n",
ll));
__kmp_free(ll->lock);
ll->lock = NULL;
}
__kmp_indirect_lock_pool[k] = NULL;
}
// Clean up the remaining undestroyed locks.
for (i = 0; i < __kmp_i_lock_table.next; i++) {
kmp_indirect_lock_t *l = KMP_GET_I_LOCK(i);
if (l->lock != NULL) {
// Locks not destroyed explicitly need to be destroyed here.
KMP_I_LOCK_FUNC(l, destroy)(l->lock);
KA_TRACE(
20,
("__kmp_cleanup_indirect_user_locks: destroy/freeing %p from table\n",
l));
__kmp_free(l->lock);
}
}
// Free the table
for (i = 0; i < __kmp_i_lock_table.size / KMP_I_LOCK_CHUNK; i++)
__kmp_free(__kmp_i_lock_table.table[i]);
__kmp_free(__kmp_i_lock_table.table);
__kmp_init_user_locks = FALSE;
}
enum kmp_lock_kind __kmp_user_lock_kind = lk_default;
int __kmp_num_locks_in_block = 1; // FIXME - tune this value
#else // KMP_USE_DYNAMIC_LOCK
/* user locks
* They are implemented as a table of function pointers which are set to the
* lock functions of the appropriate kind, once that has been determined. */
enum kmp_lock_kind __kmp_user_lock_kind = lk_default;
size_t __kmp_base_user_lock_size = 0;
size_t __kmp_user_lock_size = 0;
kmp_int32 (*__kmp_get_user_lock_owner_)(kmp_user_lock_p lck) = NULL;
int (*__kmp_acquire_user_lock_with_checks_)(kmp_user_lock_p lck,
kmp_int32 gtid) = NULL;
int (*__kmp_test_user_lock_with_checks_)(kmp_user_lock_p lck,
kmp_int32 gtid) = NULL;
int (*__kmp_release_user_lock_with_checks_)(kmp_user_lock_p lck,
kmp_int32 gtid) = NULL;
void (*__kmp_init_user_lock_with_checks_)(kmp_user_lock_p lck) = NULL;
void (*__kmp_destroy_user_lock_)(kmp_user_lock_p lck) = NULL;
void (*__kmp_destroy_user_lock_with_checks_)(kmp_user_lock_p lck) = NULL;
int (*__kmp_acquire_nested_user_lock_with_checks_)(kmp_user_lock_p lck,
kmp_int32 gtid) = NULL;
int (*__kmp_test_nested_user_lock_with_checks_)(kmp_user_lock_p lck,
kmp_int32 gtid) = NULL;
int (*__kmp_release_nested_user_lock_with_checks_)(kmp_user_lock_p lck,
kmp_int32 gtid) = NULL;
void (*__kmp_init_nested_user_lock_with_checks_)(kmp_user_lock_p lck) = NULL;
void (*__kmp_destroy_nested_user_lock_with_checks_)(kmp_user_lock_p lck) = NULL;
int (*__kmp_is_user_lock_initialized_)(kmp_user_lock_p lck) = NULL;
const ident_t *(*__kmp_get_user_lock_location_)(kmp_user_lock_p lck) = NULL;
void (*__kmp_set_user_lock_location_)(kmp_user_lock_p lck,
const ident_t *loc) = NULL;
kmp_lock_flags_t (*__kmp_get_user_lock_flags_)(kmp_user_lock_p lck) = NULL;
void (*__kmp_set_user_lock_flags_)(kmp_user_lock_p lck,
kmp_lock_flags_t flags) = NULL;
void __kmp_set_user_lock_vptrs(kmp_lock_kind_t user_lock_kind) {
switch (user_lock_kind) {
case lk_default:
default:
KMP_ASSERT(0);
case lk_tas: {
__kmp_base_user_lock_size = sizeof(kmp_base_tas_lock_t);
__kmp_user_lock_size = sizeof(kmp_tas_lock_t);
__kmp_get_user_lock_owner_ =
(kmp_int32(*)(kmp_user_lock_p))(&__kmp_get_tas_lock_owner);
if (__kmp_env_consistency_check) {
KMP_BIND_USER_LOCK_WITH_CHECKS(tas);
KMP_BIND_NESTED_USER_LOCK_WITH_CHECKS(tas);
} else {
KMP_BIND_USER_LOCK(tas);
KMP_BIND_NESTED_USER_LOCK(tas);
}
__kmp_destroy_user_lock_ =
(void (*)(kmp_user_lock_p))(&__kmp_destroy_tas_lock);
__kmp_is_user_lock_initialized_ = (int (*)(kmp_user_lock_p))NULL;
__kmp_get_user_lock_location_ = (const ident_t *(*)(kmp_user_lock_p))NULL;
__kmp_set_user_lock_location_ =
(void (*)(kmp_user_lock_p, const ident_t *))NULL;
__kmp_get_user_lock_flags_ = (kmp_lock_flags_t(*)(kmp_user_lock_p))NULL;
__kmp_set_user_lock_flags_ =
(void (*)(kmp_user_lock_p, kmp_lock_flags_t))NULL;
} break;
#if KMP_USE_FUTEX
case lk_futex: {
__kmp_base_user_lock_size = sizeof(kmp_base_futex_lock_t);
__kmp_user_lock_size = sizeof(kmp_futex_lock_t);
__kmp_get_user_lock_owner_ =
(kmp_int32(*)(kmp_user_lock_p))(&__kmp_get_futex_lock_owner);
if (__kmp_env_consistency_check) {
KMP_BIND_USER_LOCK_WITH_CHECKS(futex);
KMP_BIND_NESTED_USER_LOCK_WITH_CHECKS(futex);
} else {
KMP_BIND_USER_LOCK(futex);
KMP_BIND_NESTED_USER_LOCK(futex);
}
__kmp_destroy_user_lock_ =
(void (*)(kmp_user_lock_p))(&__kmp_destroy_futex_lock);
__kmp_is_user_lock_initialized_ = (int (*)(kmp_user_lock_p))NULL;
__kmp_get_user_lock_location_ = (const ident_t *(*)(kmp_user_lock_p))NULL;
__kmp_set_user_lock_location_ =
(void (*)(kmp_user_lock_p, const ident_t *))NULL;
__kmp_get_user_lock_flags_ = (kmp_lock_flags_t(*)(kmp_user_lock_p))NULL;
__kmp_set_user_lock_flags_ =
(void (*)(kmp_user_lock_p, kmp_lock_flags_t))NULL;
} break;
#endif // KMP_USE_FUTEX
case lk_ticket: {
__kmp_base_user_lock_size = sizeof(kmp_base_ticket_lock_t);
__kmp_user_lock_size = sizeof(kmp_ticket_lock_t);
__kmp_get_user_lock_owner_ =
(kmp_int32(*)(kmp_user_lock_p))(&__kmp_get_ticket_lock_owner);
if (__kmp_env_consistency_check) {
KMP_BIND_USER_LOCK_WITH_CHECKS(ticket);
KMP_BIND_NESTED_USER_LOCK_WITH_CHECKS(ticket);
} else {
KMP_BIND_USER_LOCK(ticket);
KMP_BIND_NESTED_USER_LOCK(ticket);
}
__kmp_destroy_user_lock_ =
(void (*)(kmp_user_lock_p))(&__kmp_destroy_ticket_lock);
__kmp_is_user_lock_initialized_ =
(int (*)(kmp_user_lock_p))(&__kmp_is_ticket_lock_initialized);
__kmp_get_user_lock_location_ =
(const ident_t *(*)(kmp_user_lock_p))(&__kmp_get_ticket_lock_location);
__kmp_set_user_lock_location_ = (void (*)(
kmp_user_lock_p, const ident_t *))(&__kmp_set_ticket_lock_location);
__kmp_get_user_lock_flags_ =
(kmp_lock_flags_t(*)(kmp_user_lock_p))(&__kmp_get_ticket_lock_flags);
__kmp_set_user_lock_flags_ = (void (*)(kmp_user_lock_p, kmp_lock_flags_t))(
&__kmp_set_ticket_lock_flags);
} break;
case lk_queuing: {
__kmp_base_user_lock_size = sizeof(kmp_base_queuing_lock_t);
__kmp_user_lock_size = sizeof(kmp_queuing_lock_t);
__kmp_get_user_lock_owner_ =
(kmp_int32(*)(kmp_user_lock_p))(&__kmp_get_queuing_lock_owner);
if (__kmp_env_consistency_check) {
KMP_BIND_USER_LOCK_WITH_CHECKS(queuing);
KMP_BIND_NESTED_USER_LOCK_WITH_CHECKS(queuing);
} else {
KMP_BIND_USER_LOCK(queuing);
KMP_BIND_NESTED_USER_LOCK(queuing);
}
__kmp_destroy_user_lock_ =
(void (*)(kmp_user_lock_p))(&__kmp_destroy_queuing_lock);
__kmp_is_user_lock_initialized_ =
(int (*)(kmp_user_lock_p))(&__kmp_is_queuing_lock_initialized);
__kmp_get_user_lock_location_ =
(const ident_t *(*)(kmp_user_lock_p))(&__kmp_get_queuing_lock_location);
__kmp_set_user_lock_location_ = (void (*)(
kmp_user_lock_p, const ident_t *))(&__kmp_set_queuing_lock_location);
__kmp_get_user_lock_flags_ =
(kmp_lock_flags_t(*)(kmp_user_lock_p))(&__kmp_get_queuing_lock_flags);
__kmp_set_user_lock_flags_ = (void (*)(kmp_user_lock_p, kmp_lock_flags_t))(
&__kmp_set_queuing_lock_flags);
} break;
#if KMP_USE_ADAPTIVE_LOCKS
case lk_adaptive: {
__kmp_base_user_lock_size = sizeof(kmp_base_adaptive_lock_t);
__kmp_user_lock_size = sizeof(kmp_adaptive_lock_t);
__kmp_get_user_lock_owner_ =
(kmp_int32(*)(kmp_user_lock_p))(&__kmp_get_queuing_lock_owner);
if (__kmp_env_consistency_check) {
KMP_BIND_USER_LOCK_WITH_CHECKS(adaptive);
} else {
KMP_BIND_USER_LOCK(adaptive);
}
__kmp_destroy_user_lock_ =
(void (*)(kmp_user_lock_p))(&__kmp_destroy_adaptive_lock);
__kmp_is_user_lock_initialized_ =
(int (*)(kmp_user_lock_p))(&__kmp_is_queuing_lock_initialized);
__kmp_get_user_lock_location_ =
(const ident_t *(*)(kmp_user_lock_p))(&__kmp_get_queuing_lock_location);
__kmp_set_user_lock_location_ = (void (*)(
kmp_user_lock_p, const ident_t *))(&__kmp_set_queuing_lock_location);
__kmp_get_user_lock_flags_ =
(kmp_lock_flags_t(*)(kmp_user_lock_p))(&__kmp_get_queuing_lock_flags);
__kmp_set_user_lock_flags_ = (void (*)(kmp_user_lock_p, kmp_lock_flags_t))(
&__kmp_set_queuing_lock_flags);
} break;
#endif // KMP_USE_ADAPTIVE_LOCKS
case lk_drdpa: {
__kmp_base_user_lock_size = sizeof(kmp_base_drdpa_lock_t);
__kmp_user_lock_size = sizeof(kmp_drdpa_lock_t);
__kmp_get_user_lock_owner_ =
(kmp_int32(*)(kmp_user_lock_p))(&__kmp_get_drdpa_lock_owner);
if (__kmp_env_consistency_check) {
KMP_BIND_USER_LOCK_WITH_CHECKS(drdpa);
KMP_BIND_NESTED_USER_LOCK_WITH_CHECKS(drdpa);
} else {
KMP_BIND_USER_LOCK(drdpa);
KMP_BIND_NESTED_USER_LOCK(drdpa);
}
__kmp_destroy_user_lock_ =
(void (*)(kmp_user_lock_p))(&__kmp_destroy_drdpa_lock);
__kmp_is_user_lock_initialized_ =
(int (*)(kmp_user_lock_p))(&__kmp_is_drdpa_lock_initialized);
__kmp_get_user_lock_location_ =
(const ident_t *(*)(kmp_user_lock_p))(&__kmp_get_drdpa_lock_location);
__kmp_set_user_lock_location_ = (void (*)(
kmp_user_lock_p, const ident_t *))(&__kmp_set_drdpa_lock_location);
__kmp_get_user_lock_flags_ =
(kmp_lock_flags_t(*)(kmp_user_lock_p))(&__kmp_get_drdpa_lock_flags);
__kmp_set_user_lock_flags_ = (void (*)(kmp_user_lock_p, kmp_lock_flags_t))(
&__kmp_set_drdpa_lock_flags);
} break;
}
}
// ----------------------------------------------------------------------------
// User lock table & lock allocation
kmp_lock_table_t __kmp_user_lock_table = {1, 0, NULL};
kmp_user_lock_p __kmp_lock_pool = NULL;
// Lock block-allocation support.
kmp_block_of_locks *__kmp_lock_blocks = NULL;
int __kmp_num_locks_in_block = 1; // FIXME - tune this value
static kmp_lock_index_t __kmp_lock_table_insert(kmp_user_lock_p lck) {
// Assume that kmp_global_lock is held upon entry/exit.
kmp_lock_index_t index;
if (__kmp_user_lock_table.used >= __kmp_user_lock_table.allocated) {
kmp_lock_index_t size;
kmp_user_lock_p *table;
// Reallocate lock table.
if (__kmp_user_lock_table.allocated == 0) {
size = 1024;
} else {
size = __kmp_user_lock_table.allocated * 2;
}
table = (kmp_user_lock_p *)__kmp_allocate(sizeof(kmp_user_lock_p) * size);
KMP_MEMCPY(table + 1, __kmp_user_lock_table.table + 1,
sizeof(kmp_user_lock_p) * (__kmp_user_lock_table.used - 1));
table[0] = (kmp_user_lock_p)__kmp_user_lock_table.table;
// We cannot free the previous table now, since it may be in use by other
// threads. So save the pointer to the previous table in in the first
// element of the new table. All the tables will be organized into a list,
// and could be freed when library shutting down.
__kmp_user_lock_table.table = table;
__kmp_user_lock_table.allocated = size;
}
KMP_DEBUG_ASSERT(__kmp_user_lock_table.used <
__kmp_user_lock_table.allocated);
index = __kmp_user_lock_table.used;
__kmp_user_lock_table.table[index] = lck;
++__kmp_user_lock_table.used;
return index;
}
static kmp_user_lock_p __kmp_lock_block_allocate() {
// Assume that kmp_global_lock is held upon entry/exit.
static int last_index = 0;
if ((last_index >= __kmp_num_locks_in_block) || (__kmp_lock_blocks == NULL)) {
// Restart the index.
last_index = 0;
// Need to allocate a new block.
KMP_DEBUG_ASSERT(__kmp_user_lock_size > 0);
size_t space_for_locks = __kmp_user_lock_size * __kmp_num_locks_in_block;
char *buffer =
(char *)__kmp_allocate(space_for_locks + sizeof(kmp_block_of_locks));
// Set up the new block.
kmp_block_of_locks *new_block =
(kmp_block_of_locks *)(&buffer[space_for_locks]);
new_block->next_block = __kmp_lock_blocks;
new_block->locks = (void *)buffer;
// Publish the new block.
KMP_MB();
__kmp_lock_blocks = new_block;
}
kmp_user_lock_p ret = (kmp_user_lock_p)(&(
((char *)(__kmp_lock_blocks->locks))[last_index * __kmp_user_lock_size]));
last_index++;
return ret;
}
// Get memory for a lock. It may be freshly allocated memory or reused memory
// from lock pool.
kmp_user_lock_p __kmp_user_lock_allocate(void **user_lock, kmp_int32 gtid,
kmp_lock_flags_t flags) {
kmp_user_lock_p lck;
kmp_lock_index_t index;
KMP_DEBUG_ASSERT(user_lock);
__kmp_acquire_lock(&__kmp_global_lock, gtid);
if (__kmp_lock_pool == NULL) {
// Lock pool is empty. Allocate new memory.
// ANNOTATION: Found no good way to express the syncronisation
// between allocation and usage, so ignore the allocation
ANNOTATE_IGNORE_WRITES_BEGIN();
if (__kmp_num_locks_in_block <= 1) { // Tune this cutoff point.
lck = (kmp_user_lock_p)__kmp_allocate(__kmp_user_lock_size);
} else {
lck = __kmp_lock_block_allocate();
}
ANNOTATE_IGNORE_WRITES_END();
// Insert lock in the table so that it can be freed in __kmp_cleanup,
// and debugger has info on all allocated locks.
index = __kmp_lock_table_insert(lck);
} else {
// Pick up lock from pool.
lck = __kmp_lock_pool;
index = __kmp_lock_pool->pool.index;
__kmp_lock_pool = __kmp_lock_pool->pool.next;
}
// We could potentially differentiate between nested and regular locks
// here, and do the lock table lookup for regular locks only.
if (OMP_LOCK_T_SIZE < sizeof(void *)) {
*((kmp_lock_index_t *)user_lock) = index;
} else {
*((kmp_user_lock_p *)user_lock) = lck;
}
// mark the lock if it is critical section lock.
__kmp_set_user_lock_flags(lck, flags);
__kmp_release_lock(&__kmp_global_lock, gtid); // AC: TODO move this line upper
return lck;
}
// Put lock's memory to pool for reusing.
void __kmp_user_lock_free(void **user_lock, kmp_int32 gtid,
kmp_user_lock_p lck) {
KMP_DEBUG_ASSERT(user_lock != NULL);
KMP_DEBUG_ASSERT(lck != NULL);
__kmp_acquire_lock(&__kmp_global_lock, gtid);
lck->pool.next = __kmp_lock_pool;
__kmp_lock_pool = lck;
if (OMP_LOCK_T_SIZE < sizeof(void *)) {
kmp_lock_index_t index = *((kmp_lock_index_t *)user_lock);
KMP_DEBUG_ASSERT(0 < index && index <= __kmp_user_lock_table.used);
lck->pool.index = index;
}
__kmp_release_lock(&__kmp_global_lock, gtid);
}
kmp_user_lock_p __kmp_lookup_user_lock(void **user_lock, char const *func) {
kmp_user_lock_p lck = NULL;
if (__kmp_env_consistency_check) {
if (user_lock == NULL) {
KMP_FATAL(LockIsUninitialized, func);
}
}
if (OMP_LOCK_T_SIZE < sizeof(void *)) {
kmp_lock_index_t index = *((kmp_lock_index_t *)user_lock);
if (__kmp_env_consistency_check) {
if (!(0 < index && index < __kmp_user_lock_table.used)) {
KMP_FATAL(LockIsUninitialized, func);
}
}
KMP_DEBUG_ASSERT(0 < index && index < __kmp_user_lock_table.used);
KMP_DEBUG_ASSERT(__kmp_user_lock_size > 0);
lck = __kmp_user_lock_table.table[index];
} else {
lck = *((kmp_user_lock_p *)user_lock);
}
if (__kmp_env_consistency_check) {
if (lck == NULL) {
KMP_FATAL(LockIsUninitialized, func);
}
}
return lck;
}
void __kmp_cleanup_user_locks(void) {
// Reset lock pool. Don't worry about lock in the pool--we will free them when
// iterating through lock table (it includes all the locks, dead or alive).
__kmp_lock_pool = NULL;
#define IS_CRITICAL(lck) \
((__kmp_get_user_lock_flags_ != NULL) && \
((*__kmp_get_user_lock_flags_)(lck)&kmp_lf_critical_section))
// Loop through lock table, free all locks.
// Do not free item [0], it is reserved for lock tables list.
//
// FIXME - we are iterating through a list of (pointers to) objects of type
// union kmp_user_lock, but we have no way of knowing whether the base type is
// currently "pool" or whatever the global user lock type is.
//
// We are relying on the fact that for all of the user lock types
// (except "tas"), the first field in the lock struct is the "initialized"
// field, which is set to the address of the lock object itself when
// the lock is initialized. When the union is of type "pool", the
// first field is a pointer to the next object in the free list, which
// will not be the same address as the object itself.
//
// This means that the check (*__kmp_is_user_lock_initialized_)(lck) will fail
// for "pool" objects on the free list. This must happen as the "location"
// field of real user locks overlaps the "index" field of "pool" objects.
//
// It would be better to run through the free list, and remove all "pool"
// objects from the lock table before executing this loop. However,
// "pool" objects do not always have their index field set (only on
// lin_32e), and I don't want to search the lock table for the address
// of every "pool" object on the free list.
while (__kmp_user_lock_table.used > 1) {
const ident *loc;
// reduce __kmp_user_lock_table.used before freeing the lock,
// so that state of locks is consistent
kmp_user_lock_p lck =
__kmp_user_lock_table.table[--__kmp_user_lock_table.used];
if ((__kmp_is_user_lock_initialized_ != NULL) &&
(*__kmp_is_user_lock_initialized_)(lck)) {
// Issue a warning if: KMP_CONSISTENCY_CHECK AND lock is initialized AND
// it is NOT a critical section (user is not responsible for destroying
// criticals) AND we know source location to report.
if (__kmp_env_consistency_check && (!IS_CRITICAL(lck)) &&
((loc = __kmp_get_user_lock_location(lck)) != NULL) &&
(loc->psource != NULL)) {
kmp_str_loc_t str_loc = __kmp_str_loc_init(loc->psource, 0);
KMP_WARNING(CnsLockNotDestroyed, str_loc.file, str_loc.line);
__kmp_str_loc_free(&str_loc);
}
#ifdef KMP_DEBUG
if (IS_CRITICAL(lck)) {
KA_TRACE(
20,
("__kmp_cleanup_user_locks: free critical section lock %p (%p)\n",
lck, *(void **)lck));
} else {
KA_TRACE(20, ("__kmp_cleanup_user_locks: free lock %p (%p)\n", lck,
*(void **)lck));
}
#endif // KMP_DEBUG
// Cleanup internal lock dynamic resources (for drdpa locks particularly).
__kmp_destroy_user_lock(lck);
}
// Free the lock if block allocation of locks is not used.
if (__kmp_lock_blocks == NULL) {
__kmp_free(lck);
}
}
#undef IS_CRITICAL
// delete lock table(s).
kmp_user_lock_p *table_ptr = __kmp_user_lock_table.table;
__kmp_user_lock_table.table = NULL;
__kmp_user_lock_table.allocated = 0;
while (table_ptr != NULL) {
// In the first element we saved the pointer to the previous
// (smaller) lock table.
kmp_user_lock_p *next = (kmp_user_lock_p *)(table_ptr[0]);
__kmp_free(table_ptr);
table_ptr = next;
}
// Free buffers allocated for blocks of locks.
kmp_block_of_locks_t *block_ptr = __kmp_lock_blocks;
__kmp_lock_blocks = NULL;
while (block_ptr != NULL) {
kmp_block_of_locks_t *next = block_ptr->next_block;
__kmp_free(block_ptr->locks);
// *block_ptr itself was allocated at the end of the locks vector.
block_ptr = next;
}
TCW_4(__kmp_init_user_locks, FALSE);
}
#endif // KMP_USE_DYNAMIC_LOCK