|  | /* | 
|  | * Copyright 2018 Google Inc. | 
|  | * | 
|  | * Use of this source code is governed by a BSD-style license that can be | 
|  | * found in the LICENSE file. | 
|  | */ | 
|  |  | 
|  | #include "src/gpu/gradients/GrGradientShader.h" | 
|  |  | 
|  | #include "src/gpu/gradients/generated/GrClampedGradientEffect.h" | 
|  | #include "src/gpu/gradients/generated/GrTiledGradientEffect.h" | 
|  |  | 
|  | #include "src/gpu/gradients/generated/GrLinearGradientLayout.h" | 
|  | #include "src/gpu/gradients/generated/GrRadialGradientLayout.h" | 
|  | #include "src/gpu/gradients/generated/GrSweepGradientLayout.h" | 
|  | #include "src/gpu/gradients/generated/GrTwoPointConicalGradientLayout.h" | 
|  |  | 
|  | #include "src/gpu/gradients/GrGradientBitmapCache.h" | 
|  | #include "src/gpu/gradients/generated/GrDualIntervalGradientColorizer.h" | 
|  | #include "src/gpu/gradients/generated/GrSingleIntervalGradientColorizer.h" | 
|  | #include "src/gpu/gradients/generated/GrTextureGradientColorizer.h" | 
|  | #include "src/gpu/gradients/generated/GrUnrolledBinaryGradientColorizer.h" | 
|  |  | 
|  | #include "include/private/GrRecordingContext.h" | 
|  | #include "src/gpu/GrCaps.h" | 
|  | #include "src/gpu/GrColor.h" | 
|  | #include "src/gpu/GrColorInfo.h" | 
|  | #include "src/gpu/GrRecordingContextPriv.h" | 
|  | #include "src/gpu/SkGr.h" | 
|  |  | 
|  | // Intervals smaller than this (that aren't hard stops) on low-precision-only devices force us to | 
|  | // use the textured gradient | 
|  | static const SkScalar kLowPrecisionIntervalLimit = 0.01f; | 
|  |  | 
|  | // Each cache entry costs 1K or 2K of RAM. Each bitmap will be 1x256 at either 32bpp or 64bpp. | 
|  | static const int kMaxNumCachedGradientBitmaps = 32; | 
|  | static const int kGradientTextureSize = 256; | 
|  |  | 
|  | // NOTE: signature takes raw pointers to the color/pos arrays and a count to make it easy for | 
|  | // MakeColorizer to transparently take care of hard stops at the end points of the gradient. | 
|  | static std::unique_ptr<GrFragmentProcessor> make_textured_colorizer(const SkPMColor4f* colors, | 
|  | const SkScalar* positions, int count, bool premul, const GrFPArgs& args) { | 
|  | static GrGradientBitmapCache gCache(kMaxNumCachedGradientBitmaps, kGradientTextureSize); | 
|  |  | 
|  | // Use 8888 or F16, depending on the destination config. | 
|  | // TODO: Use 1010102 for opaque gradients, at least if destination is 1010102? | 
|  | SkColorType colorType = kRGBA_8888_SkColorType; | 
|  | if (GrColorTypeIsWiderThan(args.fDstColorInfo->colorType(), 8)) { | 
|  | auto f16Format = args.fContext->priv().caps()->getDefaultBackendFormat( | 
|  | GrColorType::kRGBA_F16, GrRenderable::kNo); | 
|  | if (f16Format.isValid()) { | 
|  | colorType = kRGBA_F16_SkColorType; | 
|  | } | 
|  | } | 
|  | SkAlphaType alphaType = premul ? kPremul_SkAlphaType : kUnpremul_SkAlphaType; | 
|  |  | 
|  | SkBitmap bitmap; | 
|  | gCache.getGradient(colors, positions, count, colorType, alphaType, &bitmap); | 
|  | SkASSERT(1 == bitmap.height() && SkIsPow2(bitmap.width())); | 
|  | SkASSERT(bitmap.isImmutable()); | 
|  |  | 
|  | sk_sp<GrTextureProxy> proxy = GrMakeCachedBitmapProxy( | 
|  | args.fContext->priv().proxyProvider(), bitmap); | 
|  | if (proxy == nullptr) { | 
|  | SkDebugf("Gradient won't draw. Could not create texture."); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | return GrTextureGradientColorizer::Make(std::move(proxy)); | 
|  | } | 
|  |  | 
|  | // Analyze the shader's color stops and positions and chooses an appropriate colorizer to represent | 
|  | // the gradient. | 
|  | static std::unique_ptr<GrFragmentProcessor> make_colorizer(const SkPMColor4f* colors, | 
|  | const SkScalar* positions, int count, bool premul, const GrFPArgs& args) { | 
|  | // If there are hard stops at the beginning or end, the first and/or last color should be | 
|  | // ignored by the colorizer since it should only be used in a clamped border color. By detecting | 
|  | // and removing these stops at the beginning, it makes optimizing the remaining color stops | 
|  | // simpler. | 
|  |  | 
|  | // SkGradientShaderBase guarantees that pos[0] == 0 by adding a dummy | 
|  | bool bottomHardStop = SkScalarNearlyEqual(positions[0], positions[1]); | 
|  | // The same is true for pos[end] == 1 | 
|  | bool topHardStop = SkScalarNearlyEqual(positions[count - 2], positions[count - 1]); | 
|  |  | 
|  | int offset = 0; | 
|  | if (bottomHardStop) { | 
|  | offset += 1; | 
|  | count--; | 
|  | } | 
|  | if (topHardStop) { | 
|  | count--; | 
|  | } | 
|  |  | 
|  | // Two remaining colors means a single interval from 0 to 1 | 
|  | // (but it may have originally been a 3 or 4 color gradient with 1-2 hard stops at the ends) | 
|  | if (count == 2) { | 
|  | return GrSingleIntervalGradientColorizer::Make(colors[offset], colors[offset + 1]); | 
|  | } | 
|  |  | 
|  | // Do an early test for the texture fallback to skip all of the other tests for specific | 
|  | // analytic support of the gradient (and compatibility with the hardware), when it's definitely | 
|  | // impossible to use an analytic solution. | 
|  | bool tryAnalyticColorizer = count <= GrUnrolledBinaryGradientColorizer::kMaxColorCount; | 
|  |  | 
|  | // The remaining analytic colorizers use scale*t+bias, and the scale/bias values can become | 
|  | // quite large when thresholds are close (but still outside the hardstop limit). If float isn't | 
|  | // 32-bit, output can be incorrect if the thresholds are too close together. However, the | 
|  | // analytic shaders are higher quality, so they can be used with lower precision hardware when | 
|  | // the thresholds are not ill-conditioned. | 
|  | const GrShaderCaps* caps = args.fContext->priv().caps()->shaderCaps(); | 
|  | if (!caps->floatIs32Bits() && tryAnalyticColorizer) { | 
|  | // Could run into problems, check if thresholds are close together (with a limit of .01, so | 
|  | // that scales will be less than 100, which leaves 4 decimals of precision on 16-bit). | 
|  | for (int i = offset; i < count - 1; i++) { | 
|  | SkScalar dt = SkScalarAbs(positions[i] - positions[i + 1]); | 
|  | if (dt <= kLowPrecisionIntervalLimit && dt > SK_ScalarNearlyZero) { | 
|  | tryAnalyticColorizer = false; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (tryAnalyticColorizer) { | 
|  | if (count == 3) { | 
|  | // Must be a dual interval gradient, where the middle point is at offset+1 and the two | 
|  | // intervals share the middle color stop. | 
|  | return GrDualIntervalGradientColorizer::Make(colors[offset], colors[offset + 1], | 
|  | colors[offset + 1], colors[offset + 2], | 
|  | positions[offset + 1]); | 
|  | } else if (count == 4 && SkScalarNearlyEqual(positions[offset + 1], | 
|  | positions[offset + 2])) { | 
|  | // Two separate intervals that join at the same threshold position | 
|  | return GrDualIntervalGradientColorizer::Make(colors[offset], colors[offset + 1], | 
|  | colors[offset + 2], colors[offset + 3], | 
|  | positions[offset + 1]); | 
|  | } | 
|  |  | 
|  | // The single and dual intervals are a specialized case of the unrolled binary search | 
|  | // colorizer which can analytically render gradients of up to 8 intervals (up to 9 or 16 | 
|  | // colors depending on how many hard stops are inserted). | 
|  | std::unique_ptr<GrFragmentProcessor> unrolled = GrUnrolledBinaryGradientColorizer::Make( | 
|  | colors + offset, positions + offset, count); | 
|  | if (unrolled) { | 
|  | return unrolled; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Otherwise fall back to a rasterized gradient sampled by a texture, which can handle | 
|  | // arbitrary gradients (the only downside being sampling resolution). | 
|  | return make_textured_colorizer(colors + offset, positions + offset, count, premul, args); | 
|  | } | 
|  |  | 
|  | // Combines the colorizer and layout with an appropriately configured master effect based on the | 
|  | // gradient's tile mode | 
|  | static std::unique_ptr<GrFragmentProcessor> make_gradient(const SkGradientShaderBase& shader, | 
|  | const GrFPArgs& args, std::unique_ptr<GrFragmentProcessor> layout) { | 
|  | // No shader is possible if a layout couldn't be created, e.g. a layout-specific Make() returned | 
|  | // null. | 
|  | if (layout == nullptr) { | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // Convert all colors into destination space and into SkPMColor4fs, and handle | 
|  | // premul issues depending on the interpolation mode | 
|  | bool inputPremul = shader.getGradFlags() & SkGradientShader::kInterpolateColorsInPremul_Flag; | 
|  | bool allOpaque = true; | 
|  | SkAutoSTMalloc<4, SkPMColor4f> colors(shader.fColorCount); | 
|  | SkColor4fXformer xformedColors(shader.fOrigColors4f, shader.fColorCount, | 
|  | shader.fColorSpace.get(), args.fDstColorInfo->colorSpace()); | 
|  | for (int i = 0; i < shader.fColorCount; i++) { | 
|  | const SkColor4f& upmColor = xformedColors.fColors[i]; | 
|  | colors[i] = inputPremul ? upmColor.premul() | 
|  | : SkPMColor4f{ upmColor.fR, upmColor.fG, upmColor.fB, upmColor.fA }; | 
|  | if (allOpaque && !SkScalarNearlyEqual(colors[i].fA, 1.0)) { | 
|  | allOpaque = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // SkGradientShader stores positions implicitly when they are evenly spaced, but the getPos() | 
|  | // implementation performs a branch for every position index. Since the shader conversion | 
|  | // requires lots of position tests, calculate all of the positions up front if needed. | 
|  | SkTArray<SkScalar, true> implicitPos; | 
|  | SkScalar* positions; | 
|  | if (shader.fOrigPos) { | 
|  | positions = shader.fOrigPos; | 
|  | } else { | 
|  | implicitPos.reserve(shader.fColorCount); | 
|  | SkScalar posScale = SK_Scalar1 / (shader.fColorCount - 1); | 
|  | for (int i = 0 ; i < shader.fColorCount; i++) { | 
|  | implicitPos.push_back(SkIntToScalar(i) * posScale); | 
|  | } | 
|  | positions = implicitPos.begin(); | 
|  | } | 
|  |  | 
|  | // All gradients are colorized the same way, regardless of layout | 
|  | std::unique_ptr<GrFragmentProcessor> colorizer = make_colorizer( | 
|  | colors.get(), positions, shader.fColorCount, inputPremul, args); | 
|  | if (colorizer == nullptr) { | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // The master effect has to export premul colors, but under certain conditions it doesn't need | 
|  | // to do anything to achieve that: i.e. its interpolating already premul colors (inputPremul) | 
|  | // or all the colors have a = 1, in which case premul is a no op. Note that this allOpaque | 
|  | // check is more permissive than SkGradientShaderBase's isOpaque(), since we can optimize away | 
|  | // the make-premul op for two point conical gradients (which report false for isOpaque). | 
|  | bool makePremul = !inputPremul && !allOpaque; | 
|  |  | 
|  | // All tile modes are supported (unless something was added to SkShader) | 
|  | std::unique_ptr<GrFragmentProcessor> master; | 
|  | switch(shader.getTileMode()) { | 
|  | case SkTileMode::kRepeat: | 
|  | master = GrTiledGradientEffect::Make(std::move(colorizer), std::move(layout), | 
|  | /* mirror */ false, makePremul, allOpaque); | 
|  | break; | 
|  | case SkTileMode::kMirror: | 
|  | master = GrTiledGradientEffect::Make(std::move(colorizer), std::move(layout), | 
|  | /* mirror */ true, makePremul, allOpaque); | 
|  | break; | 
|  | case SkTileMode::kClamp: | 
|  | // For the clamped mode, the border colors are the first and last colors, corresponding | 
|  | // to t=0 and t=1, because SkGradientShaderBase enforces that by adding color stops as | 
|  | // appropriate. If there is a hard stop, this grabs the expected outer colors for the | 
|  | // border. | 
|  | master = GrClampedGradientEffect::Make(std::move(colorizer), std::move(layout), | 
|  | colors[0], colors[shader.fColorCount - 1], makePremul, allOpaque); | 
|  | break; | 
|  | case SkTileMode::kDecal: | 
|  | // Even if the gradient colors are opaque, the decal borders are transparent so | 
|  | // disable that optimization | 
|  | master = GrClampedGradientEffect::Make(std::move(colorizer), std::move(layout), | 
|  | SK_PMColor4fTRANSPARENT, SK_PMColor4fTRANSPARENT, | 
|  | makePremul, /* colorsAreOpaque */ false); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (master == nullptr) { | 
|  | // Unexpected tile mode | 
|  | return nullptr; | 
|  | } | 
|  | if (args.fInputColorIsOpaque) { | 
|  | return GrFragmentProcessor::OverrideInput(std::move(master), SK_PMColor4fWHITE, false); | 
|  | } | 
|  | return GrFragmentProcessor::MulChildByInputAlpha(std::move(master)); | 
|  | } | 
|  |  | 
|  | namespace GrGradientShader { | 
|  |  | 
|  | std::unique_ptr<GrFragmentProcessor> MakeLinear(const SkLinearGradient& shader, | 
|  | const GrFPArgs& args) { | 
|  | return make_gradient(shader, args, GrLinearGradientLayout::Make(shader, args)); | 
|  | } | 
|  |  | 
|  | std::unique_ptr<GrFragmentProcessor> MakeRadial(const SkRadialGradient& shader, | 
|  | const GrFPArgs& args) { | 
|  | return make_gradient(shader,args, GrRadialGradientLayout::Make(shader, args)); | 
|  | } | 
|  |  | 
|  | std::unique_ptr<GrFragmentProcessor> MakeSweep(const SkSweepGradient& shader, | 
|  | const GrFPArgs& args) { | 
|  | return make_gradient(shader,args, GrSweepGradientLayout::Make(shader, args)); | 
|  | } | 
|  |  | 
|  | std::unique_ptr<GrFragmentProcessor> MakeConical(const SkTwoPointConicalGradient& shader, | 
|  | const GrFPArgs& args) { | 
|  | return make_gradient(shader, args, GrTwoPointConicalGradientLayout::Make(shader, args)); | 
|  | } | 
|  |  | 
|  | #if GR_TEST_UTILS | 
|  | RandomParams::RandomParams(SkRandom* random) { | 
|  | // Set color count to min of 2 so that we don't trigger the const color optimization and make | 
|  | // a non-gradient processor. | 
|  | fColorCount = random->nextRangeU(2, kMaxRandomGradientColors); | 
|  | fUseColors4f = random->nextBool(); | 
|  |  | 
|  | // if one color, omit stops, otherwise randomly decide whether or not to | 
|  | if (fColorCount == 1 || (fColorCount >= 2 && random->nextBool())) { | 
|  | fStops = nullptr; | 
|  | } else { | 
|  | fStops = fStopStorage; | 
|  | } | 
|  |  | 
|  | // if using SkColor4f, attach a random (possibly null) color space (with linear gamma) | 
|  | if (fUseColors4f) { | 
|  | fColorSpace = GrTest::TestColorSpace(random); | 
|  | } | 
|  |  | 
|  | SkScalar stop = 0.f; | 
|  | for (int i = 0; i < fColorCount; ++i) { | 
|  | if (fUseColors4f) { | 
|  | fColors4f[i].fR = random->nextUScalar1(); | 
|  | fColors4f[i].fG = random->nextUScalar1(); | 
|  | fColors4f[i].fB = random->nextUScalar1(); | 
|  | fColors4f[i].fA = random->nextUScalar1(); | 
|  | } else { | 
|  | fColors[i] = random->nextU(); | 
|  | } | 
|  | if (fStops) { | 
|  | fStops[i] = stop; | 
|  | stop = i < fColorCount - 1 ? stop + random->nextUScalar1() * (1.f - stop) : 1.f; | 
|  | } | 
|  | } | 
|  | fTileMode = static_cast<SkTileMode>(random->nextULessThan(kSkTileModeCount)); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | } |