blob: 2b05d00e416364e4b402e10e0fafe05a8febb077 [file] [log] [blame]
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/gpu/GrGpuResourcePriv.h"
#include "src/gpu/vk/GrVkGpu.h"
#include "src/gpu/vk/GrVkImage.h"
#include "src/gpu/vk/GrVkMemory.h"
#include "src/gpu/vk/GrVkTexture.h"
#include "src/gpu/vk/GrVkUtil.h"
#define VK_CALL(GPU, X) GR_VK_CALL(GPU->vkInterface(), X)
VkPipelineStageFlags GrVkImage::LayoutToPipelineSrcStageFlags(const VkImageLayout layout) {
if (VK_IMAGE_LAYOUT_GENERAL == layout) {
return VK_PIPELINE_STAGE_ALL_COMMANDS_BIT;
} else if (VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL == layout ||
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL == layout) {
return VK_PIPELINE_STAGE_TRANSFER_BIT;
} else if (VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL == layout) {
return VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
} else if (VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL == layout ||
VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL == layout) {
return VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT;
} else if (VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL == layout) {
return VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT;
} else if (VK_IMAGE_LAYOUT_PREINITIALIZED == layout) {
return VK_PIPELINE_STAGE_HOST_BIT;
} else if (VK_IMAGE_LAYOUT_PRESENT_SRC_KHR == layout) {
return VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
}
SkASSERT(VK_IMAGE_LAYOUT_UNDEFINED == layout);
return VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT;
}
VkAccessFlags GrVkImage::LayoutToSrcAccessMask(const VkImageLayout layout) {
// Currently we assume we will never being doing any explict shader writes (this doesn't include
// color attachment or depth/stencil writes). So we will ignore the
// VK_MEMORY_OUTPUT_SHADER_WRITE_BIT.
// We can only directly access the host memory if we are in preinitialized or general layout,
// and the image is linear.
// TODO: Add check for linear here so we are not always adding host to general, and we should
// only be in preinitialized if we are linear
VkAccessFlags flags = 0;
if (VK_IMAGE_LAYOUT_GENERAL == layout) {
flags = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT |
VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT |
VK_ACCESS_TRANSFER_WRITE_BIT |
VK_ACCESS_TRANSFER_READ_BIT |
VK_ACCESS_SHADER_READ_BIT |
VK_ACCESS_HOST_WRITE_BIT | VK_ACCESS_HOST_READ_BIT;
} else if (VK_IMAGE_LAYOUT_PREINITIALIZED == layout) {
flags = VK_ACCESS_HOST_WRITE_BIT;
} else if (VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL == layout) {
flags = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT | VK_ACCESS_COLOR_ATTACHMENT_READ_BIT;
} else if (VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL == layout) {
flags = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT;
} else if (VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL == layout) {
flags = VK_ACCESS_TRANSFER_WRITE_BIT;
} else if (VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL == layout ||
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL == layout ||
VK_IMAGE_LAYOUT_PRESENT_SRC_KHR == layout) {
// There are no writes that need to be made available
flags = 0;
}
return flags;
}
VkImageAspectFlags vk_format_to_aspect_flags(VkFormat format) {
switch (format) {
case VK_FORMAT_S8_UINT:
return VK_IMAGE_ASPECT_STENCIL_BIT;
case VK_FORMAT_D24_UNORM_S8_UINT: // fallthrough
case VK_FORMAT_D32_SFLOAT_S8_UINT:
return VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT;
default:
return VK_IMAGE_ASPECT_COLOR_BIT;
}
}
void GrVkImage::setImageLayout(const GrVkGpu* gpu, VkImageLayout newLayout,
VkAccessFlags dstAccessMask,
VkPipelineStageFlags dstStageMask,
bool byRegion, bool releaseFamilyQueue) {
SkASSERT(VK_IMAGE_LAYOUT_UNDEFINED != newLayout &&
VK_IMAGE_LAYOUT_PREINITIALIZED != newLayout);
VkImageLayout currentLayout = this->currentLayout();
if (releaseFamilyQueue && fInfo.fCurrentQueueFamily == fInitialQueueFamily &&
newLayout == currentLayout) {
// We never transfered the image to this queue and we are releasing it so don't do anything.
return;
}
// If the old and new layout are the same and the layout is a read only layout, there is no need
// to put in a barrier unless we also need to switch queues.
if (newLayout == currentLayout && !releaseFamilyQueue &&
(fInfo.fCurrentQueueFamily == VK_QUEUE_FAMILY_IGNORED ||
fInfo.fCurrentQueueFamily == gpu->queueIndex()) &&
(VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL == currentLayout ||
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL == currentLayout ||
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL == currentLayout)) {
return;
}
VkAccessFlags srcAccessMask = GrVkImage::LayoutToSrcAccessMask(currentLayout);
VkPipelineStageFlags srcStageMask = GrVkImage::LayoutToPipelineSrcStageFlags(currentLayout);
VkImageAspectFlags aspectFlags = vk_format_to_aspect_flags(fInfo.fFormat);
uint32_t srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
uint32_t dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
if (fInfo.fCurrentQueueFamily != VK_QUEUE_FAMILY_IGNORED &&
gpu->queueIndex() != fInfo.fCurrentQueueFamily) {
// The image still is owned by its original queue family and we need to transfer it into
// ours.
SkASSERT(!releaseFamilyQueue);
SkASSERT(fInfo.fCurrentQueueFamily == fInitialQueueFamily);
srcQueueFamilyIndex = fInfo.fCurrentQueueFamily;
dstQueueFamilyIndex = gpu->queueIndex();
fInfo.fCurrentQueueFamily = gpu->queueIndex();
} else if (releaseFamilyQueue) {
// We are releasing the image so we must transfer the image back to its original queue
// family.
srcQueueFamilyIndex = fInfo.fCurrentQueueFamily;
dstQueueFamilyIndex = fInitialQueueFamily;
fInfo.fCurrentQueueFamily = fInitialQueueFamily;
}
VkImageMemoryBarrier imageMemoryBarrier = {
VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER, // sType
nullptr, // pNext
srcAccessMask, // srcAccessMask
dstAccessMask, // dstAccessMask
currentLayout, // oldLayout
newLayout, // newLayout
srcQueueFamilyIndex, // srcQueueFamilyIndex
dstQueueFamilyIndex, // dstQueueFamilyIndex
fInfo.fImage, // image
{ aspectFlags, 0, fInfo.fLevelCount, 0, 1 } // subresourceRange
};
gpu->addImageMemoryBarrier(this->resource(), srcStageMask, dstStageMask, byRegion,
&imageMemoryBarrier);
this->updateImageLayout(newLayout);
}
bool GrVkImage::InitImageInfo(const GrVkGpu* gpu, const ImageDesc& imageDesc, GrVkImageInfo* info) {
if (0 == imageDesc.fWidth || 0 == imageDesc.fHeight) {
return false;
}
if ((imageDesc.fIsProtected == GrProtected::kYes) && !gpu->vkCaps().supportsProtectedMemory()) {
return false;
}
VkImage image = VK_NULL_HANDLE;
GrVkAlloc alloc;
bool isLinear = VK_IMAGE_TILING_LINEAR == imageDesc.fImageTiling;
VkImageLayout initialLayout = isLinear ? VK_IMAGE_LAYOUT_PREINITIALIZED
: VK_IMAGE_LAYOUT_UNDEFINED;
// Create Image
VkSampleCountFlagBits vkSamples;
if (!GrSampleCountToVkSampleCount(imageDesc.fSamples, &vkSamples)) {
return false;
}
SkASSERT(VK_IMAGE_TILING_OPTIMAL == imageDesc.fImageTiling ||
VK_SAMPLE_COUNT_1_BIT == vkSamples);
VkImageCreateFlags createflags = 0;
if (imageDesc.fIsProtected == GrProtected::kYes || gpu->protectedContext()) {
createflags |= VK_IMAGE_CREATE_PROTECTED_BIT;
}
const VkImageCreateInfo imageCreateInfo = {
VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO, // sType
nullptr, // pNext
createflags, // VkImageCreateFlags
imageDesc.fImageType, // VkImageType
imageDesc.fFormat, // VkFormat
{ imageDesc.fWidth, imageDesc.fHeight, 1 }, // VkExtent3D
imageDesc.fLevels, // mipLevels
1, // arrayLayers
vkSamples, // samples
imageDesc.fImageTiling, // VkImageTiling
imageDesc.fUsageFlags, // VkImageUsageFlags
VK_SHARING_MODE_EXCLUSIVE, // VkSharingMode
0, // queueFamilyCount
0, // pQueueFamilyIndices
initialLayout // initialLayout
};
GR_VK_CALL_ERRCHECK(gpu->vkInterface(), CreateImage(gpu->device(), &imageCreateInfo, nullptr,
&image));
if (!GrVkMemory::AllocAndBindImageMemory(gpu, image, isLinear, &alloc)) {
VK_CALL(gpu, DestroyImage(gpu->device(), image, nullptr));
return false;
}
info->fImage = image;
info->fAlloc = alloc;
info->fImageTiling = imageDesc.fImageTiling;
info->fImageLayout = initialLayout;
info->fFormat = imageDesc.fFormat;
info->fLevelCount = imageDesc.fLevels;
info->fCurrentQueueFamily = VK_QUEUE_FAMILY_IGNORED;
info->fProtected =
(createflags & VK_IMAGE_CREATE_PROTECTED_BIT) ? GrProtected::kYes : GrProtected::kNo;
return true;
}
void GrVkImage::DestroyImageInfo(const GrVkGpu* gpu, GrVkImageInfo* info) {
VK_CALL(gpu, DestroyImage(gpu->device(), info->fImage, nullptr));
bool isLinear = VK_IMAGE_TILING_LINEAR == info->fImageTiling;
GrVkMemory::FreeImageMemory(gpu, isLinear, info->fAlloc);
}
GrVkImage::~GrVkImage() {
// should have been released or abandoned first
SkASSERT(!fResource);
}
void GrVkImage::prepareForPresent(GrVkGpu* gpu) {
VkImageLayout layout = this->currentLayout();
if (fInitialQueueFamily != VK_QUEUE_FAMILY_EXTERNAL &&
fInitialQueueFamily != VK_QUEUE_FAMILY_FOREIGN_EXT) {
if (gpu->vkCaps().supportsSwapchain()) {
layout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;
}
}
this->setImageLayout(gpu, layout, 0, VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT, false, true);
}
void GrVkImage::prepareForExternal(GrVkGpu* gpu) {
this->setImageLayout(gpu, this->currentLayout(), 0, VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT, false,
true);
}
void GrVkImage::releaseImage(GrVkGpu* gpu) {
if (fInfo.fCurrentQueueFamily != fInitialQueueFamily) {
// The Vulkan spec is vague on what to put for the dstStageMask here. The spec for image
// memory barrier says the dstStageMask must not be zero. However, in the spec when it talks
// about family queue transfers it says the dstStageMask is ignored and should be set to
// zero. Assuming it really is ignored we set it to VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT here
// since it makes the Vulkan validation layers happy.
this->setImageLayout(gpu, this->currentLayout(), 0, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
false, true);
}
if (fResource) {
fResource->removeOwningTexture();
fResource->unref(gpu);
fResource = nullptr;
}
}
void GrVkImage::abandonImage() {
if (fResource) {
fResource->removeOwningTexture();
fResource->unrefAndAbandon();
fResource = nullptr;
}
}
void GrVkImage::setResourceRelease(sk_sp<GrRefCntedCallback> releaseHelper) {
SkASSERT(fResource);
// Forward the release proc on to GrVkImage::Resource
fResource->setRelease(std::move(releaseHelper));
}
void GrVkImage::Resource::freeGPUData(GrVkGpu* gpu) const {
this->invokeReleaseProc();
VK_CALL(gpu, DestroyImage(gpu->device(), fImage, nullptr));
bool isLinear = (VK_IMAGE_TILING_LINEAR == fImageTiling);
GrVkMemory::FreeImageMemory(gpu, isLinear, fAlloc);
}
void GrVkImage::Resource::addIdleProc(GrVkTexture* owningTexture,
sk_sp<GrRefCntedCallback> idleProc) const {
SkASSERT(!fOwningTexture || fOwningTexture == owningTexture);
fOwningTexture = owningTexture;
fIdleProcs.push_back(std::move(idleProc));
}
int GrVkImage::Resource::idleProcCnt() const { return fIdleProcs.count(); }
sk_sp<GrRefCntedCallback> GrVkImage::Resource::idleProc(int i) const { return fIdleProcs[i]; }
void GrVkImage::Resource::resetIdleProcs() const { fIdleProcs.reset(); }
void GrVkImage::Resource::removeOwningTexture() const { fOwningTexture = nullptr; }
void GrVkImage::Resource::notifyAddedToCommandBuffer() const { ++fNumCommandBufferOwners; }
void GrVkImage::Resource::notifyRemovedFromCommandBuffer() const {
SkASSERT(fNumCommandBufferOwners);
if (--fNumCommandBufferOwners || !fIdleProcs.count()) {
return;
}
if (fOwningTexture) {
if (fOwningTexture->resourcePriv().hasRef()) {
// Wait for the texture to become idle in the cache to call the procs.
return;
}
fOwningTexture->callIdleProcsOnBehalfOfResource();
} else {
fIdleProcs.reset();
}
}
void GrVkImage::BorrowedResource::freeGPUData(GrVkGpu* gpu) const {
this->invokeReleaseProc();
}
void GrVkImage::BorrowedResource::abandonGPUData() const {
this->invokeReleaseProc();
}
#if GR_TEST_UTILS
void GrVkImage::setCurrentQueueFamilyToGraphicsQueue(GrVkGpu* gpu) {
fInfo.fCurrentQueueFamily = gpu->queueIndex();
}
#endif