| /* |
| * kmp_lock.cpp -- lock-related functions |
| */ |
| |
| //===----------------------------------------------------------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is dual licensed under the MIT and the University of Illinois Open |
| // Source Licenses. See LICENSE.txt for details. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include <stddef.h> |
| #include <atomic> |
| |
| #include "kmp.h" |
| #include "kmp_i18n.h" |
| #include "kmp_io.h" |
| #include "kmp_itt.h" |
| #include "kmp_lock.h" |
| #include "kmp_wait_release.h" |
| #include "kmp_wrapper_getpid.h" |
| |
| #include "tsan_annotations.h" |
| |
| #if KMP_USE_FUTEX |
| #include <sys/syscall.h> |
| #include <unistd.h> |
| // We should really include <futex.h>, but that causes compatibility problems on |
| // different Linux* OS distributions that either require that you include (or |
| // break when you try to include) <pci/types.h>. Since all we need is the two |
| // macros below (which are part of the kernel ABI, so can't change) we just |
| // define the constants here and don't include <futex.h> |
| #ifndef FUTEX_WAIT |
| #define FUTEX_WAIT 0 |
| #endif |
| #ifndef FUTEX_WAKE |
| #define FUTEX_WAKE 1 |
| #endif |
| #endif |
| |
| /* Implement spin locks for internal library use. */ |
| /* The algorithm implemented is Lamport's bakery lock [1974]. */ |
| |
| void __kmp_validate_locks(void) { |
| int i; |
| kmp_uint32 x, y; |
| |
| /* Check to make sure unsigned arithmetic does wraps properly */ |
| x = ~((kmp_uint32)0) - 2; |
| y = x - 2; |
| |
| for (i = 0; i < 8; ++i, ++x, ++y) { |
| kmp_uint32 z = (x - y); |
| KMP_ASSERT(z == 2); |
| } |
| |
| KMP_ASSERT(offsetof(kmp_base_queuing_lock, tail_id) % 8 == 0); |
| } |
| |
| /* ------------------------------------------------------------------------ */ |
| /* test and set locks */ |
| |
| // For the non-nested locks, we can only assume that the first 4 bytes were |
| // allocated, since gcc only allocates 4 bytes for omp_lock_t, and the Intel |
| // compiler only allocates a 4 byte pointer on IA-32 architecture. On |
| // Windows* OS on Intel(R) 64, we can assume that all 8 bytes were allocated. |
| // |
| // gcc reserves >= 8 bytes for nested locks, so we can assume that the |
| // entire 8 bytes were allocated for nested locks on all 64-bit platforms. |
| |
| static kmp_int32 __kmp_get_tas_lock_owner(kmp_tas_lock_t *lck) { |
| return KMP_LOCK_STRIP(KMP_ATOMIC_LD_RLX(&lck->lk.poll)) - 1; |
| } |
| |
| static inline bool __kmp_is_tas_lock_nestable(kmp_tas_lock_t *lck) { |
| return lck->lk.depth_locked != -1; |
| } |
| |
| __forceinline static int |
| __kmp_acquire_tas_lock_timed_template(kmp_tas_lock_t *lck, kmp_int32 gtid) { |
| KMP_MB(); |
| |
| #ifdef USE_LOCK_PROFILE |
| kmp_uint32 curr = KMP_LOCK_STRIP(lck->lk.poll); |
| if ((curr != 0) && (curr != gtid + 1)) |
| __kmp_printf("LOCK CONTENTION: %p\n", lck); |
| /* else __kmp_printf( "." );*/ |
| #endif /* USE_LOCK_PROFILE */ |
| |
| kmp_int32 tas_free = KMP_LOCK_FREE(tas); |
| kmp_int32 tas_busy = KMP_LOCK_BUSY(gtid + 1, tas); |
| |
| if (KMP_ATOMIC_LD_RLX(&lck->lk.poll) == tas_free && |
| __kmp_atomic_compare_store_acq(&lck->lk.poll, tas_free, tas_busy)) { |
| KMP_FSYNC_ACQUIRED(lck); |
| return KMP_LOCK_ACQUIRED_FIRST; |
| } |
| |
| kmp_uint32 spins; |
| KMP_FSYNC_PREPARE(lck); |
| KMP_INIT_YIELD(spins); |
| if (TCR_4(__kmp_nth) > (__kmp_avail_proc ? __kmp_avail_proc : __kmp_xproc)) { |
| KMP_YIELD(TRUE); |
| } else { |
| KMP_YIELD_SPIN(spins); |
| } |
| |
| kmp_backoff_t backoff = __kmp_spin_backoff_params; |
| while (KMP_ATOMIC_LD_RLX(&lck->lk.poll) != tas_free || |
| !__kmp_atomic_compare_store_acq(&lck->lk.poll, tas_free, tas_busy)) { |
| __kmp_spin_backoff(&backoff); |
| if (TCR_4(__kmp_nth) > |
| (__kmp_avail_proc ? __kmp_avail_proc : __kmp_xproc)) { |
| KMP_YIELD(TRUE); |
| } else { |
| KMP_YIELD_SPIN(spins); |
| } |
| } |
| KMP_FSYNC_ACQUIRED(lck); |
| return KMP_LOCK_ACQUIRED_FIRST; |
| } |
| |
| int __kmp_acquire_tas_lock(kmp_tas_lock_t *lck, kmp_int32 gtid) { |
| int retval = __kmp_acquire_tas_lock_timed_template(lck, gtid); |
| ANNOTATE_TAS_ACQUIRED(lck); |
| return retval; |
| } |
| |
| static int __kmp_acquire_tas_lock_with_checks(kmp_tas_lock_t *lck, |
| kmp_int32 gtid) { |
| char const *const func = "omp_set_lock"; |
| if ((sizeof(kmp_tas_lock_t) <= OMP_LOCK_T_SIZE) && |
| __kmp_is_tas_lock_nestable(lck)) { |
| KMP_FATAL(LockNestableUsedAsSimple, func); |
| } |
| if ((gtid >= 0) && (__kmp_get_tas_lock_owner(lck) == gtid)) { |
| KMP_FATAL(LockIsAlreadyOwned, func); |
| } |
| return __kmp_acquire_tas_lock(lck, gtid); |
| } |
| |
| int __kmp_test_tas_lock(kmp_tas_lock_t *lck, kmp_int32 gtid) { |
| kmp_int32 tas_free = KMP_LOCK_FREE(tas); |
| kmp_int32 tas_busy = KMP_LOCK_BUSY(gtid + 1, tas); |
| if (KMP_ATOMIC_LD_RLX(&lck->lk.poll) == tas_free && |
| __kmp_atomic_compare_store_acq(&lck->lk.poll, tas_free, tas_busy)) { |
| KMP_FSYNC_ACQUIRED(lck); |
| return TRUE; |
| } |
| return FALSE; |
| } |
| |
| static int __kmp_test_tas_lock_with_checks(kmp_tas_lock_t *lck, |
| kmp_int32 gtid) { |
| char const *const func = "omp_test_lock"; |
| if ((sizeof(kmp_tas_lock_t) <= OMP_LOCK_T_SIZE) && |
| __kmp_is_tas_lock_nestable(lck)) { |
| KMP_FATAL(LockNestableUsedAsSimple, func); |
| } |
| return __kmp_test_tas_lock(lck, gtid); |
| } |
| |
| int __kmp_release_tas_lock(kmp_tas_lock_t *lck, kmp_int32 gtid) { |
| KMP_MB(); /* Flush all pending memory write invalidates. */ |
| |
| KMP_FSYNC_RELEASING(lck); |
| ANNOTATE_TAS_RELEASED(lck); |
| KMP_ATOMIC_ST_REL(&lck->lk.poll, KMP_LOCK_FREE(tas)); |
| KMP_MB(); /* Flush all pending memory write invalidates. */ |
| |
| KMP_YIELD(TCR_4(__kmp_nth) > |
| (__kmp_avail_proc ? __kmp_avail_proc : __kmp_xproc)); |
| return KMP_LOCK_RELEASED; |
| } |
| |
| static int __kmp_release_tas_lock_with_checks(kmp_tas_lock_t *lck, |
| kmp_int32 gtid) { |
| char const *const func = "omp_unset_lock"; |
| KMP_MB(); /* in case another processor initialized lock */ |
| if ((sizeof(kmp_tas_lock_t) <= OMP_LOCK_T_SIZE) && |
| __kmp_is_tas_lock_nestable(lck)) { |
| KMP_FATAL(LockNestableUsedAsSimple, func); |
| } |
| if (__kmp_get_tas_lock_owner(lck) == -1) { |
| KMP_FATAL(LockUnsettingFree, func); |
| } |
| if ((gtid >= 0) && (__kmp_get_tas_lock_owner(lck) >= 0) && |
| (__kmp_get_tas_lock_owner(lck) != gtid)) { |
| KMP_FATAL(LockUnsettingSetByAnother, func); |
| } |
| return __kmp_release_tas_lock(lck, gtid); |
| } |
| |
| void __kmp_init_tas_lock(kmp_tas_lock_t *lck) { |
| lck->lk.poll = KMP_LOCK_FREE(tas); |
| } |
| |
| static void __kmp_init_tas_lock_with_checks(kmp_tas_lock_t *lck) { |
| __kmp_init_tas_lock(lck); |
| } |
| |
| void __kmp_destroy_tas_lock(kmp_tas_lock_t *lck) { lck->lk.poll = 0; } |
| |
| static void __kmp_destroy_tas_lock_with_checks(kmp_tas_lock_t *lck) { |
| char const *const func = "omp_destroy_lock"; |
| if ((sizeof(kmp_tas_lock_t) <= OMP_LOCK_T_SIZE) && |
| __kmp_is_tas_lock_nestable(lck)) { |
| KMP_FATAL(LockNestableUsedAsSimple, func); |
| } |
| if (__kmp_get_tas_lock_owner(lck) != -1) { |
| KMP_FATAL(LockStillOwned, func); |
| } |
| __kmp_destroy_tas_lock(lck); |
| } |
| |
| // nested test and set locks |
| |
| int __kmp_acquire_nested_tas_lock(kmp_tas_lock_t *lck, kmp_int32 gtid) { |
| KMP_DEBUG_ASSERT(gtid >= 0); |
| |
| if (__kmp_get_tas_lock_owner(lck) == gtid) { |
| lck->lk.depth_locked += 1; |
| return KMP_LOCK_ACQUIRED_NEXT; |
| } else { |
| __kmp_acquire_tas_lock_timed_template(lck, gtid); |
| ANNOTATE_TAS_ACQUIRED(lck); |
| lck->lk.depth_locked = 1; |
| return KMP_LOCK_ACQUIRED_FIRST; |
| } |
| } |
| |
| static int __kmp_acquire_nested_tas_lock_with_checks(kmp_tas_lock_t *lck, |
| kmp_int32 gtid) { |
| char const *const func = "omp_set_nest_lock"; |
| if (!__kmp_is_tas_lock_nestable(lck)) { |
| KMP_FATAL(LockSimpleUsedAsNestable, func); |
| } |
| return __kmp_acquire_nested_tas_lock(lck, gtid); |
| } |
| |
| int __kmp_test_nested_tas_lock(kmp_tas_lock_t *lck, kmp_int32 gtid) { |
| int retval; |
| |
| KMP_DEBUG_ASSERT(gtid >= 0); |
| |
| if (__kmp_get_tas_lock_owner(lck) == gtid) { |
| retval = ++lck->lk.depth_locked; |
| } else if (!__kmp_test_tas_lock(lck, gtid)) { |
| retval = 0; |
| } else { |
| KMP_MB(); |
| retval = lck->lk.depth_locked = 1; |
| } |
| return retval; |
| } |
| |
| static int __kmp_test_nested_tas_lock_with_checks(kmp_tas_lock_t *lck, |
| kmp_int32 gtid) { |
| char const *const func = "omp_test_nest_lock"; |
| if (!__kmp_is_tas_lock_nestable(lck)) { |
| KMP_FATAL(LockSimpleUsedAsNestable, func); |
| } |
| return __kmp_test_nested_tas_lock(lck, gtid); |
| } |
| |
| int __kmp_release_nested_tas_lock(kmp_tas_lock_t *lck, kmp_int32 gtid) { |
| KMP_DEBUG_ASSERT(gtid >= 0); |
| |
| KMP_MB(); |
| if (--(lck->lk.depth_locked) == 0) { |
| __kmp_release_tas_lock(lck, gtid); |
| return KMP_LOCK_RELEASED; |
| } |
| return KMP_LOCK_STILL_HELD; |
| } |
| |
| static int __kmp_release_nested_tas_lock_with_checks(kmp_tas_lock_t *lck, |
| kmp_int32 gtid) { |
| char const *const func = "omp_unset_nest_lock"; |
| KMP_MB(); /* in case another processor initialized lock */ |
| if (!__kmp_is_tas_lock_nestable(lck)) { |
| KMP_FATAL(LockSimpleUsedAsNestable, func); |
| } |
| if (__kmp_get_tas_lock_owner(lck) == -1) { |
| KMP_FATAL(LockUnsettingFree, func); |
| } |
| if (__kmp_get_tas_lock_owner(lck) != gtid) { |
| KMP_FATAL(LockUnsettingSetByAnother, func); |
| } |
| return __kmp_release_nested_tas_lock(lck, gtid); |
| } |
| |
| void __kmp_init_nested_tas_lock(kmp_tas_lock_t *lck) { |
| __kmp_init_tas_lock(lck); |
| lck->lk.depth_locked = 0; // >= 0 for nestable locks, -1 for simple locks |
| } |
| |
| static void __kmp_init_nested_tas_lock_with_checks(kmp_tas_lock_t *lck) { |
| __kmp_init_nested_tas_lock(lck); |
| } |
| |
| void __kmp_destroy_nested_tas_lock(kmp_tas_lock_t *lck) { |
| __kmp_destroy_tas_lock(lck); |
| lck->lk.depth_locked = 0; |
| } |
| |
| static void __kmp_destroy_nested_tas_lock_with_checks(kmp_tas_lock_t *lck) { |
| char const *const func = "omp_destroy_nest_lock"; |
| if (!__kmp_is_tas_lock_nestable(lck)) { |
| KMP_FATAL(LockSimpleUsedAsNestable, func); |
| } |
| if (__kmp_get_tas_lock_owner(lck) != -1) { |
| KMP_FATAL(LockStillOwned, func); |
| } |
| __kmp_destroy_nested_tas_lock(lck); |
| } |
| |
| #if KMP_USE_FUTEX |
| |
| /* ------------------------------------------------------------------------ */ |
| /* futex locks */ |
| |
| // futex locks are really just test and set locks, with a different method |
| // of handling contention. They take the same amount of space as test and |
| // set locks, and are allocated the same way (i.e. use the area allocated by |
| // the compiler for non-nested locks / allocate nested locks on the heap). |
| |
| static kmp_int32 __kmp_get_futex_lock_owner(kmp_futex_lock_t *lck) { |
| return KMP_LOCK_STRIP((TCR_4(lck->lk.poll) >> 1)) - 1; |
| } |
| |
| static inline bool __kmp_is_futex_lock_nestable(kmp_futex_lock_t *lck) { |
| return lck->lk.depth_locked != -1; |
| } |
| |
| __forceinline static int |
| __kmp_acquire_futex_lock_timed_template(kmp_futex_lock_t *lck, kmp_int32 gtid) { |
| kmp_int32 gtid_code = (gtid + 1) << 1; |
| |
| KMP_MB(); |
| |
| #ifdef USE_LOCK_PROFILE |
| kmp_uint32 curr = KMP_LOCK_STRIP(TCR_4(lck->lk.poll)); |
| if ((curr != 0) && (curr != gtid_code)) |
| __kmp_printf("LOCK CONTENTION: %p\n", lck); |
| /* else __kmp_printf( "." );*/ |
| #endif /* USE_LOCK_PROFILE */ |
| |
| KMP_FSYNC_PREPARE(lck); |
| KA_TRACE(1000, ("__kmp_acquire_futex_lock: lck:%p(0x%x), T#%d entering\n", |
| lck, lck->lk.poll, gtid)); |
| |
| kmp_int32 poll_val; |
| |
| while ((poll_val = KMP_COMPARE_AND_STORE_RET32( |
| &(lck->lk.poll), KMP_LOCK_FREE(futex), |
| KMP_LOCK_BUSY(gtid_code, futex))) != KMP_LOCK_FREE(futex)) { |
| |
| kmp_int32 cond = KMP_LOCK_STRIP(poll_val) & 1; |
| KA_TRACE( |
| 1000, |
| ("__kmp_acquire_futex_lock: lck:%p, T#%d poll_val = 0x%x cond = 0x%x\n", |
| lck, gtid, poll_val, cond)); |
| |
| // NOTE: if you try to use the following condition for this branch |
| // |
| // if ( poll_val & 1 == 0 ) |
| // |
| // Then the 12.0 compiler has a bug where the following block will |
| // always be skipped, regardless of the value of the LSB of poll_val. |
| if (!cond) { |
| // Try to set the lsb in the poll to indicate to the owner |
| // thread that they need to wake this thread up. |
| if (!KMP_COMPARE_AND_STORE_REL32(&(lck->lk.poll), poll_val, |
| poll_val | KMP_LOCK_BUSY(1, futex))) { |
| KA_TRACE( |
| 1000, |
| ("__kmp_acquire_futex_lock: lck:%p(0x%x), T#%d can't set bit 0\n", |
| lck, lck->lk.poll, gtid)); |
| continue; |
| } |
| poll_val |= KMP_LOCK_BUSY(1, futex); |
| |
| KA_TRACE(1000, |
| ("__kmp_acquire_futex_lock: lck:%p(0x%x), T#%d bit 0 set\n", lck, |
| lck->lk.poll, gtid)); |
| } |
| |
| KA_TRACE( |
| 1000, |
| ("__kmp_acquire_futex_lock: lck:%p, T#%d before futex_wait(0x%x)\n", |
| lck, gtid, poll_val)); |
| |
| kmp_int32 rc; |
| if ((rc = syscall(__NR_futex, &(lck->lk.poll), FUTEX_WAIT, poll_val, NULL, |
| NULL, 0)) != 0) { |
| KA_TRACE(1000, ("__kmp_acquire_futex_lock: lck:%p, T#%d futex_wait(0x%x) " |
| "failed (rc=%d errno=%d)\n", |
| lck, gtid, poll_val, rc, errno)); |
| continue; |
| } |
| |
| KA_TRACE(1000, |
| ("__kmp_acquire_futex_lock: lck:%p, T#%d after futex_wait(0x%x)\n", |
| lck, gtid, poll_val)); |
| // This thread has now done a successful futex wait call and was entered on |
| // the OS futex queue. We must now perform a futex wake call when releasing |
| // the lock, as we have no idea how many other threads are in the queue. |
| gtid_code |= 1; |
| } |
| |
| KMP_FSYNC_ACQUIRED(lck); |
| KA_TRACE(1000, ("__kmp_acquire_futex_lock: lck:%p(0x%x), T#%d exiting\n", lck, |
| lck->lk.poll, gtid)); |
| return KMP_LOCK_ACQUIRED_FIRST; |
| } |
| |
| int __kmp_acquire_futex_lock(kmp_futex_lock_t *lck, kmp_int32 gtid) { |
| int retval = __kmp_acquire_futex_lock_timed_template(lck, gtid); |
| ANNOTATE_FUTEX_ACQUIRED(lck); |
| return retval; |
| } |
| |
| static int __kmp_acquire_futex_lock_with_checks(kmp_futex_lock_t *lck, |
| kmp_int32 gtid) { |
| char const *const func = "omp_set_lock"; |
| if ((sizeof(kmp_futex_lock_t) <= OMP_LOCK_T_SIZE) && |
| __kmp_is_futex_lock_nestable(lck)) { |
| KMP_FATAL(LockNestableUsedAsSimple, func); |
| } |
| if ((gtid >= 0) && (__kmp_get_futex_lock_owner(lck) == gtid)) { |
| KMP_FATAL(LockIsAlreadyOwned, func); |
| } |
| return __kmp_acquire_futex_lock(lck, gtid); |
| } |
| |
| int __kmp_test_futex_lock(kmp_futex_lock_t *lck, kmp_int32 gtid) { |
| if (KMP_COMPARE_AND_STORE_ACQ32(&(lck->lk.poll), KMP_LOCK_FREE(futex), |
| KMP_LOCK_BUSY((gtid + 1) << 1, futex))) { |
| KMP_FSYNC_ACQUIRED(lck); |
| return TRUE; |
| } |
| return FALSE; |
| } |
| |
| static int __kmp_test_futex_lock_with_checks(kmp_futex_lock_t *lck, |
| kmp_int32 gtid) { |
| char const *const func = "omp_test_lock"; |
| if ((sizeof(kmp_futex_lock_t) <= OMP_LOCK_T_SIZE) && |
| __kmp_is_futex_lock_nestable(lck)) { |
| KMP_FATAL(LockNestableUsedAsSimple, func); |
| } |
| return __kmp_test_futex_lock(lck, gtid); |
| } |
| |
| int __kmp_release_futex_lock(kmp_futex_lock_t *lck, kmp_int32 gtid) { |
| KMP_MB(); /* Flush all pending memory write invalidates. */ |
| |
| KA_TRACE(1000, ("__kmp_release_futex_lock: lck:%p(0x%x), T#%d entering\n", |
| lck, lck->lk.poll, gtid)); |
| |
| KMP_FSYNC_RELEASING(lck); |
| ANNOTATE_FUTEX_RELEASED(lck); |
| |
| kmp_int32 poll_val = KMP_XCHG_FIXED32(&(lck->lk.poll), KMP_LOCK_FREE(futex)); |
| |
| KA_TRACE(1000, |
| ("__kmp_release_futex_lock: lck:%p, T#%d released poll_val = 0x%x\n", |
| lck, gtid, poll_val)); |
| |
| if (KMP_LOCK_STRIP(poll_val) & 1) { |
| KA_TRACE(1000, |
| ("__kmp_release_futex_lock: lck:%p, T#%d futex_wake 1 thread\n", |
| lck, gtid)); |
| syscall(__NR_futex, &(lck->lk.poll), FUTEX_WAKE, KMP_LOCK_BUSY(1, futex), |
| NULL, NULL, 0); |
| } |
| |
| KMP_MB(); /* Flush all pending memory write invalidates. */ |
| |
| KA_TRACE(1000, ("__kmp_release_futex_lock: lck:%p(0x%x), T#%d exiting\n", lck, |
| lck->lk.poll, gtid)); |
| |
| KMP_YIELD(TCR_4(__kmp_nth) > |
| (__kmp_avail_proc ? __kmp_avail_proc : __kmp_xproc)); |
| return KMP_LOCK_RELEASED; |
| } |
| |
| static int __kmp_release_futex_lock_with_checks(kmp_futex_lock_t *lck, |
| kmp_int32 gtid) { |
| char const *const func = "omp_unset_lock"; |
| KMP_MB(); /* in case another processor initialized lock */ |
| if ((sizeof(kmp_futex_lock_t) <= OMP_LOCK_T_SIZE) && |
| __kmp_is_futex_lock_nestable(lck)) { |
| KMP_FATAL(LockNestableUsedAsSimple, func); |
| } |
| if (__kmp_get_futex_lock_owner(lck) == -1) { |
| KMP_FATAL(LockUnsettingFree, func); |
| } |
| if ((gtid >= 0) && (__kmp_get_futex_lock_owner(lck) >= 0) && |
| (__kmp_get_futex_lock_owner(lck) != gtid)) { |
| KMP_FATAL(LockUnsettingSetByAnother, func); |
| } |
| return __kmp_release_futex_lock(lck, gtid); |
| } |
| |
| void __kmp_init_futex_lock(kmp_futex_lock_t *lck) { |
| TCW_4(lck->lk.poll, KMP_LOCK_FREE(futex)); |
| } |
| |
| static void __kmp_init_futex_lock_with_checks(kmp_futex_lock_t *lck) { |
| __kmp_init_futex_lock(lck); |
| } |
| |
| void __kmp_destroy_futex_lock(kmp_futex_lock_t *lck) { lck->lk.poll = 0; } |
| |
| static void __kmp_destroy_futex_lock_with_checks(kmp_futex_lock_t *lck) { |
| char const *const func = "omp_destroy_lock"; |
| if ((sizeof(kmp_futex_lock_t) <= OMP_LOCK_T_SIZE) && |
| __kmp_is_futex_lock_nestable(lck)) { |
| KMP_FATAL(LockNestableUsedAsSimple, func); |
| } |
| if (__kmp_get_futex_lock_owner(lck) != -1) { |
| KMP_FATAL(LockStillOwned, func); |
| } |
| __kmp_destroy_futex_lock(lck); |
| } |
| |
| // nested futex locks |
| |
| int __kmp_acquire_nested_futex_lock(kmp_futex_lock_t *lck, kmp_int32 gtid) { |
| KMP_DEBUG_ASSERT(gtid >= 0); |
| |
| if (__kmp_get_futex_lock_owner(lck) == gtid) { |
| lck->lk.depth_locked += 1; |
| return KMP_LOCK_ACQUIRED_NEXT; |
| } else { |
| __kmp_acquire_futex_lock_timed_template(lck, gtid); |
| ANNOTATE_FUTEX_ACQUIRED(lck); |
| lck->lk.depth_locked = 1; |
| return KMP_LOCK_ACQUIRED_FIRST; |
| } |
| } |
| |
| static int __kmp_acquire_nested_futex_lock_with_checks(kmp_futex_lock_t *lck, |
| kmp_int32 gtid) { |
| char const *const func = "omp_set_nest_lock"; |
| if (!__kmp_is_futex_lock_nestable(lck)) { |
| KMP_FATAL(LockSimpleUsedAsNestable, func); |
| } |
| return __kmp_acquire_nested_futex_lock(lck, gtid); |
| } |
| |
| int __kmp_test_nested_futex_lock(kmp_futex_lock_t *lck, kmp_int32 gtid) { |
| int retval; |
| |
| KMP_DEBUG_ASSERT(gtid >= 0); |
| |
| if (__kmp_get_futex_lock_owner(lck) == gtid) { |
| retval = ++lck->lk.depth_locked; |
| } else if (!__kmp_test_futex_lock(lck, gtid)) { |
| retval = 0; |
| } else { |
| KMP_MB(); |
| retval = lck->lk.depth_locked = 1; |
| } |
| return retval; |
| } |
| |
| static int __kmp_test_nested_futex_lock_with_checks(kmp_futex_lock_t *lck, |
| kmp_int32 gtid) { |
| char const *const func = "omp_test_nest_lock"; |
| if (!__kmp_is_futex_lock_nestable(lck)) { |
| KMP_FATAL(LockSimpleUsedAsNestable, func); |
| } |
| return __kmp_test_nested_futex_lock(lck, gtid); |
| } |
| |
| int __kmp_release_nested_futex_lock(kmp_futex_lock_t *lck, kmp_int32 gtid) { |
| KMP_DEBUG_ASSERT(gtid >= 0); |
| |
| KMP_MB(); |
| if (--(lck->lk.depth_locked) == 0) { |
| __kmp_release_futex_lock(lck, gtid); |
| return KMP_LOCK_RELEASED; |
| } |
| return KMP_LOCK_STILL_HELD; |
| } |
| |
| static int __kmp_release_nested_futex_lock_with_checks(kmp_futex_lock_t *lck, |
| kmp_int32 gtid) { |
| char const *const func = "omp_unset_nest_lock"; |
| KMP_MB(); /* in case another processor initialized lock */ |
| if (!__kmp_is_futex_lock_nestable(lck)) { |
| KMP_FATAL(LockSimpleUsedAsNestable, func); |
| } |
| if (__kmp_get_futex_lock_owner(lck) == -1) { |
| KMP_FATAL(LockUnsettingFree, func); |
| } |
| if (__kmp_get_futex_lock_owner(lck) != gtid) { |
| KMP_FATAL(LockUnsettingSetByAnother, func); |
| } |
| return __kmp_release_nested_futex_lock(lck, gtid); |
| } |
| |
| void __kmp_init_nested_futex_lock(kmp_futex_lock_t *lck) { |
| __kmp_init_futex_lock(lck); |
| lck->lk.depth_locked = 0; // >= 0 for nestable locks, -1 for simple locks |
| } |
| |
| static void __kmp_init_nested_futex_lock_with_checks(kmp_futex_lock_t *lck) { |
| __kmp_init_nested_futex_lock(lck); |
| } |
| |
| void __kmp_destroy_nested_futex_lock(kmp_futex_lock_t *lck) { |
| __kmp_destroy_futex_lock(lck); |
| lck->lk.depth_locked = 0; |
| } |
| |
| static void __kmp_destroy_nested_futex_lock_with_checks(kmp_futex_lock_t *lck) { |
| char const *const func = "omp_destroy_nest_lock"; |
| if (!__kmp_is_futex_lock_nestable(lck)) { |
| KMP_FATAL(LockSimpleUsedAsNestable, func); |
| } |
| if (__kmp_get_futex_lock_owner(lck) != -1) { |
| KMP_FATAL(LockStillOwned, func); |
| } |
| __kmp_destroy_nested_futex_lock(lck); |
| } |
| |
| #endif // KMP_USE_FUTEX |
| |
| /* ------------------------------------------------------------------------ */ |
| /* ticket (bakery) locks */ |
| |
| static kmp_int32 __kmp_get_ticket_lock_owner(kmp_ticket_lock_t *lck) { |
| return std::atomic_load_explicit(&lck->lk.owner_id, |
| std::memory_order_relaxed) - |
| 1; |
| } |
| |
| static inline bool __kmp_is_ticket_lock_nestable(kmp_ticket_lock_t *lck) { |
| return std::atomic_load_explicit(&lck->lk.depth_locked, |
| std::memory_order_relaxed) != -1; |
| } |
| |
| static kmp_uint32 __kmp_bakery_check(void *now_serving, kmp_uint32 my_ticket) { |
| return std::atomic_load_explicit((std::atomic<unsigned> *)now_serving, |
| std::memory_order_acquire) == my_ticket; |
| } |
| |
| __forceinline static int |
| __kmp_acquire_ticket_lock_timed_template(kmp_ticket_lock_t *lck, |
| kmp_int32 gtid) { |
| kmp_uint32 my_ticket = std::atomic_fetch_add_explicit( |
| &lck->lk.next_ticket, 1U, std::memory_order_relaxed); |
| |
| #ifdef USE_LOCK_PROFILE |
| if (std::atomic_load_explicit(&lck->lk.now_serving, |
| std::memory_order_relaxed) != my_ticket) |
| __kmp_printf("LOCK CONTENTION: %p\n", lck); |
| /* else __kmp_printf( "." );*/ |
| #endif /* USE_LOCK_PROFILE */ |
| |
| if (std::atomic_load_explicit(&lck->lk.now_serving, |
| std::memory_order_acquire) == my_ticket) { |
| return KMP_LOCK_ACQUIRED_FIRST; |
| } |
| KMP_WAIT_YIELD_PTR(&lck->lk.now_serving, my_ticket, __kmp_bakery_check, lck); |
| return KMP_LOCK_ACQUIRED_FIRST; |
| } |
| |
| int __kmp_acquire_ticket_lock(kmp_ticket_lock_t *lck, kmp_int32 gtid) { |
| int retval = __kmp_acquire_ticket_lock_timed_template(lck, gtid); |
| ANNOTATE_TICKET_ACQUIRED(lck); |
| return retval; |
| } |
| |
| static int __kmp_acquire_ticket_lock_with_checks(kmp_ticket_lock_t *lck, |
| kmp_int32 gtid) { |
| char const *const func = "omp_set_lock"; |
| |
| if (!std::atomic_load_explicit(&lck->lk.initialized, |
| std::memory_order_relaxed)) { |
| KMP_FATAL(LockIsUninitialized, func); |
| } |
| if (lck->lk.self != lck) { |
| KMP_FATAL(LockIsUninitialized, func); |
| } |
| if (__kmp_is_ticket_lock_nestable(lck)) { |
| KMP_FATAL(LockNestableUsedAsSimple, func); |
| } |
| if ((gtid >= 0) && (__kmp_get_ticket_lock_owner(lck) == gtid)) { |
| KMP_FATAL(LockIsAlreadyOwned, func); |
| } |
| |
| __kmp_acquire_ticket_lock(lck, gtid); |
| |
| std::atomic_store_explicit(&lck->lk.owner_id, gtid + 1, |
| std::memory_order_relaxed); |
| return KMP_LOCK_ACQUIRED_FIRST; |
| } |
| |
| int __kmp_test_ticket_lock(kmp_ticket_lock_t *lck, kmp_int32 gtid) { |
| kmp_uint32 my_ticket = std::atomic_load_explicit(&lck->lk.next_ticket, |
| std::memory_order_relaxed); |
| |
| if (std::atomic_load_explicit(&lck->lk.now_serving, |
| std::memory_order_relaxed) == my_ticket) { |
| kmp_uint32 next_ticket = my_ticket + 1; |
| if (std::atomic_compare_exchange_strong_explicit( |
| &lck->lk.next_ticket, &my_ticket, next_ticket, |
| std::memory_order_acquire, std::memory_order_acquire)) { |
| return TRUE; |
| } |
| } |
| return FALSE; |
| } |
| |
| static int __kmp_test_ticket_lock_with_checks(kmp_ticket_lock_t *lck, |
| kmp_int32 gtid) { |
| char const *const func = "omp_test_lock"; |
| |
| if (!std::atomic_load_explicit(&lck->lk.initialized, |
| std::memory_order_relaxed)) { |
| KMP_FATAL(LockIsUninitialized, func); |
| } |
| if (lck->lk.self != lck) { |
| KMP_FATAL(LockIsUninitialized, func); |
| } |
| if (__kmp_is_ticket_lock_nestable(lck)) { |
| KMP_FATAL(LockNestableUsedAsSimple, func); |
| } |
| |
| int retval = __kmp_test_ticket_lock(lck, gtid); |
| |
| if (retval) { |
| std::atomic_store_explicit(&lck->lk.owner_id, gtid + 1, |
| std::memory_order_relaxed); |
| } |
| return retval; |
| } |
| |
| int __kmp_release_ticket_lock(kmp_ticket_lock_t *lck, kmp_int32 gtid) { |
| kmp_uint32 distance = std::atomic_load_explicit(&lck->lk.next_ticket, |
| std::memory_order_relaxed) - |
| std::atomic_load_explicit(&lck->lk.now_serving, |
| std::memory_order_relaxed); |
| |
| ANNOTATE_TICKET_RELEASED(lck); |
| std::atomic_fetch_add_explicit(&lck->lk.now_serving, 1U, |
| std::memory_order_release); |
| |
| KMP_YIELD(distance > |
| (kmp_uint32)(__kmp_avail_proc ? __kmp_avail_proc : __kmp_xproc)); |
| return KMP_LOCK_RELEASED; |
| } |
| |
| static int __kmp_release_ticket_lock_with_checks(kmp_ticket_lock_t *lck, |
| kmp_int32 gtid) { |
| char const *const func = "omp_unset_lock"; |
| |
| if (!std::atomic_load_explicit(&lck->lk.initialized, |
| std::memory_order_relaxed)) { |
| KMP_FATAL(LockIsUninitialized, func); |
| } |
| if (lck->lk.self != lck) { |
| KMP_FATAL(LockIsUninitialized, func); |
| } |
| if (__kmp_is_ticket_lock_nestable(lck)) { |
| KMP_FATAL(LockNestableUsedAsSimple, func); |
| } |
| if (__kmp_get_ticket_lock_owner(lck) == -1) { |
| KMP_FATAL(LockUnsettingFree, func); |
| } |
| if ((gtid >= 0) && (__kmp_get_ticket_lock_owner(lck) >= 0) && |
| (__kmp_get_ticket_lock_owner(lck) != gtid)) { |
| KMP_FATAL(LockUnsettingSetByAnother, func); |
| } |
| std::atomic_store_explicit(&lck->lk.owner_id, 0, std::memory_order_relaxed); |
| return __kmp_release_ticket_lock(lck, gtid); |
| } |
| |
| void __kmp_init_ticket_lock(kmp_ticket_lock_t *lck) { |
| lck->lk.location = NULL; |
| lck->lk.self = lck; |
| std::atomic_store_explicit(&lck->lk.next_ticket, 0U, |
| std::memory_order_relaxed); |
| std::atomic_store_explicit(&lck->lk.now_serving, 0U, |
| std::memory_order_relaxed); |
| std::atomic_store_explicit( |
| &lck->lk.owner_id, 0, |
| std::memory_order_relaxed); // no thread owns the lock. |
| std::atomic_store_explicit( |
| &lck->lk.depth_locked, -1, |
| std::memory_order_relaxed); // -1 => not a nested lock. |
| std::atomic_store_explicit(&lck->lk.initialized, true, |
| std::memory_order_release); |
| } |
| |
| static void __kmp_init_ticket_lock_with_checks(kmp_ticket_lock_t *lck) { |
| __kmp_init_ticket_lock(lck); |
| } |
| |
| void __kmp_destroy_ticket_lock(kmp_ticket_lock_t *lck) { |
| std::atomic_store_explicit(&lck->lk.initialized, false, |
| std::memory_order_release); |
| lck->lk.self = NULL; |
| lck->lk.location = NULL; |
| std::atomic_store_explicit(&lck->lk.next_ticket, 0U, |
| std::memory_order_relaxed); |
| std::atomic_store_explicit(&lck->lk.now_serving, 0U, |
| std::memory_order_relaxed); |
| std::atomic_store_explicit(&lck->lk.owner_id, 0, std::memory_order_relaxed); |
| std::atomic_store_explicit(&lck->lk.depth_locked, -1, |
| std::memory_order_relaxed); |
| } |
| |
| static void __kmp_destroy_ticket_lock_with_checks(kmp_ticket_lock_t *lck) { |
| char const *const func = "omp_destroy_lock"; |
| |
| if (!std::atomic_load_explicit(&lck->lk.initialized, |
| std::memory_order_relaxed)) { |
| KMP_FATAL(LockIsUninitialized, func); |
| } |
| if (lck->lk.self != lck) { |
| KMP_FATAL(LockIsUninitialized, func); |
| } |
| if (__kmp_is_ticket_lock_nestable(lck)) { |
| KMP_FATAL(LockNestableUsedAsSimple, func); |
| } |
| if (__kmp_get_ticket_lock_owner(lck) != -1) { |
| KMP_FATAL(LockStillOwned, func); |
| } |
| __kmp_destroy_ticket_lock(lck); |
| } |
| |
| // nested ticket locks |
| |
| int __kmp_acquire_nested_ticket_lock(kmp_ticket_lock_t *lck, kmp_int32 gtid) { |
| KMP_DEBUG_ASSERT(gtid >= 0); |
| |
| if (__kmp_get_ticket_lock_owner(lck) == gtid) { |
| std::atomic_fetch_add_explicit(&lck->lk.depth_locked, 1, |
| std::memory_order_relaxed); |
| return KMP_LOCK_ACQUIRED_NEXT; |
| } else { |
| __kmp_acquire_ticket_lock_timed_template(lck, gtid); |
| ANNOTATE_TICKET_ACQUIRED(lck); |
| std::atomic_store_explicit(&lck->lk.depth_locked, 1, |
| std::memory_order_relaxed); |
| std::atomic_store_explicit(&lck->lk.owner_id, gtid + 1, |
| std::memory_order_relaxed); |
| return KMP_LOCK_ACQUIRED_FIRST; |
| } |
| } |
| |
| static int __kmp_acquire_nested_ticket_lock_with_checks(kmp_ticket_lock_t *lck, |
| kmp_int32 gtid) { |
| char const *const func = "omp_set_nest_lock"; |
| |
| if (!std::atomic_load_explicit(&lck->lk.initialized, |
| std::memory_order_relaxed)) { |
| KMP_FATAL(LockIsUninitialized, func); |
| } |
| if (lck->lk.self != lck) { |
| KMP_FATAL(LockIsUninitialized, func); |
| } |
| if (!__kmp_is_ticket_lock_nestable(lck)) { |
| KMP_FATAL(LockSimpleUsedAsNestable, func); |
| } |
| return __kmp_acquire_nested_ticket_lock(lck, gtid); |
| } |
| |
| int __kmp_test_nested_ticket_lock(kmp_ticket_lock_t *lck, kmp_int32 gtid) { |
| int retval; |
| |
| KMP_DEBUG_ASSERT(gtid >= 0); |
| |
| if (__kmp_get_ticket_lock_owner(lck) == gtid) { |
| retval = std::atomic_fetch_add_explicit(&lck->lk.depth_locked, 1, |
| std::memory_order_relaxed) + |
| 1; |
| } else if (!__kmp_test_ticket_lock(lck, gtid)) { |
| retval = 0; |
| } else { |
| std::atomic_store_explicit(&lck->lk.depth_locked, 1, |
| std::memory_order_relaxed); |
| std::atomic_store_explicit(&lck->lk.owner_id, gtid + 1, |
| std::memory_order_relaxed); |
| retval = 1; |
| } |
| return retval; |
| } |
| |
| static int __kmp_test_nested_ticket_lock_with_checks(kmp_ticket_lock_t *lck, |
| kmp_int32 gtid) { |
| char const *const func = "omp_test_nest_lock"; |
| |
| if (!std::atomic_load_explicit(&lck->lk.initialized, |
| std::memory_order_relaxed)) { |
| KMP_FATAL(LockIsUninitialized, func); |
| } |
| if (lck->lk.self != lck) { |
| KMP_FATAL(LockIsUninitialized, func); |
| } |
| if (!__kmp_is_ticket_lock_nestable(lck)) { |
| KMP_FATAL(LockSimpleUsedAsNestable, func); |
| } |
| return __kmp_test_nested_ticket_lock(lck, gtid); |
| } |
| |
| int __kmp_release_nested_ticket_lock(kmp_ticket_lock_t *lck, kmp_int32 gtid) { |
| KMP_DEBUG_ASSERT(gtid >= 0); |
| |
| if ((std::atomic_fetch_add_explicit(&lck->lk.depth_locked, -1, |
| std::memory_order_relaxed) - |
| 1) == 0) { |
| std::atomic_store_explicit(&lck->lk.owner_id, 0, std::memory_order_relaxed); |
| __kmp_release_ticket_lock(lck, gtid); |
| return KMP_LOCK_RELEASED; |
| } |
| return KMP_LOCK_STILL_HELD; |
| } |
| |
| static int __kmp_release_nested_ticket_lock_with_checks(kmp_ticket_lock_t *lck, |
| kmp_int32 gtid) { |
| char const *const func = "omp_unset_nest_lock"; |
| |
| if (!std::atomic_load_explicit(&lck->lk.initialized, |
| std::memory_order_relaxed)) { |
| KMP_FATAL(LockIsUninitialized, func); |
| } |
| if (lck->lk.self != lck) { |
| KMP_FATAL(LockIsUninitialized, func); |
| } |
| if (!__kmp_is_ticket_lock_nestable(lck)) { |
| KMP_FATAL(LockSimpleUsedAsNestable, func); |
| } |
| if (__kmp_get_ticket_lock_owner(lck) == -1) { |
| KMP_FATAL(LockUnsettingFree, func); |
| } |
| if (__kmp_get_ticket_lock_owner(lck) != gtid) { |
| KMP_FATAL(LockUnsettingSetByAnother, func); |
| } |
| return __kmp_release_nested_ticket_lock(lck, gtid); |
| } |
| |
| void __kmp_init_nested_ticket_lock(kmp_ticket_lock_t *lck) { |
| __kmp_init_ticket_lock(lck); |
| std::atomic_store_explicit(&lck->lk.depth_locked, 0, |
| std::memory_order_relaxed); |
| // >= 0 for nestable locks, -1 for simple locks |
| } |
| |
| static void __kmp_init_nested_ticket_lock_with_checks(kmp_ticket_lock_t *lck) { |
| __kmp_init_nested_ticket_lock(lck); |
| } |
| |
| void __kmp_destroy_nested_ticket_lock(kmp_ticket_lock_t *lck) { |
| __kmp_destroy_ticket_lock(lck); |
| std::atomic_store_explicit(&lck->lk.depth_locked, 0, |
| std::memory_order_relaxed); |
| } |
| |
| static void |
| __kmp_destroy_nested_ticket_lock_with_checks(kmp_ticket_lock_t *lck) { |
| char const *const func = "omp_destroy_nest_lock"; |
| |
| if (!std::atomic_load_explicit(&lck->lk.initialized, |
| std::memory_order_relaxed)) { |
| KMP_FATAL(LockIsUninitialized, func); |
| } |
| if (lck->lk.self != lck) { |
| KMP_FATAL(LockIsUninitialized, func); |
| } |
| if (!__kmp_is_ticket_lock_nestable(lck)) { |
| KMP_FATAL(LockSimpleUsedAsNestable, func); |
| } |
| if (__kmp_get_ticket_lock_owner(lck) != -1) { |
| KMP_FATAL(LockStillOwned, func); |
| } |
| __kmp_destroy_nested_ticket_lock(lck); |
| } |
| |
| // access functions to fields which don't exist for all lock kinds. |
| |
| static int __kmp_is_ticket_lock_initialized(kmp_ticket_lock_t *lck) { |
| return std::atomic_load_explicit(&lck->lk.initialized, |
| std::memory_order_relaxed) && |
| (lck->lk.self == lck); |
| } |
| |
| static const ident_t *__kmp_get_ticket_lock_location(kmp_ticket_lock_t *lck) { |
| return lck->lk.location; |
| } |
| |
| static void __kmp_set_ticket_lock_location(kmp_ticket_lock_t *lck, |
| const ident_t *loc) { |
| lck->lk.location = loc; |
| } |
| |
| static kmp_lock_flags_t __kmp_get_ticket_lock_flags(kmp_ticket_lock_t *lck) { |
| return lck->lk.flags; |
| } |
| |
| static void __kmp_set_ticket_lock_flags(kmp_ticket_lock_t *lck, |
| kmp_lock_flags_t flags) { |
| lck->lk.flags = flags; |
| } |
| |
| /* ------------------------------------------------------------------------ */ |
| /* queuing locks */ |
| |
| /* First the states |
| (head,tail) = 0, 0 means lock is unheld, nobody on queue |
| UINT_MAX or -1, 0 means lock is held, nobody on queue |
| h, h means lock held or about to transition, |
| 1 element on queue |
| h, t h <> t, means lock is held or about to |
| transition, >1 elements on queue |
| |
| Now the transitions |
| Acquire(0,0) = -1 ,0 |
| Release(0,0) = Error |
| Acquire(-1,0) = h ,h h > 0 |
| Release(-1,0) = 0 ,0 |
| Acquire(h,h) = h ,t h > 0, t > 0, h <> t |
| Release(h,h) = -1 ,0 h > 0 |
| Acquire(h,t) = h ,t' h > 0, t > 0, t' > 0, h <> t, h <> t', t <> t' |
| Release(h,t) = h',t h > 0, t > 0, h <> t, h <> h', h' maybe = t |
| |
| And pictorially |
| |
| +-----+ |
| | 0, 0|------- release -------> Error |
| +-----+ |
| | ^ |
| acquire| |release |
| | | |
| | | |
| v | |
| +-----+ |
| |-1, 0| |
| +-----+ |
| | ^ |
| acquire| |release |
| | | |
| | | |
| v | |
| +-----+ |
| | h, h| |
| +-----+ |
| | ^ |
| acquire| |release |
| | | |
| | | |
| v | |
| +-----+ |
| | h, t|----- acquire, release loopback ---+ |
| +-----+ | |
| ^ | |
| | | |
| +------------------------------------+ |
| */ |
| |
| #ifdef DEBUG_QUEUING_LOCKS |
| |
| /* Stuff for circular trace buffer */ |
| #define TRACE_BUF_ELE 1024 |
| static char traces[TRACE_BUF_ELE][128] = {0}; |
| static int tc = 0; |
| #define TRACE_LOCK(X, Y) \ |
| KMP_SNPRINTF(traces[tc++ % TRACE_BUF_ELE], 128, "t%d at %s\n", X, Y); |
| #define TRACE_LOCK_T(X, Y, Z) \ |
| KMP_SNPRINTF(traces[tc++ % TRACE_BUF_ELE], 128, "t%d at %s%d\n", X, Y, Z); |
| #define TRACE_LOCK_HT(X, Y, Z, Q) \ |
| KMP_SNPRINTF(traces[tc++ % TRACE_BUF_ELE], 128, "t%d at %s %d,%d\n", X, Y, \ |
| Z, Q); |
| |
| static void __kmp_dump_queuing_lock(kmp_info_t *this_thr, kmp_int32 gtid, |
| kmp_queuing_lock_t *lck, kmp_int32 head_id, |
| kmp_int32 tail_id) { |
| kmp_int32 t, i; |
| |
| __kmp_printf_no_lock("\n__kmp_dump_queuing_lock: TRACE BEGINS HERE! \n"); |
| |
| i = tc % TRACE_BUF_ELE; |
| __kmp_printf_no_lock("%s\n", traces[i]); |
| i = (i + 1) % TRACE_BUF_ELE; |
| while (i != (tc % TRACE_BUF_ELE)) { |
| __kmp_printf_no_lock("%s", traces[i]); |
| i = (i + 1) % TRACE_BUF_ELE; |
| } |
| __kmp_printf_no_lock("\n"); |
| |
| __kmp_printf_no_lock("\n__kmp_dump_queuing_lock: gtid+1:%d, spin_here:%d, " |
| "next_wait:%d, head_id:%d, tail_id:%d\n", |
| gtid + 1, this_thr->th.th_spin_here, |
| this_thr->th.th_next_waiting, head_id, tail_id); |
| |
| __kmp_printf_no_lock("\t\thead: %d ", lck->lk.head_id); |
| |
| if (lck->lk.head_id >= 1) { |
| t = __kmp_threads[lck->lk.head_id - 1]->th.th_next_waiting; |
| while (t > 0) { |
| __kmp_printf_no_lock("-> %d ", t); |
| t = __kmp_threads[t - 1]->th.th_next_waiting; |
| } |
| } |
| __kmp_printf_no_lock("; tail: %d ", lck->lk.tail_id); |
| __kmp_printf_no_lock("\n\n"); |
| } |
| |
| #endif /* DEBUG_QUEUING_LOCKS */ |
| |
| static kmp_int32 __kmp_get_queuing_lock_owner(kmp_queuing_lock_t *lck) { |
| return TCR_4(lck->lk.owner_id) - 1; |
| } |
| |
| static inline bool __kmp_is_queuing_lock_nestable(kmp_queuing_lock_t *lck) { |
| return lck->lk.depth_locked != -1; |
| } |
| |
| /* Acquire a lock using a the queuing lock implementation */ |
| template <bool takeTime> |
| /* [TLW] The unused template above is left behind because of what BEB believes |
| is a potential compiler problem with __forceinline. */ |
| __forceinline static int |
| __kmp_acquire_queuing_lock_timed_template(kmp_queuing_lock_t *lck, |
| kmp_int32 gtid) { |
| kmp_info_t *this_thr = __kmp_thread_from_gtid(gtid); |
| volatile kmp_int32 *head_id_p = &lck->lk.head_id; |
| volatile kmp_int32 *tail_id_p = &lck->lk.tail_id; |
| volatile kmp_uint32 *spin_here_p; |
| kmp_int32 need_mf = 1; |
| |
| #if OMPT_SUPPORT |
| omp_state_t prev_state = omp_state_undefined; |
| #endif |
| |
| KA_TRACE(1000, |
| ("__kmp_acquire_queuing_lock: lck:%p, T#%d entering\n", lck, gtid)); |
| |
| KMP_FSYNC_PREPARE(lck); |
| KMP_DEBUG_ASSERT(this_thr != NULL); |
| spin_here_p = &this_thr->th.th_spin_here; |
| |
| #ifdef DEBUG_QUEUING_LOCKS |
| TRACE_LOCK(gtid + 1, "acq ent"); |
| if (*spin_here_p) |
| __kmp_dump_queuing_lock(this_thr, gtid, lck, *head_id_p, *tail_id_p); |
| if (this_thr->th.th_next_waiting != 0) |
| __kmp_dump_queuing_lock(this_thr, gtid, lck, *head_id_p, *tail_id_p); |
| #endif |
| KMP_DEBUG_ASSERT(!*spin_here_p); |
| KMP_DEBUG_ASSERT(this_thr->th.th_next_waiting == 0); |
| |
| /* The following st.rel to spin_here_p needs to precede the cmpxchg.acq to |
| head_id_p that may follow, not just in execution order, but also in |
| visibility order. This way, when a releasing thread observes the changes to |
| the queue by this thread, it can rightly assume that spin_here_p has |
| already been set to TRUE, so that when it sets spin_here_p to FALSE, it is |
| not premature. If the releasing thread sets spin_here_p to FALSE before |
| this thread sets it to TRUE, this thread will hang. */ |
| *spin_here_p = TRUE; /* before enqueuing to prevent race */ |
| |
| while (1) { |
| kmp_int32 enqueued; |
| kmp_int32 head; |
| kmp_int32 tail; |
| |
| head = *head_id_p; |
| |
| switch (head) { |
| |
| case -1: { |
| #ifdef DEBUG_QUEUING_LOCKS |
| tail = *tail_id_p; |
| TRACE_LOCK_HT(gtid + 1, "acq read: ", head, tail); |
| #endif |
| tail = 0; /* to make sure next link asynchronously read is not set |
| accidentally; this assignment prevents us from entering the |
| if ( t > 0 ) condition in the enqueued case below, which is not |
| necessary for this state transition */ |
| |
| need_mf = 0; |
| /* try (-1,0)->(tid,tid) */ |
| enqueued = KMP_COMPARE_AND_STORE_ACQ64((volatile kmp_int64 *)tail_id_p, |
| KMP_PACK_64(-1, 0), |
| KMP_PACK_64(gtid + 1, gtid + 1)); |
| #ifdef DEBUG_QUEUING_LOCKS |
| if (enqueued) |
| TRACE_LOCK(gtid + 1, "acq enq: (-1,0)->(tid,tid)"); |
| #endif |
| } break; |
| |
| default: { |
| tail = *tail_id_p; |
| KMP_DEBUG_ASSERT(tail != gtid + 1); |
| |
| #ifdef DEBUG_QUEUING_LOCKS |
| TRACE_LOCK_HT(gtid + 1, "acq read: ", head, tail); |
| #endif |
| |
| if (tail == 0) { |
| enqueued = FALSE; |
| } else { |
| need_mf = 0; |
| /* try (h,t) or (h,h)->(h,tid) */ |
| enqueued = KMP_COMPARE_AND_STORE_ACQ32(tail_id_p, tail, gtid + 1); |
| |
| #ifdef DEBUG_QUEUING_LOCKS |
| if (enqueued) |
| TRACE_LOCK(gtid + 1, "acq enq: (h,t)->(h,tid)"); |
| #endif |
| } |
| } break; |
| |
| case 0: /* empty queue */ |
| { |
| kmp_int32 grabbed_lock; |
| |
| #ifdef DEBUG_QUEUING_LOCKS |
| tail = *tail_id_p; |
| TRACE_LOCK_HT(gtid + 1, "acq read: ", head, tail); |
| #endif |
| /* try (0,0)->(-1,0) */ |
| |
| /* only legal transition out of head = 0 is head = -1 with no change to |
| * tail */ |
| grabbed_lock = KMP_COMPARE_AND_STORE_ACQ32(head_id_p, 0, -1); |
| |
| if (grabbed_lock) { |
| |
| *spin_here_p = FALSE; |
| |
| KA_TRACE( |
| 1000, |
| ("__kmp_acquire_queuing_lock: lck:%p, T#%d exiting: no queuing\n", |
| lck, gtid)); |
| #ifdef DEBUG_QUEUING_LOCKS |
| TRACE_LOCK_HT(gtid + 1, "acq exit: ", head, 0); |
| #endif |
| |
| #if OMPT_SUPPORT |
| if (ompt_enabled.enabled && prev_state != omp_state_undefined) { |
| /* change the state before clearing wait_id */ |
| this_thr->th.ompt_thread_info.state = prev_state; |
| this_thr->th.ompt_thread_info.wait_id = 0; |
| } |
| #endif |
| |
| KMP_FSYNC_ACQUIRED(lck); |
| return KMP_LOCK_ACQUIRED_FIRST; /* lock holder cannot be on queue */ |
| } |
| enqueued = FALSE; |
| } break; |
| } |
| |
| #if OMPT_SUPPORT |
| if (ompt_enabled.enabled && prev_state == omp_state_undefined) { |
| /* this thread will spin; set wait_id before entering wait state */ |
| prev_state = this_thr->th.ompt_thread_info.state; |
| this_thr->th.ompt_thread_info.wait_id = (uint64_t)lck; |
| this_thr->th.ompt_thread_info.state = omp_state_wait_lock; |
| } |
| #endif |
| |
| if (enqueued) { |
| if (tail > 0) { |
| kmp_info_t *tail_thr = __kmp_thread_from_gtid(tail - 1); |
| KMP_ASSERT(tail_thr != NULL); |
| tail_thr->th.th_next_waiting = gtid + 1; |
| /* corresponding wait for this write in release code */ |
| } |
| KA_TRACE(1000, |
| ("__kmp_acquire_queuing_lock: lck:%p, T#%d waiting for lock\n", |
| lck, gtid)); |
| |
| /* ToDo: May want to consider using __kmp_wait_sleep or something that |
| sleeps for throughput only here. */ |
| KMP_MB(); |
| KMP_WAIT_YIELD(spin_here_p, FALSE, KMP_EQ, lck); |
| |
| #ifdef DEBUG_QUEUING_LOCKS |
| TRACE_LOCK(gtid + 1, "acq spin"); |
| |
| if (this_thr->th.th_next_waiting != 0) |
| __kmp_dump_queuing_lock(this_thr, gtid, lck, *head_id_p, *tail_id_p); |
| #endif |
| KMP_DEBUG_ASSERT(this_thr->th.th_next_waiting == 0); |
| KA_TRACE(1000, ("__kmp_acquire_queuing_lock: lck:%p, T#%d exiting: after " |
| "waiting on queue\n", |
| lck, gtid)); |
| |
| #ifdef DEBUG_QUEUING_LOCKS |
| TRACE_LOCK(gtid + 1, "acq exit 2"); |
| #endif |
| |
| #if OMPT_SUPPORT |
| /* change the state before clearing wait_id */ |
| this_thr->th.ompt_thread_info.state = prev_state; |
| this_thr->th.ompt_thread_info.wait_id = 0; |
| #endif |
| |
| /* got lock, we were dequeued by the thread that released lock */ |
| return KMP_LOCK_ACQUIRED_FIRST; |
| } |
| |
| /* Yield if number of threads > number of logical processors */ |
| /* ToDo: Not sure why this should only be in oversubscription case, |
| maybe should be traditional YIELD_INIT/YIELD_WHEN loop */ |
| KMP_YIELD(TCR_4(__kmp_nth) > |
| (__kmp_avail_proc ? __kmp_avail_proc : __kmp_xproc)); |
| #ifdef DEBUG_QUEUING_LOCKS |
| TRACE_LOCK(gtid + 1, "acq retry"); |
| #endif |
| } |
| KMP_ASSERT2(0, "should not get here"); |
| return KMP_LOCK_ACQUIRED_FIRST; |
| } |
| |
| int __kmp_acquire_queuing_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid) { |
| KMP_DEBUG_ASSERT(gtid >= 0); |
| |
| int retval = __kmp_acquire_queuing_lock_timed_template<false>(lck, gtid); |
| ANNOTATE_QUEUING_ACQUIRED(lck); |
| return retval; |
| } |
| |
| static int __kmp_acquire_queuing_lock_with_checks(kmp_queuing_lock_t *lck, |
| kmp_int32 gtid) { |
| char const *const func = "omp_set_lock"; |
| if (lck->lk.initialized != lck) { |
| KMP_FATAL(LockIsUninitialized, func); |
| } |
| if (__kmp_is_queuing_lock_nestable(lck)) { |
| KMP_FATAL(LockNestableUsedAsSimple, func); |
| } |
| if (__kmp_get_queuing_lock_owner(lck) == gtid) { |
| KMP_FATAL(LockIsAlreadyOwned, func); |
| } |
| |
| __kmp_acquire_queuing_lock(lck, gtid); |
| |
| lck->lk.owner_id = gtid + 1; |
| return KMP_LOCK_ACQUIRED_FIRST; |
| } |
| |
| int __kmp_test_queuing_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid) { |
| volatile kmp_int32 *head_id_p = &lck->lk.head_id; |
| kmp_int32 head; |
| #ifdef KMP_DEBUG |
| kmp_info_t *this_thr; |
| #endif |
| |
| KA_TRACE(1000, ("__kmp_test_queuing_lock: T#%d entering\n", gtid)); |
| KMP_DEBUG_ASSERT(gtid >= 0); |
| #ifdef KMP_DEBUG |
| this_thr = __kmp_thread_from_gtid(gtid); |
| KMP_DEBUG_ASSERT(this_thr != NULL); |
| KMP_DEBUG_ASSERT(!this_thr->th.th_spin_here); |
| #endif |
| |
| head = *head_id_p; |
| |
| if (head == 0) { /* nobody on queue, nobody holding */ |
| /* try (0,0)->(-1,0) */ |
| if (KMP_COMPARE_AND_STORE_ACQ32(head_id_p, 0, -1)) { |
| KA_TRACE(1000, |
| ("__kmp_test_queuing_lock: T#%d exiting: holding lock\n", gtid)); |
| KMP_FSYNC_ACQUIRED(lck); |
| ANNOTATE_QUEUING_ACQUIRED(lck); |
| return TRUE; |
| } |
| } |
| |
| KA_TRACE(1000, |
| ("__kmp_test_queuing_lock: T#%d exiting: without lock\n", gtid)); |
| return FALSE; |
| } |
| |
| static int __kmp_test_queuing_lock_with_checks(kmp_queuing_lock_t *lck, |
| kmp_int32 gtid) { |
| char const *const func = "omp_test_lock"; |
| if (lck->lk.initialized != lck) { |
| KMP_FATAL(LockIsUninitialized, func); |
| } |
| if (__kmp_is_queuing_lock_nestable(lck)) { |
| KMP_FATAL(LockNestableUsedAsSimple, func); |
| } |
| |
| int retval = __kmp_test_queuing_lock(lck, gtid); |
| |
| if (retval) { |
| lck->lk.owner_id = gtid + 1; |
| } |
| return retval; |
| } |
| |
| int __kmp_release_queuing_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid) { |
| kmp_info_t *this_thr; |
| volatile kmp_int32 *head_id_p = &lck->lk.head_id; |
| volatile kmp_int32 *tail_id_p = &lck->lk.tail_id; |
| |
| KA_TRACE(1000, |
| ("__kmp_release_queuing_lock: lck:%p, T#%d entering\n", lck, gtid)); |
| KMP_DEBUG_ASSERT(gtid >= 0); |
| this_thr = __kmp_thread_from_gtid(gtid); |
| KMP_DEBUG_ASSERT(this_thr != NULL); |
| #ifdef DEBUG_QUEUING_LOCKS |
| TRACE_LOCK(gtid + 1, "rel ent"); |
| |
| if (this_thr->th.th_spin_here) |
| __kmp_dump_queuing_lock(this_thr, gtid, lck, *head_id_p, *tail_id_p); |
| if (this_thr->th.th_next_waiting != 0) |
| __kmp_dump_queuing_lock(this_thr, gtid, lck, *head_id_p, *tail_id_p); |
| #endif |
| KMP_DEBUG_ASSERT(!this_thr->th.th_spin_here); |
| KMP_DEBUG_ASSERT(this_thr->th.th_next_waiting == 0); |
| |
| KMP_FSYNC_RELEASING(lck); |
| ANNOTATE_QUEUING_RELEASED(lck); |
| |
| while (1) { |
| kmp_int32 dequeued; |
| kmp_int32 head; |
| kmp_int32 tail; |
| |
| head = *head_id_p; |
| |
| #ifdef DEBUG_QUEUING_LOCKS |
| tail = *tail_id_p; |
| TRACE_LOCK_HT(gtid + 1, "rel read: ", head, tail); |
| if (head == 0) |
| __kmp_dump_queuing_lock(this_thr, gtid, lck, head, tail); |
| #endif |
| KMP_DEBUG_ASSERT(head != |
| 0); /* holding the lock, head must be -1 or queue head */ |
| |
| if (head == -1) { /* nobody on queue */ |
| /* try (-1,0)->(0,0) */ |
| if (KMP_COMPARE_AND_STORE_REL32(head_id_p, -1, 0)) { |
| KA_TRACE( |
| 1000, |
| ("__kmp_release_queuing_lock: lck:%p, T#%d exiting: queue empty\n", |
| lck, gtid)); |
| #ifdef DEBUG_QUEUING_LOCKS |
| TRACE_LOCK_HT(gtid + 1, "rel exit: ", 0, 0); |
| #endif |
| |
| #if OMPT_SUPPORT |
| /* nothing to do - no other thread is trying to shift blame */ |
| #endif |
| return KMP_LOCK_RELEASED; |
| } |
| dequeued = FALSE; |
| } else { |
| KMP_MB(); |
| tail = *tail_id_p; |
| if (head == tail) { /* only one thread on the queue */ |
| #ifdef DEBUG_QUEUING_LOCKS |
| if (head <= 0) |
| __kmp_dump_queuing_lock(this_thr, gtid, lck, head, tail); |
| #endif |
| KMP_DEBUG_ASSERT(head > 0); |
| |
| /* try (h,h)->(-1,0) */ |
| dequeued = KMP_COMPARE_AND_STORE_REL64( |
| RCAST(volatile kmp_int64 *, tail_id_p), KMP_PACK_64(head, head), |
| KMP_PACK_64(-1, 0)); |
| #ifdef DEBUG_QUEUING_LOCKS |
| TRACE_LOCK(gtid + 1, "rel deq: (h,h)->(-1,0)"); |
| #endif |
| |
| } else { |
| volatile kmp_int32 *waiting_id_p; |
| kmp_info_t *head_thr = __kmp_thread_from_gtid(head - 1); |
| KMP_DEBUG_ASSERT(head_thr != NULL); |
| waiting_id_p = &head_thr->th.th_next_waiting; |
| |
| /* Does this require synchronous reads? */ |
| #ifdef DEBUG_QUEUING_LOCKS |
| if (head <= 0 || tail <= 0) |
| __kmp_dump_queuing_lock(this_thr, gtid, lck, head, tail); |
| #endif |
| KMP_DEBUG_ASSERT(head > 0 && tail > 0); |
| |
| /* try (h,t)->(h',t) or (t,t) */ |
| KMP_MB(); |
| /* make sure enqueuing thread has time to update next waiting thread |
| * field */ |
| *head_id_p = KMP_WAIT_YIELD((volatile kmp_uint32 *)waiting_id_p, 0, |
| KMP_NEQ, NULL); |
| #ifdef DEBUG_QUEUING_LOCKS |
| TRACE_LOCK(gtid + 1, "rel deq: (h,t)->(h',t)"); |
| #endif |
| dequeued = TRUE; |
| } |
| } |
| |
| if (dequeued) { |
| kmp_info_t *head_thr = __kmp_thread_from_gtid(head - 1); |
| KMP_DEBUG_ASSERT(head_thr != NULL); |
| |
| /* Does this require synchronous reads? */ |
| #ifdef DEBUG_QUEUING_LOCKS |
| if (head <= 0 || tail <= 0) |
| __kmp_dump_queuing_lock(this_thr, gtid, lck, head, tail); |
| #endif |
| KMP_DEBUG_ASSERT(head > 0 && tail > 0); |
| |
| /* For clean code only. Thread not released until next statement prevents |
| race with acquire code. */ |
| head_thr->th.th_next_waiting = 0; |
| #ifdef DEBUG_QUEUING_LOCKS |
| TRACE_LOCK_T(gtid + 1, "rel nw=0 for t=", head); |
| #endif |
| |
| KMP_MB(); |
| /* reset spin value */ |
| head_thr->th.th_spin_here = FALSE; |
| |
| KA_TRACE(1000, ("__kmp_release_queuing_lock: lck:%p, T#%d exiting: after " |
| "dequeuing\n", |
| lck, gtid)); |
| #ifdef DEBUG_QUEUING_LOCKS |
| TRACE_LOCK(gtid + 1, "rel exit 2"); |
| #endif |
| return KMP_LOCK_RELEASED; |
| } |
| /* KMP_CPU_PAUSE(); don't want to make releasing thread hold up acquiring |
| threads */ |
| |
| #ifdef DEBUG_QUEUING_LOCKS |
| TRACE_LOCK(gtid + 1, "rel retry"); |
| #endif |
| |
| } /* while */ |
| KMP_ASSERT2(0, "should not get here"); |
| return KMP_LOCK_RELEASED; |
| } |
| |
| static int __kmp_release_queuing_lock_with_checks(kmp_queuing_lock_t *lck, |
| kmp_int32 gtid) { |
| char const *const func = "omp_unset_lock"; |
| KMP_MB(); /* in case another processor initialized lock */ |
| if (lck->lk.initialized != lck) { |
| KMP_FATAL(LockIsUninitialized, func); |
| } |
| if (__kmp_is_queuing_lock_nestable(lck)) { |
| KMP_FATAL(LockNestableUsedAsSimple, func); |
| } |
| if (__kmp_get_queuing_lock_owner(lck) == -1) { |
| KMP_FATAL(LockUnsettingFree, func); |
| } |
| if (__kmp_get_queuing_lock_owner(lck) != gtid) { |
| KMP_FATAL(LockUnsettingSetByAnother, func); |
| } |
| lck->lk.owner_id = 0; |
| return __kmp_release_queuing_lock(lck, gtid); |
| } |
| |
| void __kmp_init_queuing_lock(kmp_queuing_lock_t *lck) { |
| lck->lk.location = NULL; |
| lck->lk.head_id = 0; |
| lck->lk.tail_id = 0; |
| lck->lk.next_ticket = 0; |
| lck->lk.now_serving = 0; |
| lck->lk.owner_id = 0; // no thread owns the lock. |
| lck->lk.depth_locked = -1; // >= 0 for nestable locks, -1 for simple locks. |
| lck->lk.initialized = lck; |
| |
| KA_TRACE(1000, ("__kmp_init_queuing_lock: lock %p initialized\n", lck)); |
| } |
| |
| static void __kmp_init_queuing_lock_with_checks(kmp_queuing_lock_t *lck) { |
| __kmp_init_queuing_lock(lck); |
| } |
| |
| void __kmp_destroy_queuing_lock(kmp_queuing_lock_t *lck) { |
| lck->lk.initialized = NULL; |
| lck->lk.location = NULL; |
| lck->lk.head_id = 0; |
| lck->lk.tail_id = 0; |
| lck->lk.next_ticket = 0; |
| lck->lk.now_serving = 0; |
| lck->lk.owner_id = 0; |
| lck->lk.depth_locked = -1; |
| } |
| |
| static void __kmp_destroy_queuing_lock_with_checks(kmp_queuing_lock_t *lck) { |
| char const *const func = "omp_destroy_lock"; |
| if (lck->lk.initialized != lck) { |
| KMP_FATAL(LockIsUninitialized, func); |
| } |
| if (__kmp_is_queuing_lock_nestable(lck)) { |
| KMP_FATAL(LockNestableUsedAsSimple, func); |
| } |
| if (__kmp_get_queuing_lock_owner(lck) != -1) { |
| KMP_FATAL(LockStillOwned, func); |
| } |
| __kmp_destroy_queuing_lock(lck); |
| } |
| |
| // nested queuing locks |
| |
| int __kmp_acquire_nested_queuing_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid) { |
| KMP_DEBUG_ASSERT(gtid >= 0); |
| |
| if (__kmp_get_queuing_lock_owner(lck) == gtid) { |
| lck->lk.depth_locked += 1; |
| return KMP_LOCK_ACQUIRED_NEXT; |
| } else { |
| __kmp_acquire_queuing_lock_timed_template<false>(lck, gtid); |
| ANNOTATE_QUEUING_ACQUIRED(lck); |
| KMP_MB(); |
| lck->lk.depth_locked = 1; |
| KMP_MB(); |
| lck->lk.owner_id = gtid + 1; |
| return KMP_LOCK_ACQUIRED_FIRST; |
| } |
| } |
| |
| static int |
| __kmp_acquire_nested_queuing_lock_with_checks(kmp_queuing_lock_t *lck, |
| kmp_int32 gtid) { |
| char const *const func = "omp_set_nest_lock"; |
| if (lck->lk.initialized != lck) { |
| KMP_FATAL(LockIsUninitialized, func); |
| } |
| if (!__kmp_is_queuing_lock_nestable(lck)) { |
| KMP_FATAL(LockSimpleUsedAsNestable, func); |
| } |
| return __kmp_acquire_nested_queuing_lock(lck, gtid); |
| } |
| |
| int __kmp_test_nested_queuing_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid) { |
| int retval; |
| |
| KMP_DEBUG_ASSERT(gtid >= 0); |
| |
| if (__kmp_get_queuing_lock_owner(lck) == gtid) { |
| retval = ++lck->lk.depth_locked; |
| } else if (!__kmp_test_queuing_lock(lck, gtid)) { |
| retval = 0; |
| } else { |
| KMP_MB(); |
| retval = lck->lk.depth_locked = 1; |
| KMP_MB(); |
| lck->lk.owner_id = gtid + 1; |
| } |
| return retval; |
| } |
| |
| static int __kmp_test_nested_queuing_lock_with_checks(kmp_queuing_lock_t *lck, |
| kmp_int32 gtid) { |
| char const *const func = "omp_test_nest_lock"; |
| if (lck->lk.initialized != lck) { |
| KMP_FATAL(LockIsUninitialized, func); |
| } |
| if (!__kmp_is_queuing_lock_nestable(lck)) { |
| KMP_FATAL(LockSimpleUsedAsNestable, func); |
| } |
| return __kmp_test_nested_queuing_lock(lck, gtid); |
| } |
| |
| int __kmp_release_nested_queuing_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid) { |
| KMP_DEBUG_ASSERT(gtid >= 0); |
| |
| KMP_MB(); |
| if (--(lck->lk.depth_locked) == 0) { |
| KMP_MB(); |
| lck->lk.owner_id = 0; |
| __kmp_release_queuing_lock(lck, gtid); |
| return KMP_LOCK_RELEASED; |
| } |
| return KMP_LOCK_STILL_HELD; |
| } |
| |
| static int |
| __kmp_release_nested_queuing_lock_with_checks(kmp_queuing_lock_t *lck, |
| kmp_int32 gtid) { |
| char const *const func = "omp_unset_nest_lock"; |
| KMP_MB(); /* in case another processor initialized lock */ |
| if (lck->lk.initialized != lck) { |
| KMP_FATAL(LockIsUninitialized, func); |
| } |
| if (!__kmp_is_queuing_lock_nestable(lck)) { |
| KMP_FATAL(LockSimpleUsedAsNestable, func); |
| } |
| if (__kmp_get_queuing_lock_owner(lck) == -1) { |
| KMP_FATAL(LockUnsettingFree, func); |
| } |
| if (__kmp_get_queuing_lock_owner(lck) != gtid) { |
| KMP_FATAL(LockUnsettingSetByAnother, func); |
| } |
| return __kmp_release_nested_queuing_lock(lck, gtid); |
| } |
| |
| void __kmp_init_nested_queuing_lock(kmp_queuing_lock_t *lck) { |
| __kmp_init_queuing_lock(lck); |
| lck->lk.depth_locked = 0; // >= 0 for nestable locks, -1 for simple locks |
| } |
| |
| static void |
| __kmp_init_nested_queuing_lock_with_checks(kmp_queuing_lock_t *lck) { |
| __kmp_init_nested_queuing_lock(lck); |
| } |
| |
| void __kmp_destroy_nested_queuing_lock(kmp_queuing_lock_t *lck) { |
| __kmp_destroy_queuing_lock(lck); |
| lck->lk.depth_locked = 0; |
| } |
| |
| static void |
| __kmp_destroy_nested_queuing_lock_with_checks(kmp_queuing_lock_t *lck) { |
| char const *const func = "omp_destroy_nest_lock"; |
| if (lck->lk.initialized != lck) { |
| KMP_FATAL(LockIsUninitialized, func); |
| } |
| if (!__kmp_is_queuing_lock_nestable(lck)) { |
| KMP_FATAL(LockSimpleUsedAsNestable, func); |
| } |
| if (__kmp_get_queuing_lock_owner(lck) != -1) { |
| KMP_FATAL(LockStillOwned, func); |
| } |
| __kmp_destroy_nested_queuing_lock(lck); |
| } |
| |
| // access functions to fields which don't exist for all lock kinds. |
| |
| static int __kmp_is_queuing_lock_initialized(kmp_queuing_lock_t *lck) { |
| return lck == lck->lk.initialized; |
| } |
| |
| static const ident_t *__kmp_get_queuing_lock_location(kmp_queuing_lock_t *lck) { |
| return lck->lk.location; |
| } |
| |
| static void __kmp_set_queuing_lock_location(kmp_queuing_lock_t *lck, |
| const ident_t *loc) { |
| lck->lk.location = loc; |
| } |
| |
| static kmp_lock_flags_t __kmp_get_queuing_lock_flags(kmp_queuing_lock_t *lck) { |
| return lck->lk.flags; |
| } |
| |
| static void __kmp_set_queuing_lock_flags(kmp_queuing_lock_t *lck, |
| kmp_lock_flags_t flags) { |
| lck->lk.flags = flags; |
| } |
| |
| #if KMP_USE_ADAPTIVE_LOCKS |
| |
| /* RTM Adaptive locks */ |
| |
| #if KMP_COMPILER_ICC && __INTEL_COMPILER >= 1300 |
| |
| #include <immintrin.h> |
| #define SOFT_ABORT_MASK (_XABORT_RETRY | _XABORT_CONFLICT | _XABORT_EXPLICIT) |
| |
| #else |
| |
| // Values from the status register after failed speculation. |
| #define _XBEGIN_STARTED (~0u) |
| #define _XABORT_EXPLICIT (1 << 0) |
| #define _XABORT_RETRY (1 << 1) |
| #define _XABORT_CONFLICT (1 << 2) |
| #define _XABORT_CAPACITY (1 << 3) |
| #define _XABORT_DEBUG (1 << 4) |
| #define _XABORT_NESTED (1 << 5) |
| #define _XABORT_CODE(x) ((unsigned char)(((x) >> 24) & 0xFF)) |
| |
| // Aborts for which it's worth trying again immediately |
| #define SOFT_ABORT_MASK (_XABORT_RETRY | _XABORT_CONFLICT | _XABORT_EXPLICIT) |
| |
| #define STRINGIZE_INTERNAL(arg) #arg |
| #define STRINGIZE(arg) STRINGIZE_INTERNAL(arg) |
| |
| // Access to RTM instructions |
| /*A version of XBegin which returns -1 on speculation, and the value of EAX on |
| an abort. This is the same definition as the compiler intrinsic that will be |
| supported at some point. */ |
| static __inline int _xbegin() { |
| int res = -1; |
| |
| #if KMP_OS_WINDOWS |
| #if KMP_ARCH_X86_64 |
| _asm { |
| _emit 0xC7 |
| _emit 0xF8 |
| _emit 2 |
| _emit 0 |
| _emit 0 |
| _emit 0 |
| jmp L2 |
| mov res, eax |
| L2: |
| } |
| #else /* IA32 */ |
| _asm { |
| _emit 0xC7 |
| _emit 0xF8 |
| _emit 2 |
| _emit 0 |
| _emit 0 |
| _emit 0 |
| jmp L2 |
| mov res, eax |
| L2: |
| } |
| #endif // KMP_ARCH_X86_64 |
| #else |
| /* Note that %eax must be noted as killed (clobbered), because the XSR is |
| returned in %eax(%rax) on abort. Other register values are restored, so |
| don't need to be killed. |
| |
| We must also mark 'res' as an input and an output, since otherwise |
| 'res=-1' may be dropped as being dead, whereas we do need the assignment on |
| the successful (i.e., non-abort) path. */ |
| __asm__ volatile("1: .byte 0xC7; .byte 0xF8;\n" |
| " .long 1f-1b-6\n" |
| " jmp 2f\n" |
| "1: movl %%eax,%0\n" |
| "2:" |
| : "+r"(res)::"memory", "%eax"); |
| #endif // KMP_OS_WINDOWS |
| return res; |
| } |
| |
| /* Transaction end */ |
| static __inline void _xend() { |
| #if KMP_OS_WINDOWS |
| __asm { |
| _emit 0x0f |
| _emit 0x01 |
| _emit 0xd5 |
| } |
| #else |
| __asm__ volatile(".byte 0x0f; .byte 0x01; .byte 0xd5" ::: "memory"); |
| #endif |
| } |
| |
| /* This is a macro, the argument must be a single byte constant which can be |
| evaluated by the inline assembler, since it is emitted as a byte into the |
| assembly code. */ |
| // clang-format off |
| #if KMP_OS_WINDOWS |
| #define _xabort(ARG) _asm _emit 0xc6 _asm _emit 0xf8 _asm _emit ARG |
| #else |
| #define _xabort(ARG) \ |
| __asm__ volatile(".byte 0xC6; .byte 0xF8; .byte " STRINGIZE(ARG):::"memory"); |
| #endif |
| // clang-format on |
| #endif // KMP_COMPILER_ICC && __INTEL_COMPILER >= 1300 |
| |
| // Statistics is collected for testing purpose |
| #if KMP_DEBUG_ADAPTIVE_LOCKS |
| |
| // We accumulate speculative lock statistics when the lock is destroyed. We |
| // keep locks that haven't been destroyed in the liveLocks list so that we can |
| // grab their statistics too. |
| static kmp_adaptive_lock_statistics_t destroyedStats; |
| |
| // To hold the list of live locks. |
| static kmp_adaptive_lock_info_t liveLocks; |
| |
| // A lock so we can safely update the list of locks. |
| static kmp_bootstrap_lock_t chain_lock = |
| KMP_BOOTSTRAP_LOCK_INITIALIZER(chain_lock); |
| |
| // Initialize the list of stats. |
| void __kmp_init_speculative_stats() { |
| kmp_adaptive_lock_info_t *lck = &liveLocks; |
| |
| memset(CCAST(kmp_adaptive_lock_statistics_t *, &(lck->stats)), 0, |
| sizeof(lck->stats)); |
| lck->stats.next = lck; |
| lck->stats.prev = lck; |
| |
| KMP_ASSERT(lck->stats.next->stats.prev == lck); |
| KMP_ASSERT(lck->stats.prev->stats.next == lck); |
| |
| __kmp_init_bootstrap_lock(&chain_lock); |
| } |
| |
| // Insert the lock into the circular list |
| static void __kmp_remember_lock(kmp_adaptive_lock_info_t *lck) { |
| __kmp_acquire_bootstrap_lock(&chain_lock); |
| |
| lck->stats.next = liveLocks.stats.next; |
| lck->stats.prev = &liveLocks; |
| |
| liveLocks.stats.next = lck; |
| lck->stats.next->stats.prev = lck; |
| |
| KMP_ASSERT(lck->stats.next->stats.prev == lck); |
| KMP_ASSERT(lck->stats.prev->stats.next == lck); |
| |
| __kmp_release_bootstrap_lock(&chain_lock); |
| } |
| |
| static void __kmp_forget_lock(kmp_adaptive_lock_info_t *lck) { |
| KMP_ASSERT(lck->stats.next->stats.prev == lck); |
| KMP_ASSERT(lck->stats.prev->stats.next == lck); |
| |
| kmp_adaptive_lock_info_t *n = lck->stats.next; |
| kmp_adaptive_lock_info_t *p = lck->stats.prev; |
| |
| n->stats.prev = p; |
| p->stats.next = n; |
| } |
| |
| static void __kmp_zero_speculative_stats(kmp_adaptive_lock_info_t *lck) { |
| memset(CCAST(kmp_adaptive_lock_statistics_t *, &lck->stats), 0, |
| sizeof(lck->stats)); |
| __kmp_remember_lock(lck); |
| } |
| |
| static void __kmp_add_stats(kmp_adaptive_lock_statistics_t *t, |
| kmp_adaptive_lock_info_t *lck) { |
| kmp_adaptive_lock_statistics_t volatile *s = &lck->stats; |
| |
| t->nonSpeculativeAcquireAttempts += lck->acquire_attempts; |
| t->successfulSpeculations += s->successfulSpeculations; |
| t->hardFailedSpeculations += s->hardFailedSpeculations; |
| t->softFailedSpeculations += s->softFailedSpeculations; |
| t->nonSpeculativeAcquires += s->nonSpeculativeAcquires; |
| t->lemmingYields += s->lemmingYields; |
| } |
| |
| static void __kmp_accumulate_speculative_stats(kmp_adaptive_lock_info_t *lck) { |
| __kmp_acquire_bootstrap_lock(&chain_lock); |
| |
| __kmp_add_stats(&destroyedStats, lck); |
| __kmp_forget_lock(lck); |
| |
| __kmp_release_bootstrap_lock(&chain_lock); |
| } |
| |
| static float percent(kmp_uint32 count, kmp_uint32 total) { |
| return (total == 0) ? 0.0 : (100.0 * count) / total; |
| } |
| |
| static FILE *__kmp_open_stats_file() { |
| if (strcmp(__kmp_speculative_statsfile, "-") == 0) |
| return stdout; |
| |
| size_t buffLen = KMP_STRLEN(__kmp_speculative_statsfile) + 20; |
| char buffer[buffLen]; |
| KMP_SNPRINTF(&buffer[0], buffLen, __kmp_speculative_statsfile, |
| (kmp_int32)getpid()); |
| FILE *result = fopen(&buffer[0], "w"); |
| |
| // Maybe we should issue a warning here... |
| return result ? result : stdout; |
| } |
| |
| void __kmp_print_speculative_stats() { |
| kmp_adaptive_lock_statistics_t total = destroyedStats; |
| kmp_adaptive_lock_info_t *lck; |
| |
| for (lck = liveLocks.stats.next; lck != &liveLocks; lck = lck->stats.next) { |
| __kmp_add_stats(&total, lck); |
| } |
| kmp_adaptive_lock_statistics_t *t = &total; |
| kmp_uint32 totalSections = |
| t->nonSpeculativeAcquires + t->successfulSpeculations; |
| kmp_uint32 totalSpeculations = t->successfulSpeculations + |
| t->hardFailedSpeculations + |
| t->softFailedSpeculations; |
| if (totalSections <= 0) |
| return; |
| |
| FILE *statsFile = __kmp_open_stats_file(); |
| |
| fprintf(statsFile, "Speculative lock statistics (all approximate!)\n"); |
| fprintf(statsFile, " Lock parameters: \n" |
| " max_soft_retries : %10d\n" |
| " max_badness : %10d\n", |
| __kmp_adaptive_backoff_params.max_soft_retries, |
| __kmp_adaptive_backoff_params.max_badness); |
| fprintf(statsFile, " Non-speculative acquire attempts : %10d\n", |
| t->nonSpeculativeAcquireAttempts); |
| fprintf(statsFile, " Total critical sections : %10d\n", |
| totalSections); |
| fprintf(statsFile, " Successful speculations : %10d (%5.1f%%)\n", |
| t->successfulSpeculations, |
| percent(t->successfulSpeculations, totalSections)); |
| fprintf(statsFile, " Non-speculative acquires : %10d (%5.1f%%)\n", |
| t->nonSpeculativeAcquires, |
| percent(t->nonSpeculativeAcquires, totalSections)); |
| fprintf(statsFile, " Lemming yields : %10d\n\n", |
| t->lemmingYields); |
| |
| fprintf(statsFile, " Speculative acquire attempts : %10d\n", |
| totalSpeculations); |
| fprintf(statsFile, " Successes : %10d (%5.1f%%)\n", |
| t->successfulSpeculations, |
| percent(t->successfulSpeculations, totalSpeculations)); |
| fprintf(statsFile, " Soft failures : %10d (%5.1f%%)\n", |
| t->softFailedSpeculations, |
| percent(t->softFailedSpeculations, totalSpeculations)); |
| fprintf(statsFile, " Hard failures : %10d (%5.1f%%)\n", |
| t->hardFailedSpeculations, |
| percent(t->hardFailedSpeculations, totalSpeculations)); |
| |
| if (statsFile != stdout) |
| fclose(statsFile); |
| } |
| |
| #define KMP_INC_STAT(lck, stat) (lck->lk.adaptive.stats.stat++) |
| #else |
| #define KMP_INC_STAT(lck, stat) |
| |
| #endif // KMP_DEBUG_ADAPTIVE_LOCKS |
| |
| static inline bool __kmp_is_unlocked_queuing_lock(kmp_queuing_lock_t *lck) { |
| // It is enough to check that the head_id is zero. |
| // We don't also need to check the tail. |
| bool res = lck->lk.head_id == 0; |
| |
| // We need a fence here, since we must ensure that no memory operations |
| // from later in this thread float above that read. |
| #if KMP_COMPILER_ICC |
| _mm_mfence(); |
| #else |
| __sync_synchronize(); |
| #endif |
| |
| return res; |
| } |
| |
| // Functions for manipulating the badness |
| static __inline void |
| __kmp_update_badness_after_success(kmp_adaptive_lock_t *lck) { |
| // Reset the badness to zero so we eagerly try to speculate again |
| lck->lk.adaptive.badness = 0; |
| KMP_INC_STAT(lck, successfulSpeculations); |
| } |
| |
| // Create a bit mask with one more set bit. |
| static __inline void __kmp_step_badness(kmp_adaptive_lock_t *lck) { |
| kmp_uint32 newBadness = (lck->lk.adaptive.badness << 1) | 1; |
| if (newBadness > lck->lk.adaptive.max_badness) { |
| return; |
| } else { |
| lck->lk.adaptive.badness = newBadness; |
| } |
| } |
| |
| // Check whether speculation should be attempted. |
| static __inline int __kmp_should_speculate(kmp_adaptive_lock_t *lck, |
| kmp_int32 gtid) { |
| kmp_uint32 badness = lck->lk.adaptive.badness; |
| kmp_uint32 attempts = lck->lk.adaptive.acquire_attempts; |
| int res = (attempts & badness) == 0; |
| return res; |
| } |
| |
| // Attempt to acquire only the speculative lock. |
| // Does not back off to the non-speculative lock. |
| static int __kmp_test_adaptive_lock_only(kmp_adaptive_lock_t *lck, |
| kmp_int32 gtid) { |
| int retries = lck->lk.adaptive.max_soft_retries; |
| |
| // We don't explicitly count the start of speculation, rather we record the |
| // results (success, hard fail, soft fail). The sum of all of those is the |
| // total number of times we started speculation since all speculations must |
| // end one of those ways. |
| do { |
| kmp_uint32 status = _xbegin(); |
| // Switch this in to disable actual speculation but exercise at least some |
| // of the rest of the code. Useful for debugging... |
| // kmp_uint32 status = _XABORT_NESTED; |
| |
| if (status == _XBEGIN_STARTED) { |
| /* We have successfully started speculation. Check that no-one acquired |
| the lock for real between when we last looked and now. This also gets |
| the lock cache line into our read-set, which we need so that we'll |
| abort if anyone later claims it for real. */ |
| if (!__kmp_is_unlocked_queuing_lock(GET_QLK_PTR(lck))) { |
| // Lock is now visibly acquired, so someone beat us to it. Abort the |
| // transaction so we'll restart from _xbegin with the failure status. |
| _xabort(0x01); |
| KMP_ASSERT2(0, "should not get here"); |
| } |
| return 1; // Lock has been acquired (speculatively) |
| } else { |
| // We have aborted, update the statistics |
| if (status & SOFT_ABORT_MASK) { |
| KMP_INC_STAT(lck, softFailedSpeculations); |
| // and loop round to retry. |
| } else { |
| KMP_INC_STAT(lck, hardFailedSpeculations); |
| // Give up if we had a hard failure. |
| break; |
| } |
| } |
| } while (retries--); // Loop while we have retries, and didn't fail hard. |
| |
| // Either we had a hard failure or we didn't succeed softly after |
| // the full set of attempts, so back off the badness. |
| __kmp_step_badness(lck); |
| return 0; |
| } |
| |
| // Attempt to acquire the speculative lock, or back off to the non-speculative |
| // one if the speculative lock cannot be acquired. |
| // We can succeed speculatively, non-speculatively, or fail. |
| static int __kmp_test_adaptive_lock(kmp_adaptive_lock_t *lck, kmp_int32 gtid) { |
| // First try to acquire the lock speculatively |
| if (__kmp_should_speculate(lck, gtid) && |
| __kmp_test_adaptive_lock_only(lck, gtid)) |
| return 1; |
| |
| // Speculative acquisition failed, so try to acquire it non-speculatively. |
| // Count the non-speculative acquire attempt |
| lck->lk.adaptive.acquire_attempts++; |
| |
| // Use base, non-speculative lock. |
| if (__kmp_test_queuing_lock(GET_QLK_PTR(lck), gtid)) { |
| KMP_INC_STAT(lck, nonSpeculativeAcquires); |
| return 1; // Lock is acquired (non-speculatively) |
| } else { |
| return 0; // Failed to acquire the lock, it's already visibly locked. |
| } |
| } |
| |
| static int __kmp_test_adaptive_lock_with_checks(kmp_adaptive_lock_t *lck, |
| kmp_int32 gtid) { |
| char const *const func = "omp_test_lock"; |
| if (lck->lk.qlk.initialized != GET_QLK_PTR(lck)) { |
| KMP_FATAL(LockIsUninitialized, func); |
| } |
| |
| int retval = __kmp_test_adaptive_lock(lck, gtid); |
| |
| if (retval) { |
| lck->lk.qlk.owner_id = gtid + 1; |
| } |
| return retval; |
| } |
| |
| // Block until we can acquire a speculative, adaptive lock. We check whether we |
| // should be trying to speculate. If we should be, we check the real lock to see |
| // if it is free, and, if not, pause without attempting to acquire it until it |
| // is. Then we try the speculative acquire. This means that although we suffer |
| // from lemmings a little (because all we can't acquire the lock speculatively |
| // until the queue of threads waiting has cleared), we don't get into a state |
| // where we can never acquire the lock speculatively (because we force the queue |
| // to clear by preventing new arrivals from entering the queue). This does mean |
| // that when we're trying to break lemmings, the lock is no longer fair. However |
| // OpenMP makes no guarantee that its locks are fair, so this isn't a real |
| // problem. |
| static void __kmp_acquire_adaptive_lock(kmp_adaptive_lock_t *lck, |
| kmp_int32 gtid) { |
| if (__kmp_should_speculate(lck, gtid)) { |
| if (__kmp_is_unlocked_queuing_lock(GET_QLK_PTR(lck))) { |
| if (__kmp_test_adaptive_lock_only(lck, gtid)) |
| return; |
| // We tried speculation and failed, so give up. |
| } else { |
| // We can't try speculation until the lock is free, so we pause here |
| // (without suspending on the queueing lock, to allow it to drain, then |
| // try again. All other threads will also see the same result for |
| // shouldSpeculate, so will be doing the same if they try to claim the |
| // lock from now on. |
| while (!__kmp_is_unlocked_queuing_lock(GET_QLK_PTR(lck))) { |
| KMP_INC_STAT(lck, lemmingYields); |
| __kmp_yield(TRUE); |
| } |
| |
| if (__kmp_test_adaptive_lock_only(lck, gtid)) |
| return; |
| } |
| } |
| |
| // Speculative acquisition failed, so acquire it non-speculatively. |
| // Count the non-speculative acquire attempt |
| lck->lk.adaptive.acquire_attempts++; |
| |
| __kmp_acquire_queuing_lock_timed_template<FALSE>(GET_QLK_PTR(lck), gtid); |
| // We have acquired the base lock, so count that. |
| KMP_INC_STAT(lck, nonSpeculativeAcquires); |
| ANNOTATE_QUEUING_ACQUIRED(lck); |
| } |
| |
| static void __kmp_acquire_adaptive_lock_with_checks(kmp_adaptive_lock_t *lck, |
| kmp_int32 gtid) { |
| char const *const func = "omp_set_lock"; |
| if (lck->lk.qlk.initialized != GET_QLK_PTR(lck)) { |
| KMP_FATAL(LockIsUninitialized, func); |
| } |
| if (__kmp_get_queuing_lock_owner(GET_QLK_PTR(lck)) == gtid) { |
| KMP_FATAL(LockIsAlreadyOwned, func); |
| } |
| |
| __kmp_acquire_adaptive_lock(lck, gtid); |
| |
| lck->lk.qlk.owner_id = gtid + 1; |
| } |
| |
| static int __kmp_release_adaptive_lock(kmp_adaptive_lock_t *lck, |
| kmp_int32 gtid) { |
| if (__kmp_is_unlocked_queuing_lock(GET_QLK_PTR( |
| lck))) { // If the lock doesn't look claimed we must be speculating. |
| // (Or the user's code is buggy and they're releasing without locking; |
| // if we had XTEST we'd be able to check that case...) |
| _xend(); // Exit speculation |
| __kmp_update_badness_after_success(lck); |
| } else { // Since the lock *is* visibly locked we're not speculating, |
| // so should use the underlying lock's release scheme. |
| __kmp_release_queuing_lock(GET_QLK_PTR(lck), gtid); |
| } |
| return KMP_LOCK_RELEASED; |
| } |
| |
| static int __kmp_release_adaptive_lock_with_checks(kmp_adaptive_lock_t *lck, |
| kmp_int32 gtid) { |
| char const *const func = "omp_unset_lock"; |
| KMP_MB(); /* in case another processor initialized lock */ |
| if (lck->lk.qlk.initialized != GET_QLK_PTR(lck)) { |
| KMP_FATAL(LockIsUninitialized, func); |
| } |
| if (__kmp_get_queuing_lock_owner(GET_QLK_PTR(lck)) == -1) { |
| KMP_FATAL(LockUnsettingFree, func); |
| } |
| if (__kmp_get_queuing_lock_owner(GET_QLK_PTR(lck)) != gtid) { |
| KMP_FATAL(LockUnsettingSetByAnother, func); |
| } |
| lck->lk.qlk.owner_id = 0; |
| __kmp_release_adaptive_lock(lck, gtid); |
| return KMP_LOCK_RELEASED; |
| } |
| |
| static void __kmp_init_adaptive_lock(kmp_adaptive_lock_t *lck) { |
| __kmp_init_queuing_lock(GET_QLK_PTR(lck)); |
| lck->lk.adaptive.badness = 0; |
| lck->lk.adaptive.acquire_attempts = 0; // nonSpeculativeAcquireAttempts = 0; |
| lck->lk.adaptive.max_soft_retries = |
| __kmp_adaptive_backoff_params.max_soft_retries; |
| lck->lk.adaptive.max_badness = __kmp_adaptive_backoff_params.max_badness; |
| #if KMP_DEBUG_ADAPTIVE_LOCKS |
| __kmp_zero_speculative_stats(&lck->lk.adaptive); |
| #endif |
| KA_TRACE(1000, ("__kmp_init_adaptive_lock: lock %p initialized\n", lck)); |
| } |
| |
| static void __kmp_init_adaptive_lock_with_checks(kmp_adaptive_lock_t *lck) { |
| __kmp_init_adaptive_lock(lck); |
| } |
| |
| static void __kmp_destroy_adaptive_lock(kmp_adaptive_lock_t *lck) { |
| #if KMP_DEBUG_ADAPTIVE_LOCKS |
| __kmp_accumulate_speculative_stats(&lck->lk.adaptive); |
| #endif |
| __kmp_destroy_queuing_lock(GET_QLK_PTR(lck)); |
| // Nothing needed for the speculative part. |
| } |
| |
| static void __kmp_destroy_adaptive_lock_with_checks(kmp_adaptive_lock_t *lck) { |
| char const *const func = "omp_destroy_lock"; |
| if (lck->lk.qlk.initialized != GET_QLK_PTR(lck)) { |
| KMP_FATAL(LockIsUninitialized, func); |
| } |
| if (__kmp_get_queuing_lock_owner(GET_QLK_PTR(lck)) != -1) { |
| KMP_FATAL(LockStillOwned, func); |
| } |
| __kmp_destroy_adaptive_lock(lck); |
| } |
| |
| #endif // KMP_USE_ADAPTIVE_LOCKS |
| |
| /* ------------------------------------------------------------------------ */ |
| /* DRDPA ticket locks */ |
| /* "DRDPA" means Dynamically Reconfigurable Distributed Polling Area */ |
| |
| static kmp_int32 __kmp_get_drdpa_lock_owner(kmp_drdpa_lock_t *lck) { |
| return lck->lk.owner_id - 1; |
| } |
| |
| static inline bool __kmp_is_drdpa_lock_nestable(kmp_drdpa_lock_t *lck) { |
| return lck->lk.depth_locked != -1; |
| } |
| |
| __forceinline static int |
| __kmp_acquire_drdpa_lock_timed_template(kmp_drdpa_lock_t *lck, kmp_int32 gtid) { |
| kmp_uint64 ticket = KMP_ATOMIC_INC(&lck->lk.next_ticket); |
| kmp_uint64 mask = lck->lk.mask; // atomic load |
| std::atomic<kmp_uint64> *polls = lck->lk.polls; |
| |
| #ifdef USE_LOCK_PROFILE |
| if (polls[ticket & mask] != ticket) |
| __kmp_printf("LOCK CONTENTION: %p\n", lck); |
| /* else __kmp_printf( "." );*/ |
| #endif /* USE_LOCK_PROFILE */ |
| |
| // Now spin-wait, but reload the polls pointer and mask, in case the |
| // polling area has been reconfigured. Unless it is reconfigured, the |
| // reloads stay in L1 cache and are cheap. |
| // |
| // Keep this code in sync with KMP_WAIT_YIELD, in kmp_dispatch.cpp !!! |
| // |
| // The current implementation of KMP_WAIT_YIELD doesn't allow for mask |
| // and poll to be re-read every spin iteration. |
| kmp_uint32 spins; |
| |
| KMP_FSYNC_PREPARE(lck); |
| KMP_INIT_YIELD(spins); |
| while (polls[ticket & mask] < ticket) { // atomic load |
| // If we are oversubscribed, |
| // or have waited a bit (and KMP_LIBRARY=turnaround), then yield. |
| // CPU Pause is in the macros for yield. |
| // |
| KMP_YIELD(TCR_4(__kmp_nth) > |
| (__kmp_avail_proc ? __kmp_avail_proc : __kmp_xproc)); |
| KMP_YIELD_SPIN(spins); |
| |
| // Re-read the mask and the poll pointer from the lock structure. |
| // |
| // Make certain that "mask" is read before "polls" !!! |
| // |
| // If another thread picks reconfigures the polling area and updates their |
| // values, and we get the new value of mask and the old polls pointer, we |
| // could access memory beyond the end of the old polling area. |
| mask = lck->lk.mask; // atomic load |
| polls = lck->lk.polls; // atomic load |
| } |
| |
| // Critical section starts here |
| KMP_FSYNC_ACQUIRED(lck); |
| KA_TRACE(1000, ("__kmp_acquire_drdpa_lock: ticket #%lld acquired lock %p\n", |
| ticket, lck)); |
| lck->lk.now_serving = ticket; // non-volatile store |
| |
| // Deallocate a garbage polling area if we know that we are the last |
| // thread that could possibly access it. |
| // |
| // The >= check is in case __kmp_test_drdpa_lock() allocated the cleanup |
| // ticket. |
| if ((lck->lk.old_polls != NULL) && (ticket >= lck->lk.cleanup_ticket)) { |
| __kmp_free(lck->lk.old_polls); |
| lck->lk.old_polls = NULL; |
| lck->lk.cleanup_ticket = 0; |
| } |
| |
| // Check to see if we should reconfigure the polling area. |
| // If there is still a garbage polling area to be deallocated from a |
| // previous reconfiguration, let a later thread reconfigure it. |
| if (lck->lk.old_polls == NULL) { |
| bool reconfigure = false; |
| std::atomic<kmp_uint64> *old_polls = polls; |
| kmp_uint32 num_polls = TCR_4(lck->lk.num_polls); |
| |
| if (TCR_4(__kmp_nth) > |
| (__kmp_avail_proc ? __kmp_avail_proc : __kmp_xproc)) { |
| // We are in oversubscription mode. Contract the polling area |
| // down to a single location, if that hasn't been done already. |
| if (num_polls > 1) { |
| reconfigure = true; |
| num_polls = TCR_4(lck->lk.num_polls); |
| mask = 0; |
| num_polls = 1; |
| polls = (std::atomic<kmp_uint64> *)__kmp_allocate(num_polls * |
| sizeof(*polls)); |
| polls[0] = ticket; |
| } |
| } else { |
| // We are in under/fully subscribed mode. Check the number of |
| // threads waiting on the lock. The size of the polling area |
| // should be at least the number of threads waiting. |
| kmp_uint64 num_waiting = TCR_8(lck->lk.next_ticket) - ticket - 1; |
| if (num_waiting > num_polls) { |
| kmp_uint32 old_num_polls = num_polls; |
| reconfigure = true; |
| do { |
| mask = (mask << 1) | 1; |
| num_polls *= 2; |
| } while (num_polls <= num_waiting); |
| |
| // Allocate the new polling area, and copy the relevant portion |
| // of the old polling area to the new area. __kmp_allocate() |
| // zeroes the memory it allocates, and most of the old area is |
| // just zero padding, so we only copy the release counters. |
| polls = (std::atomic<kmp_uint64> *)__kmp_allocate(num_polls * |
| sizeof(*polls)); |
| kmp_uint32 i; |
| for (i = 0; i < old_num_polls; i++) { |
| polls[i].store(old_polls[i]); |
| } |
| } |
| } |
| |
| if (reconfigure) { |
| // Now write the updated fields back to the lock structure. |
| // |
| // Make certain that "polls" is written before "mask" !!! |
| // |
| // If another thread picks up the new value of mask and the old polls |
| // pointer , it could access memory beyond the end of the old polling |
| // area. |
| // |
| // On x86, we need memory fences. |
| KA_TRACE(1000, ("__kmp_acquire_drdpa_lock: ticket #%lld reconfiguring " |
| "lock %p to %d polls\n", |
| ticket, lck, num_polls)); |
| |
| lck->lk.old_polls = old_polls; |
| lck->lk.polls = polls; // atomic store |
| |
| KMP_MB(); |
| |
| lck->lk.num_polls = num_polls; |
| lck->lk.mask = mask; // atomic store |
| |
| KMP_MB(); |
| |
| // Only after the new polling area and mask have been flushed |
| // to main memory can we update the cleanup ticket field. |
| // |
| // volatile load / non-volatile store |
| lck->lk.cleanup_ticket = lck->lk.next_ticket; |
| } |
| } |
| return KMP_LOCK_ACQUIRED_FIRST; |
| } |
| |
| int __kmp_acquire_drdpa_lock(kmp_drdpa_lock_t *lck, kmp_int32 gtid) { |
| int retval = __kmp_acquire_drdpa_lock_timed_template(lck, gtid); |
| ANNOTATE_DRDPA_ACQUIRED(lck); |
| return retval; |
| } |
| |
| static int __kmp_acquire_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck, |
| kmp_int32 gtid) { |
| char const *const func = "omp_set_lock"; |
| if (lck->lk.initialized != lck) { |
| KMP_FATAL(LockIsUninitialized, func); |
| } |
| if (__kmp_is_drdpa_lock_nestable(lck)) { |
| KMP_FATAL(LockNestableUsedAsSimple, func); |
| } |
| if ((gtid >= 0) && (__kmp_get_drdpa_lock_owner(lck) == gtid)) { |
| KMP_FATAL(LockIsAlreadyOwned, func); |
| } |
| |
| __kmp_acquire_drdpa_lock(lck, gtid); |
| |
| lck->lk.owner_id = gtid + 1; |
| return KMP_LOCK_ACQUIRED_FIRST; |
| } |
| |
| int __kmp_test_drdpa_lock(kmp_drdpa_lock_t *lck, kmp_int32 gtid) { |
| // First get a ticket, then read the polls pointer and the mask. |
| // The polls pointer must be read before the mask!!! (See above) |
| kmp_uint64 ticket = lck->lk.next_ticket; // atomic load |
| std::atomic<kmp_uint64> *polls = lck->lk.polls; |
| kmp_uint64 mask = lck->lk.mask; // atomic load |
| if (polls[ticket & mask] == ticket) { |
| kmp_uint64 next_ticket = ticket + 1; |
| if (__kmp_atomic_compare_store_acq(&lck->lk.next_ticket, ticket, |
| next_ticket)) { |
| KMP_FSYNC_ACQUIRED(lck); |
| KA_TRACE(1000, ("__kmp_test_drdpa_lock: ticket #%lld acquired lock %p\n", |
| ticket, lck)); |
| lck->lk.now_serving = ticket; // non-volatile store |
| |
| // Since no threads are waiting, there is no possibility that we would |
| // want to reconfigure the polling area. We might have the cleanup ticket |
| // value (which says that it is now safe to deallocate old_polls), but |
| // we'll let a later thread which calls __kmp_acquire_lock do that - this |
| // routine isn't supposed to block, and we would risk blocks if we called |
| // __kmp_free() to do the deallocation. |
| return TRUE; |
| } |
| } |
| return FALSE; |
| } |
| |
| static int __kmp_test_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck, |
| kmp_int32 gtid) { |
| char const *const func = "omp_test_lock"; |
| if (lck->lk.initialized != lck) { |
| KMP_FATAL(LockIsUninitialized, func); |
| } |
| if (__kmp_is_drdpa_lock_nestable(lck)) { |
| KMP_FATAL(LockNestableUsedAsSimple, func); |
| } |
| |
| int retval = __kmp_test_drdpa_lock(lck, gtid); |
| |
| if (retval) { |
| lck->lk.owner_id = gtid + 1; |
| } |
| return retval; |
| } |
| |
| int __kmp_release_drdpa_lock(kmp_drdpa_lock_t *lck, kmp_int32 gtid) { |
| // Read the ticket value from the lock data struct, then the polls pointer and |
| // the mask. The polls pointer must be read before the mask!!! (See above) |
| kmp_uint64 ticket = lck->lk.now_serving + 1; // non-atomic load |
| std::atomic<kmp_uint64> *polls = lck->lk.polls; // atomic load |
| kmp_uint64 mask = lck->lk.mask; // atomic load |
| KA_TRACE(1000, ("__kmp_release_drdpa_lock: ticket #%lld released lock %p\n", |
| ticket - 1, lck)); |
| KMP_FSYNC_RELEASING(lck); |
| ANNOTATE_DRDPA_RELEASED(lck); |
| polls[ticket & mask] = ticket; // atomic store |
| return KMP_LOCK_RELEASED; |
| } |
| |
| static int __kmp_release_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck, |
| kmp_int32 gtid) { |
| char const *const func = "omp_unset_lock"; |
| KMP_MB(); /* in case another processor initialized lock */ |
| if (lck->lk.initialized != lck) { |
| KMP_FATAL(LockIsUninitialized, func); |
| } |
| if (__kmp_is_drdpa_lock_nestable(lck)) { |
| KMP_FATAL(LockNestableUsedAsSimple, func); |
| } |
| if (__kmp_get_drdpa_lock_owner(lck) == -1) { |
| KMP_FATAL(LockUnsettingFree, func); |
| } |
| if ((gtid >= 0) && (__kmp_get_drdpa_lock_owner(lck) >= 0) && |
| (__kmp_get_drdpa_lock_owner(lck) != gtid)) { |
| KMP_FATAL(LockUnsettingSetByAnother, func); |
| } |
| lck->lk.owner_id = 0; |
| return __kmp_release_drdpa_lock(lck, gtid); |
| } |
| |
| void __kmp_init_drdpa_lock(kmp_drdpa_lock_t *lck) { |
| lck->lk.location = NULL; |
| lck->lk.mask = 0; |
| lck->lk.num_polls = 1; |
| lck->lk.polls = (std::atomic<kmp_uint64> *)__kmp_allocate( |
| lck->lk.num_polls * sizeof(*(lck->lk.polls))); |
| lck->lk.cleanup_ticket = 0; |
| lck->lk.old_polls = NULL; |
| lck->lk.next_ticket = 0; |
| lck->lk.now_serving = 0; |
| lck->lk.owner_id = 0; // no thread owns the lock. |
| lck->lk.depth_locked = -1; // >= 0 for nestable locks, -1 for simple locks. |
| lck->lk.initialized = lck; |
| |
| KA_TRACE(1000, ("__kmp_init_drdpa_lock: lock %p initialized\n", lck)); |
| } |
| |
| static void __kmp_init_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck) { |
| __kmp_init_drdpa_lock(lck); |
| } |
| |
| void __kmp_destroy_drdpa_lock(kmp_drdpa_lock_t *lck) { |
| lck->lk.initialized = NULL; |
| lck->lk.location = NULL; |
| if (lck->lk.polls.load() != NULL) { |
| __kmp_free(lck->lk.polls.load()); |
| lck->lk.polls = NULL; |
| } |
| if (lck->lk.old_polls != NULL) { |
| __kmp_free(lck->lk.old_polls); |
| lck->lk.old_polls = NULL; |
| } |
| lck->lk.mask = 0; |
| lck->lk.num_polls = 0; |
| lck->lk.cleanup_ticket = 0; |
| lck->lk.next_ticket = 0; |
| lck->lk.now_serving = 0; |
| lck->lk.owner_id = 0; |
| lck->lk.depth_locked = -1; |
| } |
| |
| static void __kmp_destroy_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck) { |
| char const *const func = "omp_destroy_lock"; |
| if (lck->lk.initialized != lck) { |
| KMP_FATAL(LockIsUninitialized, func); |
| } |
| if (__kmp_is_drdpa_lock_nestable(lck)) { |
| KMP_FATAL(LockNestableUsedAsSimple, func); |
| } |
| if (__kmp_get_drdpa_lock_owner(lck) != -1) { |
| KMP_FATAL(LockStillOwned, func); |
| } |
| __kmp_destroy_drdpa_lock(lck); |
| } |
| |
| // nested drdpa ticket locks |
| |
| int __kmp_acquire_nested_drdpa_lock(kmp_drdpa_lock_t *lck, kmp_int32 gtid) { |
| KMP_DEBUG_ASSERT(gtid >= 0); |
| |
| if (__kmp_get_drdpa_lock_owner(lck) == gtid) { |
| lck->lk.depth_locked += 1; |
| return KMP_LOCK_ACQUIRED_NEXT; |
| } else { |
| __kmp_acquire_drdpa_lock_timed_template(lck, gtid); |
| ANNOTATE_DRDPA_ACQUIRED(lck); |
| KMP_MB(); |
| lck->lk.depth_locked = 1; |
| KMP_MB(); |
| lck->lk.owner_id = gtid + 1; |
| return KMP_LOCK_ACQUIRED_FIRST; |
| } |
| } |
| |
| static void __kmp_acquire_nested_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck, |
| kmp_int32 gtid) { |
| char const *const func = "omp_set_nest_lock"; |
| if (lck->lk.initialized != lck) { |
| KMP_FATAL(LockIsUninitialized, func); |
| } |
| if (!__kmp_is_drdpa_lock_nestable(lck)) { |
| KMP_FATAL(LockSimpleUsedAsNestable, func); |
| } |
| __kmp_acquire_nested_drdpa_lock(lck, gtid); |
| } |
| |
| int __kmp_test_nested_drdpa_lock(kmp_drdpa_lock_t *lck, kmp_int32 gtid) { |
| int retval; |
| |
| KMP_DEBUG_ASSERT(gtid >= 0); |
| |
| if (__kmp_get_drdpa_lock_owner(lck) == gtid) { |
| retval = ++lck->lk.depth_locked; |
| } else if (!__kmp_test_drdpa_lock(lck, gtid)) { |
| retval = 0; |
| } else { |
| KMP_MB(); |
| retval = lck->lk.depth_locked = 1; |
| KMP_MB(); |
| lck->lk.owner_id = gtid + 1; |
| } |
| return retval; |
| } |
| |
| static int __kmp_test_nested_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck, |
| kmp_int32 gtid) { |
| char const *const func = "omp_test_nest_lock"; |
| if (lck->lk.initialized != lck) { |
| KMP_FATAL(LockIsUninitialized, func); |
| } |
| if (!__kmp_is_drdpa_lock_nestable(lck)) { |
| KMP_FATAL(LockSimpleUsedAsNestable, func); |
| } |
| return __kmp_test_nested_drdpa_lock(lck, gtid); |
| } |
| |
| int __kmp_release_nested_drdpa_lock(kmp_drdpa_lock_t *lck, kmp_int32 gtid) { |
| KMP_DEBUG_ASSERT(gtid >= 0); |
| |
| KMP_MB(); |
| if (--(lck->lk.depth_locked) == 0) { |
| KMP_MB(); |
| lck->lk.owner_id = 0; |
| __kmp_release_drdpa_lock(lck, gtid); |
| return KMP_LOCK_RELEASED; |
| } |
| return KMP_LOCK_STILL_HELD; |
| } |
| |
| static int __kmp_release_nested_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck, |
| kmp_int32 gtid) { |
| char const *const func = "omp_unset_nest_lock"; |
| KMP_MB(); /* in case another processor initialized lock */ |
| if (lck->lk.initialized != lck) { |
| KMP_FATAL(LockIsUninitialized, func); |
| } |
| if (!__kmp_is_drdpa_lock_nestable(lck)) { |
| KMP_FATAL(LockSimpleUsedAsNestable, func); |
| } |
| if (__kmp_get_drdpa_lock_owner(lck) == -1) { |
| KMP_FATAL(LockUnsettingFree, func); |
| } |
| if (__kmp_get_drdpa_lock_owner(lck) != gtid) { |
| KMP_FATAL(LockUnsettingSetByAnother, func); |
| } |
| return __kmp_release_nested_drdpa_lock(lck, gtid); |
| } |
| |
| void __kmp_init_nested_drdpa_lock(kmp_drdpa_lock_t *lck) { |
| __kmp_init_drdpa_lock(lck); |
| lck->lk.depth_locked = 0; // >= 0 for nestable locks, -1 for simple locks |
| } |
| |
| static void __kmp_init_nested_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck) { |
| __kmp_init_nested_drdpa_lock(lck); |
| } |
| |
| void __kmp_destroy_nested_drdpa_lock(kmp_drdpa_lock_t *lck) { |
| __kmp_destroy_drdpa_lock(lck); |
| lck->lk.depth_locked = 0; |
| } |
| |
| static void __kmp_destroy_nested_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck) { |
| char const *const func = "omp_destroy_nest_lock"; |
| if (lck->lk.initialized != lck) { |
| KMP_FATAL(LockIsUninitialized, func); |
| } |
| if (!__kmp_is_drdpa_lock_nestable(lck)) { |
| KMP_FATAL(LockSimpleUsedAsNestable, func); |
| } |
| if (__kmp_get_drdpa_lock_owner(lck) != -1) { |
| KMP_FATAL(LockStillOwned, func); |
| } |
| __kmp_destroy_nested_drdpa_lock(lck); |
| } |
| |
| // access functions to fields which don't exist for all lock kinds. |
| |
| static int __kmp_is_drdpa_lock_initialized(kmp_drdpa_lock_t *lck) { |
| return lck == lck->lk.initialized; |
| } |
| |
| static const ident_t *__kmp_get_drdpa_lock_location(kmp_drdpa_lock_t *lck) { |
| return lck->lk.location; |
| } |
| |
| static void __kmp_set_drdpa_lock_location(kmp_drdpa_lock_t *lck, |
| const ident_t *loc) { |
| lck->lk.location = loc; |
| } |
| |
| static kmp_lock_flags_t __kmp_get_drdpa_lock_flags(kmp_drdpa_lock_t *lck) { |
| return lck->lk.flags; |
| } |
| |
| static void __kmp_set_drdpa_lock_flags(kmp_drdpa_lock_t *lck, |
| kmp_lock_flags_t flags) { |
| lck->lk.flags = flags; |
| } |
| |
| // Time stamp counter |
| #if KMP_ARCH_X86 || KMP_ARCH_X86_64 |
| #define __kmp_tsc() __kmp_hardware_timestamp() |
| // Runtime's default backoff parameters |
| kmp_backoff_t __kmp_spin_backoff_params = {1, 4096, 100}; |
| #else |
| // Use nanoseconds for other platforms |
| extern kmp_uint64 __kmp_now_nsec(); |
| kmp_backoff_t __kmp_spin_backoff_params = {1, 256, 100}; |
| #define __kmp_tsc() __kmp_now_nsec() |
| #endif |
| |
| // A useful predicate for dealing with timestamps that may wrap. |
| // Is a before b? Since the timestamps may wrap, this is asking whether it's |
| // shorter to go clockwise from a to b around the clock-face, or anti-clockwise. |
| // Times where going clockwise is less distance than going anti-clockwise |
| // are in the future, others are in the past. e.g. a = MAX-1, b = MAX+1 (=0), |
| // then a > b (true) does not mean a reached b; whereas signed(a) = -2, |
| // signed(b) = 0 captures the actual difference |
| static inline bool before(kmp_uint64 a, kmp_uint64 b) { |
| return ((kmp_int64)b - (kmp_int64)a) > 0; |
| } |
| |
| // Truncated binary exponential backoff function |
| void __kmp_spin_backoff(kmp_backoff_t *boff) { |
| // We could flatten this loop, but making it a nested loop gives better result |
| kmp_uint32 i; |
| for (i = boff->step; i > 0; i--) { |
| kmp_uint64 goal = __kmp_tsc() + boff->min_tick; |
| do { |
| KMP_CPU_PAUSE(); |
| } while (before(__kmp_tsc(), goal)); |
| } |
| boff->step = (boff->step << 1 | 1) & (boff->max_backoff - 1); |
| } |
| |
| #if KMP_USE_DYNAMIC_LOCK |
| |
| // Direct lock initializers. It simply writes a tag to the low 8 bits of the |
| // lock word. |
| static void __kmp_init_direct_lock(kmp_dyna_lock_t *lck, |
| kmp_dyna_lockseq_t seq) { |
| TCW_4(*lck, KMP_GET_D_TAG(seq)); |
| KA_TRACE( |
| 20, |
| ("__kmp_init_direct_lock: initialized direct lock with type#%d\n", seq)); |
| } |
| |
| #if KMP_USE_TSX |
| |
| // HLE lock functions - imported from the testbed runtime. |
| #define HLE_ACQUIRE ".byte 0xf2;" |
| #define HLE_RELEASE ".byte 0xf3;" |
| |
| static inline kmp_uint32 swap4(kmp_uint32 volatile *p, kmp_uint32 v) { |
| __asm__ volatile(HLE_ACQUIRE "xchg %1,%0" : "+r"(v), "+m"(*p) : : "memory"); |
| return v; |
| } |
| |
| static void __kmp_destroy_hle_lock(kmp_dyna_lock_t *lck) { TCW_4(*lck, 0); } |
| |
| static void __kmp_acquire_hle_lock(kmp_dyna_lock_t *lck, kmp_int32 gtid) { |
| // Use gtid for KMP_LOCK_BUSY if necessary |
| if (swap4(lck, KMP_LOCK_BUSY(1, hle)) != KMP_LOCK_FREE(hle)) { |
| int delay = 1; |
| do { |
| while (*(kmp_uint32 volatile *)lck != KMP_LOCK_FREE(hle)) { |
| for (int i = delay; i != 0; --i) |
| KMP_CPU_PAUSE(); |
| delay = ((delay << 1) | 1) & 7; |
| } |
| } while (swap4(lck, KMP_LOCK_BUSY(1, hle)) != KMP_LOCK_FREE(hle)); |
| } |
| } |
| |
| static void __kmp_acquire_hle_lock_with_checks(kmp_dyna_lock_t *lck, |
| kmp_int32 gtid) { |
| __kmp_acquire_hle_lock(lck, gtid); // TODO: add checks |
| } |
| |
| static int __kmp_release_hle_lock(kmp_dyna_lock_t *lck, kmp_int32 gtid) { |
| __asm__ volatile(HLE_RELEASE "movl %1,%0" |
| : "=m"(*lck) |
| : "r"(KMP_LOCK_FREE(hle)) |
| : "memory"); |
| return KMP_LOCK_RELEASED; |
| } |
| |
| static int __kmp_release_hle_lock_with_checks(kmp_dyna_lock_t *lck, |
| kmp_int32 gtid) { |
| return __kmp_release_hle_lock(lck, gtid); // TODO: add checks |
| } |
| |
| static int __kmp_test_hle_lock(kmp_dyna_lock_t *lck, kmp_int32 gtid) { |
| return swap4(lck, KMP_LOCK_BUSY(1, hle)) == KMP_LOCK_FREE(hle); |
| } |
| |
| static int __kmp_test_hle_lock_with_checks(kmp_dyna_lock_t *lck, |
| kmp_int32 gtid) { |
| return __kmp_test_hle_lock(lck, gtid); // TODO: add checks |
| } |
| |
| static void __kmp_init_rtm_lock(kmp_queuing_lock_t *lck) { |
| __kmp_init_queuing_lock(lck); |
| } |
| |
| static void __kmp_destroy_rtm_lock(kmp_queuing_lock_t *lck) { |
| __kmp_destroy_queuing_lock(lck); |
| } |
| |
| static void __kmp_acquire_rtm_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid) { |
| unsigned retries = 3, status; |
| do { |
| status = _xbegin(); |
| if (status == _XBEGIN_STARTED) { |
| if (__kmp_is_unlocked_queuing_lock(lck)) |
| return; |
| _xabort(0xff); |
| } |
| if ((status & _XABORT_EXPLICIT) && _XABORT_CODE(status) == 0xff) { |
| // Wait until lock becomes free |
| while (!__kmp_is_unlocked_queuing_lock(lck)) |
| __kmp_yield(TRUE); |
| } else if (!(status & _XABORT_RETRY)) |
| break; |
| } while (retries--); |
| |
| // Fall-back non-speculative lock (xchg) |
| __kmp_acquire_queuing_lock(lck, gtid); |
| } |
| |
| static void __kmp_acquire_rtm_lock_with_checks(kmp_queuing_lock_t *lck, |
| kmp_int32 gtid) { |
| __kmp_acquire_rtm_lock(lck, gtid); |
| } |
| |
| static int __kmp_release_rtm_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid) { |
| if (__kmp_is_unlocked_queuing_lock(lck)) { |
| // Releasing from speculation |
| _xend(); |
| } else { |
| // Releasing from a real lock |
| __kmp_release_queuing_lock(lck, gtid); |
| } |
| return KMP_LOCK_RELEASED; |
| } |
| |
| static int __kmp_release_rtm_lock_with_checks(kmp_queuing_lock_t *lck, |
| kmp_int32 gtid) { |
| return __kmp_release_rtm_lock(lck, gtid); |
| } |
| |
| static int __kmp_test_rtm_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid) { |
| unsigned retries = 3, status; |
| do { |
| status = _xbegin(); |
| if (status == _XBEGIN_STARTED && __kmp_is_unlocked_queuing_lock(lck)) { |
| return 1; |
| } |
| if (!(status & _XABORT_RETRY)) |
| break; |
| } while (retries--); |
| |
| return (__kmp_is_unlocked_queuing_lock(lck)) ? 1 : 0; |
| } |
| |
| static int __kmp_test_rtm_lock_with_checks(kmp_queuing_lock_t *lck, |
| kmp_int32 gtid) { |
| return __kmp_test_rtm_lock(lck, gtid); |
| } |
| |
| #endif // KMP_USE_TSX |
| |
| // Entry functions for indirect locks (first element of direct lock jump tables) |
| static void __kmp_init_indirect_lock(kmp_dyna_lock_t *l, |
| kmp_dyna_lockseq_t tag); |
| static void __kmp_destroy_indirect_lock(kmp_dyna_lock_t *lock); |
| static int __kmp_set_indirect_lock(kmp_dyna_lock_t *lock, kmp_int32); |
| static int __kmp_unset_indirect_lock(kmp_dyna_lock_t *lock, kmp_int32); |
| static int __kmp_test_indirect_lock(kmp_dyna_lock_t *lock, kmp_int32); |
| static int __kmp_set_indirect_lock_with_checks(kmp_dyna_lock_t *lock, |
| kmp_int32); |
| static int __kmp_unset_indirect_lock_with_checks(kmp_dyna_lock_t *lock, |
| kmp_int32); |
| static int __kmp_test_indirect_lock_with_checks(kmp_dyna_lock_t *lock, |
| kmp_int32); |
| |
| // Jump tables for the indirect lock functions |
| // Only fill in the odd entries, that avoids the need to shift out the low bit |
| |
| // init functions |
| #define expand(l, op) 0, __kmp_init_direct_lock, |
| void (*__kmp_direct_init[])(kmp_dyna_lock_t *, kmp_dyna_lockseq_t) = { |
| __kmp_init_indirect_lock, 0, KMP_FOREACH_D_LOCK(expand, init)}; |
| #undef expand |
| |
| // destroy functions |
| #define expand(l, op) 0, (void (*)(kmp_dyna_lock_t *))__kmp_##op##_##l##_lock, |
| void (*__kmp_direct_destroy[])(kmp_dyna_lock_t *) = { |
| __kmp_destroy_indirect_lock, 0, KMP_FOREACH_D_LOCK(expand, destroy)}; |
| #undef expand |
| |
| // set/acquire functions |
| #define expand(l, op) \ |
| 0, (int (*)(kmp_dyna_lock_t *, kmp_int32))__kmp_##op##_##l##_lock, |
| static int (*direct_set[])(kmp_dyna_lock_t *, kmp_int32) = { |
| __kmp_set_indirect_lock, 0, KMP_FOREACH_D_LOCK(expand, acquire)}; |
| #undef expand |
| #define expand(l, op) \ |
| 0, (int (*)(kmp_dyna_lock_t *, kmp_int32))__kmp_##op##_##l##_lock_with_checks, |
| static int (*direct_set_check[])(kmp_dyna_lock_t *, kmp_int32) = { |
| __kmp_set_indirect_lock_with_checks, 0, |
| KMP_FOREACH_D_LOCK(expand, acquire)}; |
| #undef expand |
| |
| // unset/release and test functions |
| #define expand(l, op) \ |
| 0, (int (*)(kmp_dyna_lock_t *, kmp_int32))__kmp_##op##_##l##_lock, |
| static int (*direct_unset[])(kmp_dyna_lock_t *, kmp_int32) = { |
| __kmp_unset_indirect_lock, 0, KMP_FOREACH_D_LOCK(expand, release)}; |
| static int (*direct_test[])(kmp_dyna_lock_t *, kmp_int32) = { |
| __kmp_test_indirect_lock, 0, KMP_FOREACH_D_LOCK(expand, test)}; |
| #undef expand |
| #define expand(l, op) \ |
| 0, (int (*)(kmp_dyna_lock_t *, kmp_int32))__kmp_##op##_##l##_lock_with_checks, |
| static int (*direct_unset_check[])(kmp_dyna_lock_t *, kmp_int32) = { |
| __kmp_unset_indirect_lock_with_checks, 0, |
| KMP_FOREACH_D_LOCK(expand, release)}; |
| static int (*direct_test_check[])(kmp_dyna_lock_t *, kmp_int32) = { |
| __kmp_test_indirect_lock_with_checks, 0, KMP_FOREACH_D_LOCK(expand, test)}; |
| #undef expand |
| |
| // Exposes only one set of jump tables (*lock or *lock_with_checks). |
| int (*(*__kmp_direct_set))(kmp_dyna_lock_t *, kmp_int32) = 0; |
| int (*(*__kmp_direct_unset))(kmp_dyna_lock_t *, kmp_int32) = 0; |
| int (*(*__kmp_direct_test))(kmp_dyna_lock_t *, kmp_int32) = 0; |
| |
| // Jump tables for the indirect lock functions |
| #define expand(l, op) (void (*)(kmp_user_lock_p)) __kmp_##op##_##l##_##lock, |
| void (*__kmp_indirect_init[])(kmp_user_lock_p) = { |
| KMP_FOREACH_I_LOCK(expand, init)}; |
| void (*__kmp_indirect_destroy[])(kmp_user_lock_p) = { |
| KMP_FOREACH_I_LOCK(expand, destroy)}; |
| #undef expand |
| |
| // set/acquire functions |
| #define expand(l, op) \ |
| (int (*)(kmp_user_lock_p, kmp_int32)) __kmp_##op##_##l##_##lock, |
| static int (*indirect_set[])(kmp_user_lock_p, |
| kmp_int32) = {KMP_FOREACH_I_LOCK(expand, acquire)}; |
| #undef expand |
| #define expand(l, op) \ |
| (int (*)(kmp_user_lock_p, kmp_int32)) __kmp_##op##_##l##_##lock_with_checks, |
| static int (*indirect_set_check[])(kmp_user_lock_p, kmp_int32) = { |
| KMP_FOREACH_I_LOCK(expand, acquire)}; |
| #undef expand |
| |
| // unset/release and test functions |
| #define expand(l, op) \ |
| (int (*)(kmp_user_lock_p, kmp_int32)) __kmp_##op##_##l##_##lock, |
| static int (*indirect_unset[])(kmp_user_lock_p, kmp_int32) = { |
| KMP_FOREACH_I_LOCK(expand, release)}; |
| static int (*indirect_test[])(kmp_user_lock_p, |
| kmp_int32) = {KMP_FOREACH_I_LOCK(expand, test)}; |
| #undef expand |
| #define expand(l, op) \ |
| (int (*)(kmp_user_lock_p, kmp_int32)) __kmp_##op##_##l##_##lock_with_checks, |
| static int (*indirect_unset_check[])(kmp_user_lock_p, kmp_int32) = { |
| KMP_FOREACH_I_LOCK(expand, release)}; |
| static int (*indirect_test_check[])(kmp_user_lock_p, kmp_int32) = { |
| KMP_FOREACH_I_LOCK(expand, test)}; |
| #undef expand |
| |
| // Exposes only one jump tables (*lock or *lock_with_checks). |
| int (*(*__kmp_indirect_set))(kmp_user_lock_p, kmp_int32) = 0; |
| int (*(*__kmp_indirect_unset))(kmp_user_lock_p, kmp_int32) = 0; |
| int (*(*__kmp_indirect_test))(kmp_user_lock_p, kmp_int32) = 0; |
| |
| // Lock index table. |
| kmp_indirect_lock_table_t __kmp_i_lock_table; |
| |
| // Size of indirect locks. |
| static kmp_uint32 __kmp_indirect_lock_size[KMP_NUM_I_LOCKS] = {0}; |
| |
| // Jump tables for lock accessor/modifier. |
| void (*__kmp_indirect_set_location[KMP_NUM_I_LOCKS])(kmp_user_lock_p, |
| const ident_t *) = {0}; |
| void (*__kmp_indirect_set_flags[KMP_NUM_I_LOCKS])(kmp_user_lock_p, |
| kmp_lock_flags_t) = {0}; |
| const ident_t *(*__kmp_indirect_get_location[KMP_NUM_I_LOCKS])( |
| kmp_user_lock_p) = {0}; |
| kmp_lock_flags_t (*__kmp_indirect_get_flags[KMP_NUM_I_LOCKS])( |
| kmp_user_lock_p) = {0}; |
| |
| // Use different lock pools for different lock types. |
| static kmp_indirect_lock_t *__kmp_indirect_lock_pool[KMP_NUM_I_LOCKS] = {0}; |
| |
| // User lock allocator for dynamically dispatched indirect locks. Every entry of |
| // the indirect lock table holds the address and type of the allocated indrect |
| // lock (kmp_indirect_lock_t), and the size of the table doubles when it is |
| // full. A destroyed indirect lock object is returned to the reusable pool of |
| // locks, unique to each lock type. |
| kmp_indirect_lock_t *__kmp_allocate_indirect_lock(void **user_lock, |
| kmp_int32 gtid, |
| kmp_indirect_locktag_t tag) { |
| kmp_indirect_lock_t *lck; |
| kmp_lock_index_t idx; |
| |
| __kmp_acquire_lock(&__kmp_global_lock, gtid); |
| |
| if (__kmp_indirect_lock_pool[tag] != NULL) { |
| // Reuse the allocated and destroyed lock object |
| lck = __kmp_indirect_lock_pool[tag]; |
| if (OMP_LOCK_T_SIZE < sizeof(void *)) |
| idx = lck->lock->pool.index; |
| __kmp_indirect_lock_pool[tag] = (kmp_indirect_lock_t *)lck->lock->pool.next; |
| KA_TRACE(20, ("__kmp_allocate_indirect_lock: reusing an existing lock %p\n", |
| lck)); |
| } else { |
| idx = __kmp_i_lock_table.next; |
| // Check capacity and double the size if it is full |
| if (idx == __kmp_i_lock_table.size) { |
| // Double up the space for block pointers |
| int row = __kmp_i_lock_table.size / KMP_I_LOCK_CHUNK; |
| kmp_indirect_lock_t **new_table = (kmp_indirect_lock_t **)__kmp_allocate( |
| 2 * row * sizeof(kmp_indirect_lock_t *)); |
| KMP_MEMCPY(new_table, __kmp_i_lock_table.table, |
| row * sizeof(kmp_indirect_lock_t *)); |
| kmp_indirect_lock_t **old_table = __kmp_i_lock_table.table; |
| __kmp_i_lock_table.table = new_table; |
| __kmp_free(old_table); |
| // Allocate new objects in the new blocks |
| for (int i = row; i < 2 * row; ++i) |
| *(__kmp_i_lock_table.table + i) = (kmp_indirect_lock_t *)__kmp_allocate( |
| KMP_I_LOCK_CHUNK * sizeof(kmp_indirect_lock_t)); |
| __kmp_i_lock_table.size = 2 * idx; |
| } |
| __kmp_i_lock_table.next++; |
| lck = KMP_GET_I_LOCK(idx); |
| // Allocate a new base lock object |
| lck->lock = (kmp_user_lock_p)__kmp_allocate(__kmp_indirect_lock_size[tag]); |
| KA_TRACE(20, |
| ("__kmp_allocate_indirect_lock: allocated a new lock %p\n", lck)); |
| } |
| |
| __kmp_release_lock(&__kmp_global_lock, gtid); |
| |
| lck->type = tag; |
| |
| if (OMP_LOCK_T_SIZE < sizeof(void *)) { |
| *((kmp_lock_index_t *)user_lock) = idx |
| << 1; // indirect lock word must be even |
| } else { |
| *((kmp_indirect_lock_t **)user_lock) = lck; |
| } |
| |
| return lck; |
| } |
| |
| // User lock lookup for dynamically dispatched locks. |
| static __forceinline kmp_indirect_lock_t * |
| __kmp_lookup_indirect_lock(void **user_lock, const char *func) { |
| if (__kmp_env_consistency_check) { |
| kmp_indirect_lock_t *lck = NULL; |
| if (user_lock == NULL) { |
| KMP_FATAL(LockIsUninitialized, func); |
| } |
| if (OMP_LOCK_T_SIZE < sizeof(void *)) { |
| kmp_lock_index_t idx = KMP_EXTRACT_I_INDEX(user_lock); |
| if (idx >= __kmp_i_lock_table.size) { |
| KMP_FATAL(LockIsUninitialized, func); |
| } |
| lck = KMP_GET_I_LOCK(idx); |
| } else { |
| lck = *((kmp_indirect_lock_t **)user_lock); |
| } |
| if (lck == NULL) { |
| KMP_FATAL(LockIsUninitialized, func); |
| } |
| return lck; |
| } else { |
| if (OMP_LOCK_T_SIZE < sizeof(void *)) { |
| return KMP_GET_I_LOCK(KMP_EXTRACT_I_INDEX(user_lock)); |
| } else { |
| return *((kmp_indirect_lock_t **)user_lock); |
| } |
| } |
| } |
| |
| static void __kmp_init_indirect_lock(kmp_dyna_lock_t *lock, |
| kmp_dyna_lockseq_t seq) { |
| #if KMP_USE_ADAPTIVE_LOCKS |
| if (seq == lockseq_adaptive && !__kmp_cpuinfo.rtm) { |
| KMP_WARNING(AdaptiveNotSupported, "kmp_lockseq_t", "adaptive"); |
| seq = lockseq_queuing; |
| } |
| #endif |
| #if KMP_USE_TSX |
| if (seq == lockseq_rtm && !__kmp_cpuinfo.rtm) { |
| seq = lockseq_queuing; |
| } |
| #endif |
| kmp_indirect_locktag_t tag = KMP_GET_I_TAG(seq); |
| kmp_indirect_lock_t *l = |
| __kmp_allocate_indirect_lock((void **)lock, __kmp_entry_gtid(), tag); |
| KMP_I_LOCK_FUNC(l, init)(l->lock); |
| KA_TRACE( |
| 20, ("__kmp_init_indirect_lock: initialized indirect lock with type#%d\n", |
| seq)); |
| } |
| |
| static void __kmp_destroy_indirect_lock(kmp_dyna_lock_t *lock) { |
| kmp_uint32 gtid = __kmp_entry_gtid(); |
| kmp_indirect_lock_t *l = |
| __kmp_lookup_indirect_lock((void **)lock, "omp_destroy_lock"); |
| KMP_I_LOCK_FUNC(l, destroy)(l->lock); |
| kmp_indirect_locktag_t tag = l->type; |
| |
| __kmp_acquire_lock(&__kmp_global_lock, gtid); |
| |
| // Use the base lock's space to keep the pool chain. |
| l->lock->pool.next = (kmp_user_lock_p)__kmp_indirect_lock_pool[tag]; |
| if (OMP_LOCK_T_SIZE < sizeof(void *)) { |
| l->lock->pool.index = KMP_EXTRACT_I_INDEX(lock); |
| } |
| __kmp_indirect_lock_pool[tag] = l; |
| |
| __kmp_release_lock(&__kmp_global_lock, gtid); |
| } |
| |
| static int __kmp_set_indirect_lock(kmp_dyna_lock_t *lock, kmp_int32 gtid) { |
| kmp_indirect_lock_t *l = KMP_LOOKUP_I_LOCK(lock); |
| return KMP_I_LOCK_FUNC(l, set)(l->lock, gtid); |
| } |
| |
| static int __kmp_unset_indirect_lock(kmp_dyna_lock_t *lock, kmp_int32 gtid) { |
| kmp_indirect_lock_t *l = KMP_LOOKUP_I_LOCK(lock); |
| return KMP_I_LOCK_FUNC(l, unset)(l->lock, gtid); |
| } |
| |
| static int __kmp_test_indirect_lock(kmp_dyna_lock_t *lock, kmp_int32 gtid) { |
| kmp_indirect_lock_t *l = KMP_LOOKUP_I_LOCK(lock); |
| return KMP_I_LOCK_FUNC(l, test)(l->lock, gtid); |
| } |
| |
| static int __kmp_set_indirect_lock_with_checks(kmp_dyna_lock_t *lock, |
| kmp_int32 gtid) { |
| kmp_indirect_lock_t *l = |
| __kmp_lookup_indirect_lock((void **)lock, "omp_set_lock"); |
| return KMP_I_LOCK_FUNC(l, set)(l->lock, gtid); |
| } |
| |
| static int __kmp_unset_indirect_lock_with_checks(kmp_dyna_lock_t *lock, |
| kmp_int32 gtid) { |
| kmp_indirect_lock_t *l = |
| __kmp_lookup_indirect_lock((void **)lock, "omp_unset_lock"); |
| return KMP_I_LOCK_FUNC(l, unset)(l->lock, gtid); |
| } |
| |
| static int __kmp_test_indirect_lock_with_checks(kmp_dyna_lock_t *lock, |
| kmp_int32 gtid) { |
| kmp_indirect_lock_t *l = |
| __kmp_lookup_indirect_lock((void **)lock, "omp_test_lock"); |
| return KMP_I_LOCK_FUNC(l, test)(l->lock, gtid); |
| } |
| |
| kmp_dyna_lockseq_t __kmp_user_lock_seq = lockseq_queuing; |
| |
| // This is used only in kmp_error.cpp when consistency checking is on. |
| kmp_int32 __kmp_get_user_lock_owner(kmp_user_lock_p lck, kmp_uint32 seq) { |
| switch (seq) { |
| case lockseq_tas: |
| case lockseq_nested_tas: |
| return __kmp_get_tas_lock_owner((kmp_tas_lock_t *)lck); |
| #if KMP_USE_FUTEX |
| case lockseq_futex: |
| case lockseq_nested_futex: |
| return __kmp_get_futex_lock_owner((kmp_futex_lock_t *)lck); |
| #endif |
| case lockseq_ticket: |
| case lockseq_nested_ticket: |
| return __kmp_get_ticket_lock_owner((kmp_ticket_lock_t *)lck); |
| case lockseq_queuing: |
| case lockseq_nested_queuing: |
| #if KMP_USE_ADAPTIVE_LOCKS |
| case lockseq_adaptive: |
| #endif |
| return __kmp_get_queuing_lock_owner((kmp_queuing_lock_t *)lck); |
| case lockseq_drdpa: |
| case lockseq_nested_drdpa: |
| return __kmp_get_drdpa_lock_owner((kmp_drdpa_lock_t *)lck); |
| default: |
| return 0; |
| } |
| } |
| |
| // Initializes data for dynamic user locks. |
| void __kmp_init_dynamic_user_locks() { |
| // Initialize jump table for the lock functions |
| if (__kmp_env_consistency_check) { |
| __kmp_direct_set = direct_set_check; |
| __kmp_direct_unset = direct_unset_check; |
| __kmp_direct_test = direct_test_check; |
| __kmp_indirect_set = indirect_set_check; |
| __kmp_indirect_unset = indirect_unset_check; |
| __kmp_indirect_test = indirect_test_check; |
| } else { |
| __kmp_direct_set = direct_set; |
| __kmp_direct_unset = direct_unset; |
| __kmp_direct_test = direct_test; |
| __kmp_indirect_set = indirect_set; |
| __kmp_indirect_unset = indirect_unset; |
| __kmp_indirect_test = indirect_test; |
| } |
| // If the user locks have already been initialized, then return. Allow the |
| // switch between different KMP_CONSISTENCY_CHECK values, but do not allocate |
| // new lock tables if they have already been allocated. |
| if (__kmp_init_user_locks) |
| return; |
| |
| // Initialize lock index table |
| __kmp_i_lock_table.size = KMP_I_LOCK_CHUNK; |
| __kmp_i_lock_table.table = |
| (kmp_indirect_lock_t **)__kmp_allocate(sizeof(kmp_indirect_lock_t *)); |
| *(__kmp_i_lock_table.table) = (kmp_indirect_lock_t *)__kmp_allocate( |
| KMP_I_LOCK_CHUNK * sizeof(kmp_indirect_lock_t)); |
| __kmp_i_lock_table.next = 0; |
| |
| // Indirect lock size |
| __kmp_indirect_lock_size[locktag_ticket] = sizeof(kmp_ticket_lock_t); |
| __kmp_indirect_lock_size[locktag_queuing] = sizeof(kmp_queuing_lock_t); |
| #if KMP_USE_ADAPTIVE_LOCKS |
| __kmp_indirect_lock_size[locktag_adaptive] = sizeof(kmp_adaptive_lock_t); |
| #endif |
| __kmp_indirect_lock_size[locktag_drdpa] = sizeof(kmp_drdpa_lock_t); |
| #if KMP_USE_TSX |
| __kmp_indirect_lock_size[locktag_rtm] = sizeof(kmp_queuing_lock_t); |
| #endif |
| __kmp_indirect_lock_size[locktag_nested_tas] = sizeof(kmp_tas_lock_t); |
| #if KMP_USE_FUTEX |
| __kmp_indirect_lock_size[locktag_nested_futex] = sizeof(kmp_futex_lock_t); |
| #endif |
| __kmp_indirect_lock_size[locktag_nested_ticket] = sizeof(kmp_ticket_lock_t); |
| __kmp_indirect_lock_size[locktag_nested_queuing] = sizeof(kmp_queuing_lock_t); |
| __kmp_indirect_lock_size[locktag_nested_drdpa] = sizeof(kmp_drdpa_lock_t); |
| |
| // Initialize lock accessor/modifier |
| #define fill_jumps(table, expand, sep) \ |
| { \ |
| table[locktag##sep##ticket] = expand(ticket); \ |
| table[locktag##sep##queuing] = expand(queuing); \ |
| table[locktag##sep##drdpa] = expand(drdpa); \ |
| } |
| |
| #if KMP_USE_ADAPTIVE_LOCKS |
| #define fill_table(table, expand) \ |
| { \ |
| fill_jumps(table, expand, _); \ |
| table[locktag_adaptive] = expand(queuing); \ |
| fill_jumps(table, expand, _nested_); \ |
| } |
| #else |
| #define fill_table(table, expand) \ |
| { \ |
| fill_jumps(table, expand, _); \ |
| fill_jumps(table, expand, _nested_); \ |
| } |
| #endif // KMP_USE_ADAPTIVE_LOCKS |
| |
| #define expand(l) \ |
| (void (*)(kmp_user_lock_p, const ident_t *)) __kmp_set_##l##_lock_location |
| fill_table(__kmp_indirect_set_location, expand); |
| #undef expand |
| #define expand(l) \ |
| (void (*)(kmp_user_lock_p, kmp_lock_flags_t)) __kmp_set_##l##_lock_flags |
| fill_table(__kmp_indirect_set_flags, expand); |
| #undef expand |
| #define expand(l) \ |
| (const ident_t *(*)(kmp_user_lock_p)) __kmp_get_##l##_lock_location |
| fill_table(__kmp_indirect_get_location, expand); |
| #undef expand |
| #define expand(l) \ |
| (kmp_lock_flags_t(*)(kmp_user_lock_p)) __kmp_get_##l##_lock_flags |
| fill_table(__kmp_indirect_get_flags, expand); |
| #undef expand |
| |
| __kmp_init_user_locks = TRUE; |
| } |
| |
| // Clean up the lock table. |
| void __kmp_cleanup_indirect_user_locks() { |
| kmp_lock_index_t i; |
| int k; |
| |
| // Clean up locks in the pools first (they were already destroyed before going |
| // into the pools). |
| for (k = 0; k < KMP_NUM_I_LOCKS; ++k) { |
| kmp_indirect_lock_t *l = __kmp_indirect_lock_pool[k]; |
| while (l != NULL) { |
| kmp_indirect_lock_t *ll = l; |
| l = (kmp_indirect_lock_t *)l->lock->pool.next; |
| KA_TRACE(20, ("__kmp_cleanup_indirect_user_locks: freeing %p from pool\n", |
| ll)); |
| __kmp_free(ll->lock); |
| ll->lock = NULL; |
| } |
| __kmp_indirect_lock_pool[k] = NULL; |
| } |
| // Clean up the remaining undestroyed locks. |
| for (i = 0; i < __kmp_i_lock_table.next; i++) { |
| kmp_indirect_lock_t *l = KMP_GET_I_LOCK(i); |
| if (l->lock != NULL) { |
| // Locks not destroyed explicitly need to be destroyed here. |
| KMP_I_LOCK_FUNC(l, destroy)(l->lock); |
| KA_TRACE( |
| 20, |
| ("__kmp_cleanup_indirect_user_locks: destroy/freeing %p from table\n", |
| l)); |
| __kmp_free(l->lock); |
| } |
| } |
| // Free the table |
| for (i = 0; i < __kmp_i_lock_table.size / KMP_I_LOCK_CHUNK; i++) |
| __kmp_free(__kmp_i_lock_table.table[i]); |
| __kmp_free(__kmp_i_lock_table.table); |
| |
| __kmp_init_user_locks = FALSE; |
| } |
| |
| enum kmp_lock_kind __kmp_user_lock_kind = lk_default; |
| int __kmp_num_locks_in_block = 1; // FIXME - tune this value |
| |
| #else // KMP_USE_DYNAMIC_LOCK |
| |
| /* user locks |
| * They are implemented as a table of function pointers which are set to the |
| * lock functions of the appropriate kind, once that has been determined. */ |
| |
| enum kmp_lock_kind __kmp_user_lock_kind = lk_default; |
| |
| size_t __kmp_base_user_lock_size = 0; |
| size_t __kmp_user_lock_size = 0; |
| |
| kmp_int32 (*__kmp_get_user_lock_owner_)(kmp_user_lock_p lck) = NULL; |
| int (*__kmp_acquire_user_lock_with_checks_)(kmp_user_lock_p lck, |
| kmp_int32 gtid) = NULL; |
| |
| int (*__kmp_test_user_lock_with_checks_)(kmp_user_lock_p lck, |
| kmp_int32 gtid) = NULL; |
| int (*__kmp_release_user_lock_with_checks_)(kmp_user_lock_p lck, |
| kmp_int32 gtid) = NULL; |
| void (*__kmp_init_user_lock_with_checks_)(kmp_user_lock_p lck) = NULL; |
| void (*__kmp_destroy_user_lock_)(kmp_user_lock_p lck) = NULL; |
| void (*__kmp_destroy_user_lock_with_checks_)(kmp_user_lock_p lck) = NULL; |
| int (*__kmp_acquire_nested_user_lock_with_checks_)(kmp_user_lock_p lck, |
| kmp_int32 gtid) = NULL; |
| |
| int (*__kmp_test_nested_user_lock_with_checks_)(kmp_user_lock_p lck, |
| kmp_int32 gtid) = NULL; |
| int (*__kmp_release_nested_user_lock_with_checks_)(kmp_user_lock_p lck, |
| kmp_int32 gtid) = NULL; |
| void (*__kmp_init_nested_user_lock_with_checks_)(kmp_user_lock_p lck) = NULL; |
| void (*__kmp_destroy_nested_user_lock_with_checks_)(kmp_user_lock_p lck) = NULL; |
| |
| int (*__kmp_is_user_lock_initialized_)(kmp_user_lock_p lck) = NULL; |
| const ident_t *(*__kmp_get_user_lock_location_)(kmp_user_lock_p lck) = NULL; |
| void (*__kmp_set_user_lock_location_)(kmp_user_lock_p lck, |
| const ident_t *loc) = NULL; |
| kmp_lock_flags_t (*__kmp_get_user_lock_flags_)(kmp_user_lock_p lck) = NULL; |
| void (*__kmp_set_user_lock_flags_)(kmp_user_lock_p lck, |
| kmp_lock_flags_t flags) = NULL; |
| |
| void __kmp_set_user_lock_vptrs(kmp_lock_kind_t user_lock_kind) { |
| switch (user_lock_kind) { |
| case lk_default: |
| default: |
| KMP_ASSERT(0); |
| |
| case lk_tas: { |
| __kmp_base_user_lock_size = sizeof(kmp_base_tas_lock_t); |
| __kmp_user_lock_size = sizeof(kmp_tas_lock_t); |
| |
| __kmp_get_user_lock_owner_ = |
| (kmp_int32(*)(kmp_user_lock_p))(&__kmp_get_tas_lock_owner); |
| |
| if (__kmp_env_consistency_check) { |
| KMP_BIND_USER_LOCK_WITH_CHECKS(tas); |
| KMP_BIND_NESTED_USER_LOCK_WITH_CHECKS(tas); |
| } else { |
| KMP_BIND_USER_LOCK(tas); |
| KMP_BIND_NESTED_USER_LOCK(tas); |
| } |
| |
| __kmp_destroy_user_lock_ = |
| (void (*)(kmp_user_lock_p))(&__kmp_destroy_tas_lock); |
| |
| __kmp_is_user_lock_initialized_ = (int (*)(kmp_user_lock_p))NULL; |
| |
| __kmp_get_user_lock_location_ = (const ident_t *(*)(kmp_user_lock_p))NULL; |
| |
| __kmp_set_user_lock_location_ = |
| (void (*)(kmp_user_lock_p, const ident_t *))NULL; |
| |
| __kmp_get_user_lock_flags_ = (kmp_lock_flags_t(*)(kmp_user_lock_p))NULL; |
| |
| __kmp_set_user_lock_flags_ = |
| (void (*)(kmp_user_lock_p, kmp_lock_flags_t))NULL; |
| } break; |
| |
| #if KMP_USE_FUTEX |
| |
| case lk_futex: { |
| __kmp_base_user_lock_size = sizeof(kmp_base_futex_lock_t); |
| __kmp_user_lock_size = sizeof(kmp_futex_lock_t); |
| |
| __kmp_get_user_lock_owner_ = |
| (kmp_int32(*)(kmp_user_lock_p))(&__kmp_get_futex_lock_owner); |
| |
| if (__kmp_env_consistency_check) { |
| KMP_BIND_USER_LOCK_WITH_CHECKS(futex); |
| KMP_BIND_NESTED_USER_LOCK_WITH_CHECKS(futex); |
| } else { |
| KMP_BIND_USER_LOCK(futex); |
| KMP_BIND_NESTED_USER_LOCK(futex); |
| } |
| |
| __kmp_destroy_user_lock_ = |
| (void (*)(kmp_user_lock_p))(&__kmp_destroy_futex_lock); |
| |
| __kmp_is_user_lock_initialized_ = (int (*)(kmp_user_lock_p))NULL; |
| |
| __kmp_get_user_lock_location_ = (const ident_t *(*)(kmp_user_lock_p))NULL; |
| |
| __kmp_set_user_lock_location_ = |
| (void (*)(kmp_user_lock_p, const ident_t *))NULL; |
| |
| __kmp_get_user_lock_flags_ = (kmp_lock_flags_t(*)(kmp_user_lock_p))NULL; |
| |
| __kmp_set_user_lock_flags_ = |
| (void (*)(kmp_user_lock_p, kmp_lock_flags_t))NULL; |
| } break; |
| |
| #endif // KMP_USE_FUTEX |
| |
| case lk_ticket: { |
| __kmp_base_user_lock_size = sizeof(kmp_base_ticket_lock_t); |
| __kmp_user_lock_size = sizeof(kmp_ticket_lock_t); |
| |
| __kmp_get_user_lock_owner_ = |
| (kmp_int32(*)(kmp_user_lock_p))(&__kmp_get_ticket_lock_owner); |
| |
| if (__kmp_env_consistency_check) { |
| KMP_BIND_USER_LOCK_WITH_CHECKS(ticket); |
| KMP_BIND_NESTED_USER_LOCK_WITH_CHECKS(ticket); |
| } else { |
| KMP_BIND_USER_LOCK(ticket); |
| KMP_BIND_NESTED_USER_LOCK(ticket); |
| } |
| |
| __kmp_destroy_user_lock_ = |
| (void (*)(kmp_user_lock_p))(&__kmp_destroy_ticket_lock); |
| |
| __kmp_is_user_lock_initialized_ = |
| (int (*)(kmp_user_lock_p))(&__kmp_is_ticket_lock_initialized); |
| |
| __kmp_get_user_lock_location_ = |
| (const ident_t *(*)(kmp_user_lock_p))(&__kmp_get_ticket_lock_location); |
| |
| __kmp_set_user_lock_location_ = (void (*)( |
| kmp_user_lock_p, const ident_t *))(&__kmp_set_ticket_lock_location); |
| |
| __kmp_get_user_lock_flags_ = |
| (kmp_lock_flags_t(*)(kmp_user_lock_p))(&__kmp_get_ticket_lock_flags); |
| |
| __kmp_set_user_lock_flags_ = (void (*)(kmp_user_lock_p, kmp_lock_flags_t))( |
| &__kmp_set_ticket_lock_flags); |
| } break; |
| |
| case lk_queuing: { |
| __kmp_base_user_lock_size = sizeof(kmp_base_queuing_lock_t); |
| __kmp_user_lock_size = sizeof(kmp_queuing_lock_t); |
| |
| __kmp_get_user_lock_owner_ = |
| (kmp_int32(*)(kmp_user_lock_p))(&__kmp_get_queuing_lock_owner); |
| |
| if (__kmp_env_consistency_check) { |
| KMP_BIND_USER_LOCK_WITH_CHECKS(queuing); |
| KMP_BIND_NESTED_USER_LOCK_WITH_CHECKS(queuing); |
| } else { |
| KMP_BIND_USER_LOCK(queuing); |
| KMP_BIND_NESTED_USER_LOCK(queuing); |
| } |
| |
| __kmp_destroy_user_lock_ = |
| (void (*)(kmp_user_lock_p))(&__kmp_destroy_queuing_lock); |
| |
| __kmp_is_user_lock_initialized_ = |
| (int (*)(kmp_user_lock_p))(&__kmp_is_queuing_lock_initialized); |
| |
| __kmp_get_user_lock_location_ = |
| (const ident_t *(*)(kmp_user_lock_p))(&__kmp_get_queuing_lock_location); |
| |
| __kmp_set_user_lock_location_ = (void (*)( |
| kmp_user_lock_p, const ident_t *))(&__kmp_set_queuing_lock_location); |
| |
| __kmp_get_user_lock_flags_ = |
| (kmp_lock_flags_t(*)(kmp_user_lock_p))(&__kmp_get_queuing_lock_flags); |
| |
| __kmp_set_user_lock_flags_ = (void (*)(kmp_user_lock_p, kmp_lock_flags_t))( |
| &__kmp_set_queuing_lock_flags); |
| } break; |
| |
| #if KMP_USE_ADAPTIVE_LOCKS |
| case lk_adaptive: { |
| __kmp_base_user_lock_size = sizeof(kmp_base_adaptive_lock_t); |
| __kmp_user_lock_size = sizeof(kmp_adaptive_lock_t); |
| |
| __kmp_get_user_lock_owner_ = |
| (kmp_int32(*)(kmp_user_lock_p))(&__kmp_get_queuing_lock_owner); |
| |
| if (__kmp_env_consistency_check) { |
| KMP_BIND_USER_LOCK_WITH_CHECKS(adaptive); |
| } else { |
| KMP_BIND_USER_LOCK(adaptive); |
| } |
| |
| __kmp_destroy_user_lock_ = |
| (void (*)(kmp_user_lock_p))(&__kmp_destroy_adaptive_lock); |
| |
| __kmp_is_user_lock_initialized_ = |
| (int (*)(kmp_user_lock_p))(&__kmp_is_queuing_lock_initialized); |
| |
| __kmp_get_user_lock_location_ = |
| (const ident_t *(*)(kmp_user_lock_p))(&__kmp_get_queuing_lock_location); |
| |
| __kmp_set_user_lock_location_ = (void (*)( |
| kmp_user_lock_p, const ident_t *))(&__kmp_set_queuing_lock_location); |
| |
| __kmp_get_user_lock_flags_ = |
| (kmp_lock_flags_t(*)(kmp_user_lock_p))(&__kmp_get_queuing_lock_flags); |
| |
| __kmp_set_user_lock_flags_ = (void (*)(kmp_user_lock_p, kmp_lock_flags_t))( |
| &__kmp_set_queuing_lock_flags); |
| |
| } break; |
| #endif // KMP_USE_ADAPTIVE_LOCKS |
| |
| case lk_drdpa: { |
| __kmp_base_user_lock_size = sizeof(kmp_base_drdpa_lock_t); |
| __kmp_user_lock_size = sizeof(kmp_drdpa_lock_t); |
| |
| __kmp_get_user_lock_owner_ = |
| (kmp_int32(*)(kmp_user_lock_p))(&__kmp_get_drdpa_lock_owner); |
| |
| if (__kmp_env_consistency_check) { |
| KMP_BIND_USER_LOCK_WITH_CHECKS(drdpa); |
| KMP_BIND_NESTED_USER_LOCK_WITH_CHECKS(drdpa); |
| } else { |
| KMP_BIND_USER_LOCK(drdpa); |
| KMP_BIND_NESTED_USER_LOCK(drdpa); |
| } |
| |
| __kmp_destroy_user_lock_ = |
| (void (*)(kmp_user_lock_p))(&__kmp_destroy_drdpa_lock); |
| |
| __kmp_is_user_lock_initialized_ = |
| (int (*)(kmp_user_lock_p))(&__kmp_is_drdpa_lock_initialized); |
| |
| __kmp_get_user_lock_location_ = |
| (const ident_t *(*)(kmp_user_lock_p))(&__kmp_get_drdpa_lock_location); |
| |
| __kmp_set_user_lock_location_ = (void (*)( |
| kmp_user_lock_p, const ident_t *))(&__kmp_set_drdpa_lock_location); |
| |
| __kmp_get_user_lock_flags_ = |
| (kmp_lock_flags_t(*)(kmp_user_lock_p))(&__kmp_get_drdpa_lock_flags); |
| |
| __kmp_set_user_lock_flags_ = (void (*)(kmp_user_lock_p, kmp_lock_flags_t))( |
| &__kmp_set_drdpa_lock_flags); |
| } break; |
| } |
| } |
| |
| // ---------------------------------------------------------------------------- |
| // User lock table & lock allocation |
| |
| kmp_lock_table_t __kmp_user_lock_table = {1, 0, NULL}; |
| kmp_user_lock_p __kmp_lock_pool = NULL; |
| |
| // Lock block-allocation support. |
| kmp_block_of_locks *__kmp_lock_blocks = NULL; |
| int __kmp_num_locks_in_block = 1; // FIXME - tune this value |
| |
| static kmp_lock_index_t __kmp_lock_table_insert(kmp_user_lock_p lck) { |
| // Assume that kmp_global_lock is held upon entry/exit. |
| kmp_lock_index_t index; |
| if (__kmp_user_lock_table.used >= __kmp_user_lock_table.allocated) { |
| kmp_lock_index_t size; |
| kmp_user_lock_p *table; |
| // Reallocate lock table. |
| if (__kmp_user_lock_table.allocated == 0) { |
| size = 1024; |
| } else { |
| size = __kmp_user_lock_table.allocated * 2; |
| } |
| table = (kmp_user_lock_p *)__kmp_allocate(sizeof(kmp_user_lock_p) * size); |
| KMP_MEMCPY(table + 1, __kmp_user_lock_table.table + 1, |
| sizeof(kmp_user_lock_p) * (__kmp_user_lock_table.used - 1)); |
| table[0] = (kmp_user_lock_p)__kmp_user_lock_table.table; |
| // We cannot free the previous table now, since it may be in use by other |
| // threads. So save the pointer to the previous table in in the first |
| // element of the new table. All the tables will be organized into a list, |
| // and could be freed when library shutting down. |
| __kmp_user_lock_table.table = table; |
| __kmp_user_lock_table.allocated = size; |
| } |
| KMP_DEBUG_ASSERT(__kmp_user_lock_table.used < |
| __kmp_user_lock_table.allocated); |
| index = __kmp_user_lock_table.used; |
| __kmp_user_lock_table.table[index] = lck; |
| ++__kmp_user_lock_table.used; |
| return index; |
| } |
| |
| static kmp_user_lock_p __kmp_lock_block_allocate() { |
| // Assume that kmp_global_lock is held upon entry/exit. |
| static int last_index = 0; |
| if ((last_index >= __kmp_num_locks_in_block) || (__kmp_lock_blocks == NULL)) { |
| // Restart the index. |
| last_index = 0; |
| // Need to allocate a new block. |
| KMP_DEBUG_ASSERT(__kmp_user_lock_size > 0); |
| size_t space_for_locks = __kmp_user_lock_size * __kmp_num_locks_in_block; |
| char *buffer = |
| (char *)__kmp_allocate(space_for_locks + sizeof(kmp_block_of_locks)); |
| // Set up the new block. |
| kmp_block_of_locks *new_block = |
| (kmp_block_of_locks *)(&buffer[space_for_locks]); |
| new_block->next_block = __kmp_lock_blocks; |
| new_block->locks = (void *)buffer; |
| // Publish the new block. |
| KMP_MB(); |
| __kmp_lock_blocks = new_block; |
| } |
| kmp_user_lock_p ret = (kmp_user_lock_p)(&( |
| ((char *)(__kmp_lock_blocks->locks))[last_index * __kmp_user_lock_size])); |
| last_index++; |
| return ret; |
| } |
| |
| // Get memory for a lock. It may be freshly allocated memory or reused memory |
| // from lock pool. |
| kmp_user_lock_p __kmp_user_lock_allocate(void **user_lock, kmp_int32 gtid, |
| kmp_lock_flags_t flags) { |
| kmp_user_lock_p lck; |
| kmp_lock_index_t index; |
| KMP_DEBUG_ASSERT(user_lock); |
| |
| __kmp_acquire_lock(&__kmp_global_lock, gtid); |
| |
| if (__kmp_lock_pool == NULL) { |
| // Lock pool is empty. Allocate new memory. |
| |
| // ANNOTATION: Found no good way to express the syncronisation |
| // between allocation and usage, so ignore the allocation |
| ANNOTATE_IGNORE_WRITES_BEGIN(); |
| if (__kmp_num_locks_in_block <= 1) { // Tune this cutoff point. |
| lck = (kmp_user_lock_p)__kmp_allocate(__kmp_user_lock_size); |
| } else { |
| lck = __kmp_lock_block_allocate(); |
| } |
| ANNOTATE_IGNORE_WRITES_END(); |
| |
| // Insert lock in the table so that it can be freed in __kmp_cleanup, |
| // and debugger has info on all allocated locks. |
| index = __kmp_lock_table_insert(lck); |
| } else { |
| // Pick up lock from pool. |
| lck = __kmp_lock_pool; |
| index = __kmp_lock_pool->pool.index; |
| __kmp_lock_pool = __kmp_lock_pool->pool.next; |
| } |
| |
| // We could potentially differentiate between nested and regular locks |
| // here, and do the lock table lookup for regular locks only. |
| if (OMP_LOCK_T_SIZE < sizeof(void *)) { |
| *((kmp_lock_index_t *)user_lock) = index; |
| } else { |
| *((kmp_user_lock_p *)user_lock) = lck; |
| } |
| |
| // mark the lock if it is critical section lock. |
| __kmp_set_user_lock_flags(lck, flags); |
| |
| __kmp_release_lock(&__kmp_global_lock, gtid); // AC: TODO move this line upper |
| |
| return lck; |
| } |
| |
| // Put lock's memory to pool for reusing. |
| void __kmp_user_lock_free(void **user_lock, kmp_int32 gtid, |
| kmp_user_lock_p lck) { |
| KMP_DEBUG_ASSERT(user_lock != NULL); |
| KMP_DEBUG_ASSERT(lck != NULL); |
| |
| __kmp_acquire_lock(&__kmp_global_lock, gtid); |
| |
| lck->pool.next = __kmp_lock_pool; |
| __kmp_lock_pool = lck; |
| if (OMP_LOCK_T_SIZE < sizeof(void *)) { |
| kmp_lock_index_t index = *((kmp_lock_index_t *)user_lock); |
| KMP_DEBUG_ASSERT(0 < index && index <= __kmp_user_lock_table.used); |
| lck->pool.index = index; |
| } |
| |
| __kmp_release_lock(&__kmp_global_lock, gtid); |
| } |
| |
| kmp_user_lock_p __kmp_lookup_user_lock(void **user_lock, char const *func) { |
| kmp_user_lock_p lck = NULL; |
| |
| if (__kmp_env_consistency_check) { |
| if (user_lock == NULL) { |
| KMP_FATAL(LockIsUninitialized, func); |
| } |
| } |
| |
| if (OMP_LOCK_T_SIZE < sizeof(void *)) { |
| kmp_lock_index_t index = *((kmp_lock_index_t *)user_lock); |
| if (__kmp_env_consistency_check) { |
| if (!(0 < index && index < __kmp_user_lock_table.used)) { |
| KMP_FATAL(LockIsUninitialized, func); |
| } |
| } |
| KMP_DEBUG_ASSERT(0 < index && index < __kmp_user_lock_table.used); |
| KMP_DEBUG_ASSERT(__kmp_user_lock_size > 0); |
| lck = __kmp_user_lock_table.table[index]; |
| } else { |
| lck = *((kmp_user_lock_p *)user_lock); |
| } |
| |
| if (__kmp_env_consistency_check) { |
| if (lck == NULL) { |
| KMP_FATAL(LockIsUninitialized, func); |
| } |
| } |
| |
| return lck; |
| } |
| |
| void __kmp_cleanup_user_locks(void) { |
| // Reset lock pool. Don't worry about lock in the pool--we will free them when |
| // iterating through lock table (it includes all the locks, dead or alive). |
| __kmp_lock_pool = NULL; |
| |
| #define IS_CRITICAL(lck) \ |
| ((__kmp_get_user_lock_flags_ != NULL) && \ |
| ((*__kmp_get_user_lock_flags_)(lck)&kmp_lf_critical_section)) |
| |
| // Loop through lock table, free all locks. |
| // Do not free item [0], it is reserved for lock tables list. |
| // |
| // FIXME - we are iterating through a list of (pointers to) objects of type |
| // union kmp_user_lock, but we have no way of knowing whether the base type is |
| // currently "pool" or whatever the global user lock type is. |
| // |
| // We are relying on the fact that for all of the user lock types |
| // (except "tas"), the first field in the lock struct is the "initialized" |
| // field, which is set to the address of the lock object itself when |
| // the lock is initialized. When the union is of type "pool", the |
| // first field is a pointer to the next object in the free list, which |
| // will not be the same address as the object itself. |
| // |
| // This means that the check (*__kmp_is_user_lock_initialized_)(lck) will fail |
| // for "pool" objects on the free list. This must happen as the "location" |
| // field of real user locks overlaps the "index" field of "pool" objects. |
| // |
| // It would be better to run through the free list, and remove all "pool" |
| // objects from the lock table before executing this loop. However, |
| // "pool" objects do not always have their index field set (only on |
| // lin_32e), and I don't want to search the lock table for the address |
| // of every "pool" object on the free list. |
| while (__kmp_user_lock_table.used > 1) { |
| const ident *loc; |
| |
| // reduce __kmp_user_lock_table.used before freeing the lock, |
| // so that state of locks is consistent |
| kmp_user_lock_p lck = |
| __kmp_user_lock_table.table[--__kmp_user_lock_table.used]; |
| |
| if ((__kmp_is_user_lock_initialized_ != NULL) && |
| (*__kmp_is_user_lock_initialized_)(lck)) { |
| // Issue a warning if: KMP_CONSISTENCY_CHECK AND lock is initialized AND |
| // it is NOT a critical section (user is not responsible for destroying |
| // criticals) AND we know source location to report. |
| if (__kmp_env_consistency_check && (!IS_CRITICAL(lck)) && |
| ((loc = __kmp_get_user_lock_location(lck)) != NULL) && |
| (loc->psource != NULL)) { |
| kmp_str_loc_t str_loc = __kmp_str_loc_init(loc->psource, 0); |
| KMP_WARNING(CnsLockNotDestroyed, str_loc.file, str_loc.line); |
| __kmp_str_loc_free(&str_loc); |
| } |
| |
| #ifdef KMP_DEBUG |
| if (IS_CRITICAL(lck)) { |
| KA_TRACE( |
| 20, |
| ("__kmp_cleanup_user_locks: free critical section lock %p (%p)\n", |
| lck, *(void **)lck)); |
| } else { |
| KA_TRACE(20, ("__kmp_cleanup_user_locks: free lock %p (%p)\n", lck, |
| *(void **)lck)); |
| } |
| #endif // KMP_DEBUG |
| |
| // Cleanup internal lock dynamic resources (for drdpa locks particularly). |
| __kmp_destroy_user_lock(lck); |
| } |
| |
| // Free the lock if block allocation of locks is not used. |
| if (__kmp_lock_blocks == NULL) { |
| __kmp_free(lck); |
| } |
| } |
| |
| #undef IS_CRITICAL |
| |
| // delete lock table(s). |
| kmp_user_lock_p *table_ptr = __kmp_user_lock_table.table; |
| __kmp_user_lock_table.table = NULL; |
| __kmp_user_lock_table.allocated = 0; |
| |
| while (table_ptr != NULL) { |
| // In the first element we saved the pointer to the previous |
| // (smaller) lock table. |
| kmp_user_lock_p *next = (kmp_user_lock_p *)(table_ptr[0]); |
| __kmp_free(table_ptr); |
| table_ptr = next; |
| } |
| |
| // Free buffers allocated for blocks of locks. |
| kmp_block_of_locks_t *block_ptr = __kmp_lock_blocks; |
| __kmp_lock_blocks = NULL; |
| |
| while (block_ptr != NULL) { |
| kmp_block_of_locks_t *next = block_ptr->next_block; |
| __kmp_free(block_ptr->locks); |
| // *block_ptr itself was allocated at the end of the locks vector. |
| block_ptr = next; |
| } |
| |
| TCW_4(__kmp_init_user_locks, FALSE); |
| } |
| |
| #endif // KMP_USE_DYNAMIC_LOCK |