| /* |
| * Copyright (c) 2010 The WebM project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include <limits.h> |
| #include <math.h> |
| #include <stdio.h> |
| |
| #include "./vpx_dsp_rtcd.h" |
| #include "./vpx_scale_rtcd.h" |
| |
| #include "vpx_dsp/vpx_dsp_common.h" |
| #include "vpx_mem/vpx_mem.h" |
| #include "vpx_ports/mem.h" |
| #include "vpx_ports/system_state.h" |
| #include "vpx_scale/vpx_scale.h" |
| #include "vpx_scale/yv12config.h" |
| |
| #include "vp9/common/vp9_entropymv.h" |
| #include "vp9/common/vp9_quant_common.h" |
| #include "vp9/common/vp9_reconinter.h" // vp9_setup_dst_planes() |
| #include "vp9/encoder/vp9_aq_variance.h" |
| #include "vp9/encoder/vp9_block.h" |
| #include "vp9/encoder/vp9_encodeframe.h" |
| #include "vp9/encoder/vp9_encodemb.h" |
| #include "vp9/encoder/vp9_encodemv.h" |
| #include "vp9/encoder/vp9_encoder.h" |
| #include "vp9/encoder/vp9_ethread.h" |
| #include "vp9/encoder/vp9_extend.h" |
| #include "vp9/encoder/vp9_firstpass.h" |
| #include "vp9/encoder/vp9_mcomp.h" |
| #include "vp9/encoder/vp9_quantize.h" |
| #include "vp9/encoder/vp9_rd.h" |
| #include "vpx_dsp/variance.h" |
| |
| #define OUTPUT_FPF 0 |
| #define ARF_STATS_OUTPUT 0 |
| #define COMPLEXITY_STATS_OUTPUT 0 |
| |
| #define FIRST_PASS_Q 10.0 |
| #define NORMAL_BOOST 100 |
| #define MIN_ARF_GF_BOOST 250 |
| #define MIN_DECAY_FACTOR 0.01 |
| #define NEW_MV_MODE_PENALTY 32 |
| #define DARK_THRESH 64 |
| #define LOW_I_THRESH 24000 |
| |
| #define NCOUNT_INTRA_THRESH 8192 |
| #define NCOUNT_INTRA_FACTOR 3 |
| |
| #define DOUBLE_DIVIDE_CHECK(x) ((x) < 0 ? (x)-0.000001 : (x) + 0.000001) |
| |
| #if ARF_STATS_OUTPUT |
| unsigned int arf_count = 0; |
| #endif |
| |
| // Resets the first pass file to the given position using a relative seek from |
| // the current position. |
| static void reset_fpf_position(TWO_PASS *p, const FIRSTPASS_STATS *position) { |
| p->stats_in = position; |
| } |
| |
| // Read frame stats at an offset from the current position. |
| static const FIRSTPASS_STATS *read_frame_stats(const TWO_PASS *p, int offset) { |
| if ((offset >= 0 && p->stats_in + offset >= p->stats_in_end) || |
| (offset < 0 && p->stats_in + offset < p->stats_in_start)) { |
| return NULL; |
| } |
| |
| return &p->stats_in[offset]; |
| } |
| |
| static int input_stats(TWO_PASS *p, FIRSTPASS_STATS *fps) { |
| if (p->stats_in >= p->stats_in_end) return EOF; |
| |
| *fps = *p->stats_in; |
| ++p->stats_in; |
| return 1; |
| } |
| |
| static void output_stats(FIRSTPASS_STATS *stats) { |
| (void)stats; |
| // TEMP debug code |
| #if OUTPUT_FPF |
| { |
| FILE *fpfile; |
| fpfile = fopen("firstpass.stt", "a"); |
| |
| fprintf(fpfile, |
| "%12.0lf %12.4lf %12.2lf %12.2lf %12.2lf %12.0lf %12.4lf %12.4lf" |
| "%12.4lf %12.4lf %12.4lf %12.4lf %12.4lf %12.4lf %12.4lf %12.4lf" |
| "%12.4lf %12.4lf %12.4lf %12.4lf %12.4lf %12.0lf %12.4lf %12.0lf" |
| "%12.4lf" |
| "\n", |
| stats->frame, stats->weight, stats->intra_error, stats->coded_error, |
| stats->sr_coded_error, stats->frame_noise_energy, stats->pcnt_inter, |
| stats->pcnt_motion, stats->pcnt_second_ref, stats->pcnt_neutral, |
| stats->pcnt_intra_low, stats->pcnt_intra_high, |
| stats->intra_skip_pct, stats->intra_smooth_pct, |
| stats->inactive_zone_rows, stats->inactive_zone_cols, stats->MVr, |
| stats->mvr_abs, stats->MVc, stats->mvc_abs, stats->MVrv, |
| stats->MVcv, stats->mv_in_out_count, stats->count, stats->duration); |
| fclose(fpfile); |
| } |
| #endif |
| } |
| |
| #if CONFIG_FP_MB_STATS |
| static void output_fpmb_stats(uint8_t *this_frame_mb_stats, VP9_COMMON *cm, |
| struct vpx_codec_pkt_list *pktlist) { |
| struct vpx_codec_cx_pkt pkt; |
| pkt.kind = VPX_CODEC_FPMB_STATS_PKT; |
| pkt.data.firstpass_mb_stats.buf = this_frame_mb_stats; |
| pkt.data.firstpass_mb_stats.sz = cm->initial_mbs * sizeof(uint8_t); |
| vpx_codec_pkt_list_add(pktlist, &pkt); |
| } |
| #endif |
| |
| static void zero_stats(FIRSTPASS_STATS *section) { |
| section->frame = 0.0; |
| section->weight = 0.0; |
| section->intra_error = 0.0; |
| section->coded_error = 0.0; |
| section->sr_coded_error = 0.0; |
| section->frame_noise_energy = 0.0; |
| section->pcnt_inter = 0.0; |
| section->pcnt_motion = 0.0; |
| section->pcnt_second_ref = 0.0; |
| section->pcnt_neutral = 0.0; |
| section->intra_skip_pct = 0.0; |
| section->intra_smooth_pct = 0.0; |
| section->pcnt_intra_low = 0.0; |
| section->pcnt_intra_high = 0.0; |
| section->inactive_zone_rows = 0.0; |
| section->inactive_zone_cols = 0.0; |
| section->MVr = 0.0; |
| section->mvr_abs = 0.0; |
| section->MVc = 0.0; |
| section->mvc_abs = 0.0; |
| section->MVrv = 0.0; |
| section->MVcv = 0.0; |
| section->mv_in_out_count = 0.0; |
| section->count = 0.0; |
| section->duration = 1.0; |
| section->spatial_layer_id = 0; |
| } |
| |
| static void accumulate_stats(FIRSTPASS_STATS *section, |
| const FIRSTPASS_STATS *frame) { |
| section->frame += frame->frame; |
| section->weight += frame->weight; |
| section->spatial_layer_id = frame->spatial_layer_id; |
| section->intra_error += frame->intra_error; |
| section->coded_error += frame->coded_error; |
| section->sr_coded_error += frame->sr_coded_error; |
| section->frame_noise_energy += frame->frame_noise_energy; |
| section->pcnt_inter += frame->pcnt_inter; |
| section->pcnt_motion += frame->pcnt_motion; |
| section->pcnt_second_ref += frame->pcnt_second_ref; |
| section->pcnt_neutral += frame->pcnt_neutral; |
| section->intra_skip_pct += frame->intra_skip_pct; |
| section->intra_smooth_pct += frame->intra_smooth_pct; |
| section->pcnt_intra_low += frame->pcnt_intra_low; |
| section->pcnt_intra_high += frame->pcnt_intra_high; |
| section->inactive_zone_rows += frame->inactive_zone_rows; |
| section->inactive_zone_cols += frame->inactive_zone_cols; |
| section->MVr += frame->MVr; |
| section->mvr_abs += frame->mvr_abs; |
| section->MVc += frame->MVc; |
| section->mvc_abs += frame->mvc_abs; |
| section->MVrv += frame->MVrv; |
| section->MVcv += frame->MVcv; |
| section->mv_in_out_count += frame->mv_in_out_count; |
| section->count += frame->count; |
| section->duration += frame->duration; |
| } |
| |
| static void subtract_stats(FIRSTPASS_STATS *section, |
| const FIRSTPASS_STATS *frame) { |
| section->frame -= frame->frame; |
| section->weight -= frame->weight; |
| section->intra_error -= frame->intra_error; |
| section->coded_error -= frame->coded_error; |
| section->sr_coded_error -= frame->sr_coded_error; |
| section->frame_noise_energy -= frame->frame_noise_energy; |
| section->pcnt_inter -= frame->pcnt_inter; |
| section->pcnt_motion -= frame->pcnt_motion; |
| section->pcnt_second_ref -= frame->pcnt_second_ref; |
| section->pcnt_neutral -= frame->pcnt_neutral; |
| section->intra_skip_pct -= frame->intra_skip_pct; |
| section->intra_smooth_pct -= frame->intra_smooth_pct; |
| section->pcnt_intra_low -= frame->pcnt_intra_low; |
| section->pcnt_intra_high -= frame->pcnt_intra_high; |
| section->inactive_zone_rows -= frame->inactive_zone_rows; |
| section->inactive_zone_cols -= frame->inactive_zone_cols; |
| section->MVr -= frame->MVr; |
| section->mvr_abs -= frame->mvr_abs; |
| section->MVc -= frame->MVc; |
| section->mvc_abs -= frame->mvc_abs; |
| section->MVrv -= frame->MVrv; |
| section->MVcv -= frame->MVcv; |
| section->mv_in_out_count -= frame->mv_in_out_count; |
| section->count -= frame->count; |
| section->duration -= frame->duration; |
| } |
| |
| // Calculate an active area of the image that discounts formatting |
| // bars and partially discounts other 0 energy areas. |
| #define MIN_ACTIVE_AREA 0.5 |
| #define MAX_ACTIVE_AREA 1.0 |
| static double calculate_active_area(const FRAME_INFO *frame_info, |
| const FIRSTPASS_STATS *this_frame) { |
| double active_pct; |
| |
| active_pct = |
| 1.0 - |
| ((this_frame->intra_skip_pct / 2) + |
| ((this_frame->inactive_zone_rows * 2) / (double)frame_info->mb_rows)); |
| return fclamp(active_pct, MIN_ACTIVE_AREA, MAX_ACTIVE_AREA); |
| } |
| |
| // Get the average weighted error for the clip (or corpus) |
| static double get_distribution_av_err(VP9_COMP *cpi, TWO_PASS *const twopass) { |
| const double av_weight = |
| twopass->total_stats.weight / twopass->total_stats.count; |
| |
| if (cpi->oxcf.vbr_corpus_complexity) |
| return av_weight * twopass->mean_mod_score; |
| else |
| return (twopass->total_stats.coded_error * av_weight) / |
| twopass->total_stats.count; |
| } |
| |
| #define ACT_AREA_CORRECTION 0.5 |
| // Calculate a modified Error used in distributing bits between easier and |
| // harder frames. |
| static double calculate_mod_frame_score(const VP9_COMP *cpi, |
| const VP9EncoderConfig *oxcf, |
| const FIRSTPASS_STATS *this_frame, |
| const double av_err) { |
| double modified_score = |
| av_err * pow(this_frame->coded_error * this_frame->weight / |
| DOUBLE_DIVIDE_CHECK(av_err), |
| oxcf->two_pass_vbrbias / 100.0); |
| |
| // Correction for active area. Frames with a reduced active area |
| // (eg due to formatting bars) have a higher error per mb for the |
| // remaining active MBs. The correction here assumes that coding |
| // 0.5N blocks of complexity 2X is a little easier than coding N |
| // blocks of complexity X. |
| modified_score *= pow(calculate_active_area(&cpi->frame_info, this_frame), |
| ACT_AREA_CORRECTION); |
| |
| return modified_score; |
| } |
| |
| static double calc_norm_frame_score(const VP9EncoderConfig *oxcf, |
| const FRAME_INFO *frame_info, |
| const FIRSTPASS_STATS *this_frame, |
| double mean_mod_score, double av_err) { |
| double modified_score = |
| av_err * pow(this_frame->coded_error * this_frame->weight / |
| DOUBLE_DIVIDE_CHECK(av_err), |
| oxcf->two_pass_vbrbias / 100.0); |
| |
| const double min_score = (double)(oxcf->two_pass_vbrmin_section) / 100.0; |
| const double max_score = (double)(oxcf->two_pass_vbrmax_section) / 100.0; |
| |
| // Correction for active area. Frames with a reduced active area |
| // (eg due to formatting bars) have a higher error per mb for the |
| // remaining active MBs. The correction here assumes that coding |
| // 0.5N blocks of complexity 2X is a little easier than coding N |
| // blocks of complexity X. |
| modified_score *= |
| pow(calculate_active_area(frame_info, this_frame), ACT_AREA_CORRECTION); |
| |
| // Normalize to a midpoint score. |
| modified_score /= DOUBLE_DIVIDE_CHECK(mean_mod_score); |
| return fclamp(modified_score, min_score, max_score); |
| } |
| |
| static double calculate_norm_frame_score(const VP9_COMP *cpi, |
| const TWO_PASS *twopass, |
| const VP9EncoderConfig *oxcf, |
| const FIRSTPASS_STATS *this_frame, |
| const double av_err) { |
| return calc_norm_frame_score(oxcf, &cpi->frame_info, this_frame, |
| twopass->mean_mod_score, av_err); |
| } |
| |
| // This function returns the maximum target rate per frame. |
| static int frame_max_bits(const RATE_CONTROL *rc, |
| const VP9EncoderConfig *oxcf) { |
| int64_t max_bits = ((int64_t)rc->avg_frame_bandwidth * |
| (int64_t)oxcf->two_pass_vbrmax_section) / |
| 100; |
| if (max_bits < 0) |
| max_bits = 0; |
| else if (max_bits > rc->max_frame_bandwidth) |
| max_bits = rc->max_frame_bandwidth; |
| |
| return (int)max_bits; |
| } |
| |
| void vp9_init_first_pass(VP9_COMP *cpi) { |
| zero_stats(&cpi->twopass.total_stats); |
| } |
| |
| void vp9_end_first_pass(VP9_COMP *cpi) { |
| output_stats(&cpi->twopass.total_stats); |
| cpi->twopass.first_pass_done = 1; |
| vpx_free(cpi->twopass.fp_mb_float_stats); |
| cpi->twopass.fp_mb_float_stats = NULL; |
| } |
| |
| static vpx_variance_fn_t get_block_variance_fn(BLOCK_SIZE bsize) { |
| switch (bsize) { |
| case BLOCK_8X8: return vpx_mse8x8; |
| case BLOCK_16X8: return vpx_mse16x8; |
| case BLOCK_8X16: return vpx_mse8x16; |
| default: return vpx_mse16x16; |
| } |
| } |
| |
| static unsigned int get_prediction_error(BLOCK_SIZE bsize, |
| const struct buf_2d *src, |
| const struct buf_2d *ref) { |
| unsigned int sse; |
| const vpx_variance_fn_t fn = get_block_variance_fn(bsize); |
| fn(src->buf, src->stride, ref->buf, ref->stride, &sse); |
| return sse; |
| } |
| |
| #if CONFIG_VP9_HIGHBITDEPTH |
| static vpx_variance_fn_t highbd_get_block_variance_fn(BLOCK_SIZE bsize, |
| int bd) { |
| switch (bd) { |
| default: |
| switch (bsize) { |
| case BLOCK_8X8: return vpx_highbd_8_mse8x8; |
| case BLOCK_16X8: return vpx_highbd_8_mse16x8; |
| case BLOCK_8X16: return vpx_highbd_8_mse8x16; |
| default: return vpx_highbd_8_mse16x16; |
| } |
| break; |
| case 10: |
| switch (bsize) { |
| case BLOCK_8X8: return vpx_highbd_10_mse8x8; |
| case BLOCK_16X8: return vpx_highbd_10_mse16x8; |
| case BLOCK_8X16: return vpx_highbd_10_mse8x16; |
| default: return vpx_highbd_10_mse16x16; |
| } |
| break; |
| case 12: |
| switch (bsize) { |
| case BLOCK_8X8: return vpx_highbd_12_mse8x8; |
| case BLOCK_16X8: return vpx_highbd_12_mse16x8; |
| case BLOCK_8X16: return vpx_highbd_12_mse8x16; |
| default: return vpx_highbd_12_mse16x16; |
| } |
| break; |
| } |
| } |
| |
| static unsigned int highbd_get_prediction_error(BLOCK_SIZE bsize, |
| const struct buf_2d *src, |
| const struct buf_2d *ref, |
| int bd) { |
| unsigned int sse; |
| const vpx_variance_fn_t fn = highbd_get_block_variance_fn(bsize, bd); |
| fn(src->buf, src->stride, ref->buf, ref->stride, &sse); |
| return sse; |
| } |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| |
| // Refine the motion search range according to the frame dimension |
| // for first pass test. |
| static int get_search_range(const VP9_COMP *cpi) { |
| int sr = 0; |
| const int dim = VPXMIN(cpi->initial_width, cpi->initial_height); |
| |
| while ((dim << sr) < MAX_FULL_PEL_VAL) ++sr; |
| return sr; |
| } |
| |
| // Reduce limits to keep the motion search within MV_MAX of ref_mv. Not doing |
| // this can be problematic for big videos (8K) and may cause assert failure |
| // (or memory violation) in mv_cost. Limits are only modified if they would |
| // be non-empty. Returns 1 if limits are non-empty. |
| static int intersect_limits_with_mv_max(MvLimits *mv_limits, const MV *ref_mv) { |
| const int row_min = |
| VPXMAX(mv_limits->row_min, (ref_mv->row + 7 - MV_MAX) >> 3); |
| const int row_max = |
| VPXMIN(mv_limits->row_max, (ref_mv->row - 1 + MV_MAX) >> 3); |
| const int col_min = |
| VPXMAX(mv_limits->col_min, (ref_mv->col + 7 - MV_MAX) >> 3); |
| const int col_max = |
| VPXMIN(mv_limits->col_max, (ref_mv->col - 1 + MV_MAX) >> 3); |
| if (row_min > row_max || col_min > col_max) { |
| return 0; |
| } |
| mv_limits->row_min = row_min; |
| mv_limits->row_max = row_max; |
| mv_limits->col_min = col_min; |
| mv_limits->col_max = col_max; |
| return 1; |
| } |
| |
| static void first_pass_motion_search(VP9_COMP *cpi, MACROBLOCK *x, |
| const MV *ref_mv, MV *best_mv, |
| int *best_motion_err) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MV tmp_mv = { 0, 0 }; |
| MV ref_mv_full = { ref_mv->row >> 3, ref_mv->col >> 3 }; |
| int num00, tmp_err, n; |
| const BLOCK_SIZE bsize = xd->mi[0]->sb_type; |
| vp9_variance_fn_ptr_t v_fn_ptr = cpi->fn_ptr[bsize]; |
| const int new_mv_mode_penalty = NEW_MV_MODE_PENALTY; |
| |
| int step_param = 3; |
| int further_steps = (MAX_MVSEARCH_STEPS - 1) - step_param; |
| const int sr = get_search_range(cpi); |
| const MvLimits tmp_mv_limits = x->mv_limits; |
| step_param += sr; |
| further_steps -= sr; |
| |
| if (!intersect_limits_with_mv_max(&x->mv_limits, ref_mv)) { |
| return; |
| } |
| |
| // Override the default variance function to use MSE. |
| v_fn_ptr.vf = get_block_variance_fn(bsize); |
| #if CONFIG_VP9_HIGHBITDEPTH |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| v_fn_ptr.vf = highbd_get_block_variance_fn(bsize, xd->bd); |
| } |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| |
| // Center the initial step/diamond search on best mv. |
| tmp_err = cpi->diamond_search_sad(x, &cpi->ss_cfg, &ref_mv_full, &tmp_mv, |
| step_param, x->sadperbit16, &num00, |
| &v_fn_ptr, ref_mv); |
| if (tmp_err < INT_MAX) |
| tmp_err = vp9_get_mvpred_var(x, &tmp_mv, ref_mv, &v_fn_ptr, 1); |
| if (tmp_err < INT_MAX - new_mv_mode_penalty) tmp_err += new_mv_mode_penalty; |
| |
| if (tmp_err < *best_motion_err) { |
| *best_motion_err = tmp_err; |
| *best_mv = tmp_mv; |
| } |
| |
| // Carry out further step/diamond searches as necessary. |
| n = num00; |
| num00 = 0; |
| |
| while (n < further_steps) { |
| ++n; |
| |
| if (num00) { |
| --num00; |
| } else { |
| tmp_err = cpi->diamond_search_sad(x, &cpi->ss_cfg, &ref_mv_full, &tmp_mv, |
| step_param + n, x->sadperbit16, &num00, |
| &v_fn_ptr, ref_mv); |
| if (tmp_err < INT_MAX) |
| tmp_err = vp9_get_mvpred_var(x, &tmp_mv, ref_mv, &v_fn_ptr, 1); |
| if (tmp_err < INT_MAX - new_mv_mode_penalty) |
| tmp_err += new_mv_mode_penalty; |
| |
| if (tmp_err < *best_motion_err) { |
| *best_motion_err = tmp_err; |
| *best_mv = tmp_mv; |
| } |
| } |
| } |
| x->mv_limits = tmp_mv_limits; |
| } |
| |
| static BLOCK_SIZE get_bsize(const VP9_COMMON *cm, int mb_row, int mb_col) { |
| if (2 * mb_col + 1 < cm->mi_cols) { |
| return 2 * mb_row + 1 < cm->mi_rows ? BLOCK_16X16 : BLOCK_16X8; |
| } else { |
| return 2 * mb_row + 1 < cm->mi_rows ? BLOCK_8X16 : BLOCK_8X8; |
| } |
| } |
| |
| static int find_fp_qindex(vpx_bit_depth_t bit_depth) { |
| int i; |
| |
| for (i = 0; i < QINDEX_RANGE; ++i) |
| if (vp9_convert_qindex_to_q(i, bit_depth) >= FIRST_PASS_Q) break; |
| |
| if (i == QINDEX_RANGE) i--; |
| |
| return i; |
| } |
| |
| static void set_first_pass_params(VP9_COMP *cpi) { |
| VP9_COMMON *const cm = &cpi->common; |
| if (!cpi->refresh_alt_ref_frame && |
| (cm->current_video_frame == 0 || (cpi->frame_flags & FRAMEFLAGS_KEY))) { |
| cm->frame_type = KEY_FRAME; |
| } else { |
| cm->frame_type = INTER_FRAME; |
| } |
| // Do not use periodic key frames. |
| cpi->rc.frames_to_key = INT_MAX; |
| } |
| |
| // Scale an sse threshold to account for 8/10/12 bit. |
| static int scale_sse_threshold(VP9_COMMON *cm, int thresh) { |
| int ret_val = thresh; |
| #if CONFIG_VP9_HIGHBITDEPTH |
| if (cm->use_highbitdepth) { |
| switch (cm->bit_depth) { |
| case VPX_BITS_8: ret_val = thresh; break; |
| case VPX_BITS_10: ret_val = thresh << 4; break; |
| default: |
| assert(cm->bit_depth == VPX_BITS_12); |
| ret_val = thresh << 8; |
| break; |
| } |
| } |
| #else |
| (void)cm; |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| return ret_val; |
| } |
| |
| // This threshold is used to track blocks where to all intents and purposes |
| // the intra prediction error 0. Though the metric we test against |
| // is technically a sse we are mainly interested in blocks where all the pixels |
| // in the 8 bit domain have an error of <= 1 (where error = sse) so a |
| // linear scaling for 10 and 12 bit gives similar results. |
| #define UL_INTRA_THRESH 50 |
| static int get_ul_intra_threshold(VP9_COMMON *cm) { |
| int ret_val = UL_INTRA_THRESH; |
| #if CONFIG_VP9_HIGHBITDEPTH |
| if (cm->use_highbitdepth) { |
| switch (cm->bit_depth) { |
| case VPX_BITS_8: ret_val = UL_INTRA_THRESH; break; |
| case VPX_BITS_10: ret_val = UL_INTRA_THRESH << 2; break; |
| default: |
| assert(cm->bit_depth == VPX_BITS_12); |
| ret_val = UL_INTRA_THRESH << 4; |
| break; |
| } |
| } |
| #else |
| (void)cm; |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| return ret_val; |
| } |
| |
| #define SMOOTH_INTRA_THRESH 4000 |
| static int get_smooth_intra_threshold(VP9_COMMON *cm) { |
| int ret_val = SMOOTH_INTRA_THRESH; |
| #if CONFIG_VP9_HIGHBITDEPTH |
| if (cm->use_highbitdepth) { |
| switch (cm->bit_depth) { |
| case VPX_BITS_8: ret_val = SMOOTH_INTRA_THRESH; break; |
| case VPX_BITS_10: ret_val = SMOOTH_INTRA_THRESH << 4; break; |
| default: |
| assert(cm->bit_depth == VPX_BITS_12); |
| ret_val = SMOOTH_INTRA_THRESH << 8; |
| break; |
| } |
| } |
| #else |
| (void)cm; |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| return ret_val; |
| } |
| |
| #define FP_DN_THRESH 8 |
| #define FP_MAX_DN_THRESH 24 |
| #define KERNEL_SIZE 3 |
| |
| // Baseline Kernal weights for first pass noise metric |
| static uint8_t fp_dn_kernal_3[KERNEL_SIZE * KERNEL_SIZE] = { 1, 2, 1, 2, 4, |
| 2, 1, 2, 1 }; |
| |
| // Estimate noise at a single point based on the impace of a spatial kernal |
| // on the point value |
| static int fp_estimate_point_noise(uint8_t *src_ptr, const int stride) { |
| int sum_weight = 0; |
| int sum_val = 0; |
| int i, j; |
| int max_diff = 0; |
| int diff; |
| int dn_diff; |
| uint8_t *tmp_ptr; |
| uint8_t *kernal_ptr; |
| uint8_t dn_val; |
| uint8_t centre_val = *src_ptr; |
| |
| kernal_ptr = fp_dn_kernal_3; |
| |
| // Apply the kernal |
| tmp_ptr = src_ptr - stride - 1; |
| for (i = 0; i < KERNEL_SIZE; ++i) { |
| for (j = 0; j < KERNEL_SIZE; ++j) { |
| diff = abs((int)centre_val - (int)tmp_ptr[j]); |
| max_diff = VPXMAX(max_diff, diff); |
| if (diff <= FP_DN_THRESH) { |
| sum_weight += *kernal_ptr; |
| sum_val += (int)tmp_ptr[j] * (int)*kernal_ptr; |
| } |
| ++kernal_ptr; |
| } |
| tmp_ptr += stride; |
| } |
| |
| if (max_diff < FP_MAX_DN_THRESH) |
| // Update the source value with the new filtered value |
| dn_val = (sum_val + (sum_weight >> 1)) / sum_weight; |
| else |
| dn_val = *src_ptr; |
| |
| // return the noise energy as the square of the difference between the |
| // denoised and raw value. |
| dn_diff = (int)*src_ptr - (int)dn_val; |
| return dn_diff * dn_diff; |
| } |
| #if CONFIG_VP9_HIGHBITDEPTH |
| static int fp_highbd_estimate_point_noise(uint8_t *src_ptr, const int stride) { |
| int sum_weight = 0; |
| int sum_val = 0; |
| int i, j; |
| int max_diff = 0; |
| int diff; |
| int dn_diff; |
| uint8_t *tmp_ptr; |
| uint16_t *tmp_ptr16; |
| uint8_t *kernal_ptr; |
| uint16_t dn_val; |
| uint16_t centre_val = *CONVERT_TO_SHORTPTR(src_ptr); |
| |
| kernal_ptr = fp_dn_kernal_3; |
| |
| // Apply the kernal |
| tmp_ptr = src_ptr - stride - 1; |
| for (i = 0; i < KERNEL_SIZE; ++i) { |
| tmp_ptr16 = CONVERT_TO_SHORTPTR(tmp_ptr); |
| for (j = 0; j < KERNEL_SIZE; ++j) { |
| diff = abs((int)centre_val - (int)tmp_ptr16[j]); |
| max_diff = VPXMAX(max_diff, diff); |
| if (diff <= FP_DN_THRESH) { |
| sum_weight += *kernal_ptr; |
| sum_val += (int)tmp_ptr16[j] * (int)*kernal_ptr; |
| } |
| ++kernal_ptr; |
| } |
| tmp_ptr += stride; |
| } |
| |
| if (max_diff < FP_MAX_DN_THRESH) |
| // Update the source value with the new filtered value |
| dn_val = (sum_val + (sum_weight >> 1)) / sum_weight; |
| else |
| dn_val = *CONVERT_TO_SHORTPTR(src_ptr); |
| |
| // return the noise energy as the square of the difference between the |
| // denoised and raw value. |
| dn_diff = (int)(*CONVERT_TO_SHORTPTR(src_ptr)) - (int)dn_val; |
| return dn_diff * dn_diff; |
| } |
| #endif |
| |
| // Estimate noise for a block. |
| static int fp_estimate_block_noise(MACROBLOCK *x, BLOCK_SIZE bsize) { |
| #if CONFIG_VP9_HIGHBITDEPTH |
| MACROBLOCKD *xd = &x->e_mbd; |
| #endif |
| uint8_t *src_ptr = &x->plane[0].src.buf[0]; |
| const int width = num_4x4_blocks_wide_lookup[bsize] * 4; |
| const int height = num_4x4_blocks_high_lookup[bsize] * 4; |
| int w, h; |
| int stride = x->plane[0].src.stride; |
| int block_noise = 0; |
| |
| // Sampled points to reduce cost overhead. |
| for (h = 0; h < height; h += 2) { |
| for (w = 0; w < width; w += 2) { |
| #if CONFIG_VP9_HIGHBITDEPTH |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) |
| block_noise += fp_highbd_estimate_point_noise(src_ptr, stride); |
| else |
| block_noise += fp_estimate_point_noise(src_ptr, stride); |
| #else |
| block_noise += fp_estimate_point_noise(src_ptr, stride); |
| #endif |
| ++src_ptr; |
| } |
| src_ptr += (stride - width); |
| } |
| return block_noise << 2; // Scale << 2 to account for sampling. |
| } |
| |
| // This function is called to test the functionality of row based |
| // multi-threading in unit tests for bit-exactness |
| static void accumulate_floating_point_stats(VP9_COMP *cpi, |
| TileDataEnc *first_tile_col) { |
| VP9_COMMON *const cm = &cpi->common; |
| int mb_row, mb_col; |
| first_tile_col->fp_data.intra_factor = 0; |
| first_tile_col->fp_data.brightness_factor = 0; |
| first_tile_col->fp_data.neutral_count = 0; |
| for (mb_row = 0; mb_row < cm->mb_rows; ++mb_row) { |
| for (mb_col = 0; mb_col < cm->mb_cols; ++mb_col) { |
| const int mb_index = mb_row * cm->mb_cols + mb_col; |
| first_tile_col->fp_data.intra_factor += |
| cpi->twopass.fp_mb_float_stats[mb_index].frame_mb_intra_factor; |
| first_tile_col->fp_data.brightness_factor += |
| cpi->twopass.fp_mb_float_stats[mb_index].frame_mb_brightness_factor; |
| first_tile_col->fp_data.neutral_count += |
| cpi->twopass.fp_mb_float_stats[mb_index].frame_mb_neutral_count; |
| } |
| } |
| } |
| |
| static void first_pass_stat_calc(VP9_COMP *cpi, FIRSTPASS_STATS *fps, |
| FIRSTPASS_DATA *fp_acc_data) { |
| VP9_COMMON *const cm = &cpi->common; |
| // The minimum error here insures some bit allocation to frames even |
| // in static regions. The allocation per MB declines for larger formats |
| // where the typical "real" energy per MB also falls. |
| // Initial estimate here uses sqrt(mbs) to define the min_err, where the |
| // number of mbs is proportional to the image area. |
| const int num_mbs = (cpi->oxcf.resize_mode != RESIZE_NONE) ? cpi->initial_mbs |
| : cpi->common.MBs; |
| const double min_err = 200 * sqrt(num_mbs); |
| |
| // Clamp the image start to rows/2. This number of rows is discarded top |
| // and bottom as dead data so rows / 2 means the frame is blank. |
| if ((fp_acc_data->image_data_start_row > cm->mb_rows / 2) || |
| (fp_acc_data->image_data_start_row == INVALID_ROW)) { |
| fp_acc_data->image_data_start_row = cm->mb_rows / 2; |
| } |
| // Exclude any image dead zone |
| if (fp_acc_data->image_data_start_row > 0) { |
| fp_acc_data->intra_skip_count = |
| VPXMAX(0, fp_acc_data->intra_skip_count - |
| (fp_acc_data->image_data_start_row * cm->mb_cols * 2)); |
| } |
| |
| fp_acc_data->intra_factor = fp_acc_data->intra_factor / (double)num_mbs; |
| fp_acc_data->brightness_factor = |
| fp_acc_data->brightness_factor / (double)num_mbs; |
| fps->weight = fp_acc_data->intra_factor * fp_acc_data->brightness_factor; |
| |
| fps->frame = cm->current_video_frame; |
| fps->spatial_layer_id = cpi->svc.spatial_layer_id; |
| |
| fps->coded_error = |
| ((double)(fp_acc_data->coded_error >> 8) + min_err) / num_mbs; |
| fps->sr_coded_error = |
| ((double)(fp_acc_data->sr_coded_error >> 8) + min_err) / num_mbs; |
| fps->intra_error = |
| ((double)(fp_acc_data->intra_error >> 8) + min_err) / num_mbs; |
| |
| fps->frame_noise_energy = |
| (double)(fp_acc_data->frame_noise_energy) / (double)num_mbs; |
| fps->count = 1.0; |
| fps->pcnt_inter = (double)(fp_acc_data->intercount) / num_mbs; |
| fps->pcnt_second_ref = (double)(fp_acc_data->second_ref_count) / num_mbs; |
| fps->pcnt_neutral = (double)(fp_acc_data->neutral_count) / num_mbs; |
| fps->pcnt_intra_low = (double)(fp_acc_data->intra_count_low) / num_mbs; |
| fps->pcnt_intra_high = (double)(fp_acc_data->intra_count_high) / num_mbs; |
| fps->intra_skip_pct = (double)(fp_acc_data->intra_skip_count) / num_mbs; |
| fps->intra_smooth_pct = (double)(fp_acc_data->intra_smooth_count) / num_mbs; |
| fps->inactive_zone_rows = (double)(fp_acc_data->image_data_start_row); |
| // Currently set to 0 as most issues relate to letter boxing. |
| fps->inactive_zone_cols = (double)0; |
| |
| if (fp_acc_data->mvcount > 0) { |
| fps->MVr = (double)(fp_acc_data->sum_mvr) / fp_acc_data->mvcount; |
| fps->mvr_abs = (double)(fp_acc_data->sum_mvr_abs) / fp_acc_data->mvcount; |
| fps->MVc = (double)(fp_acc_data->sum_mvc) / fp_acc_data->mvcount; |
| fps->mvc_abs = (double)(fp_acc_data->sum_mvc_abs) / fp_acc_data->mvcount; |
| fps->MVrv = ((double)(fp_acc_data->sum_mvrs) - |
| ((double)(fp_acc_data->sum_mvr) * (fp_acc_data->sum_mvr) / |
| fp_acc_data->mvcount)) / |
| fp_acc_data->mvcount; |
| fps->MVcv = ((double)(fp_acc_data->sum_mvcs) - |
| ((double)(fp_acc_data->sum_mvc) * (fp_acc_data->sum_mvc) / |
| fp_acc_data->mvcount)) / |
| fp_acc_data->mvcount; |
| fps->mv_in_out_count = |
| (double)(fp_acc_data->sum_in_vectors) / (fp_acc_data->mvcount * 2); |
| fps->pcnt_motion = (double)(fp_acc_data->mvcount) / num_mbs; |
| } else { |
| fps->MVr = 0.0; |
| fps->mvr_abs = 0.0; |
| fps->MVc = 0.0; |
| fps->mvc_abs = 0.0; |
| fps->MVrv = 0.0; |
| fps->MVcv = 0.0; |
| fps->mv_in_out_count = 0.0; |
| fps->pcnt_motion = 0.0; |
| } |
| } |
| |
| static void accumulate_fp_mb_row_stat(TileDataEnc *this_tile, |
| FIRSTPASS_DATA *fp_acc_data) { |
| this_tile->fp_data.intra_factor += fp_acc_data->intra_factor; |
| this_tile->fp_data.brightness_factor += fp_acc_data->brightness_factor; |
| this_tile->fp_data.coded_error += fp_acc_data->coded_error; |
| this_tile->fp_data.sr_coded_error += fp_acc_data->sr_coded_error; |
| this_tile->fp_data.frame_noise_energy += fp_acc_data->frame_noise_energy; |
| this_tile->fp_data.intra_error += fp_acc_data->intra_error; |
| this_tile->fp_data.intercount += fp_acc_data->intercount; |
| this_tile->fp_data.second_ref_count += fp_acc_data->second_ref_count; |
| this_tile->fp_data.neutral_count += fp_acc_data->neutral_count; |
| this_tile->fp_data.intra_count_low += fp_acc_data->intra_count_low; |
| this_tile->fp_data.intra_count_high += fp_acc_data->intra_count_high; |
| this_tile->fp_data.intra_skip_count += fp_acc_data->intra_skip_count; |
| this_tile->fp_data.mvcount += fp_acc_data->mvcount; |
| this_tile->fp_data.sum_mvr += fp_acc_data->sum_mvr; |
| this_tile->fp_data.sum_mvr_abs += fp_acc_data->sum_mvr_abs; |
| this_tile->fp_data.sum_mvc += fp_acc_data->sum_mvc; |
| this_tile->fp_data.sum_mvc_abs += fp_acc_data->sum_mvc_abs; |
| this_tile->fp_data.sum_mvrs += fp_acc_data->sum_mvrs; |
| this_tile->fp_data.sum_mvcs += fp_acc_data->sum_mvcs; |
| this_tile->fp_data.sum_in_vectors += fp_acc_data->sum_in_vectors; |
| this_tile->fp_data.intra_smooth_count += fp_acc_data->intra_smooth_count; |
| this_tile->fp_data.image_data_start_row = |
| VPXMIN(this_tile->fp_data.image_data_start_row, |
| fp_acc_data->image_data_start_row) == INVALID_ROW |
| ? VPXMAX(this_tile->fp_data.image_data_start_row, |
| fp_acc_data->image_data_start_row) |
| : VPXMIN(this_tile->fp_data.image_data_start_row, |
| fp_acc_data->image_data_start_row); |
| } |
| |
| #if CONFIG_RATE_CTRL |
| static void store_fp_motion_vector(VP9_COMP *cpi, const MV *mv, |
| const int mb_row, const int mb_col, |
| const int is_second_mv) { |
| VP9_COMMON *const cm = &cpi->common; |
| const int mb_index = mb_row * cm->mb_cols + mb_col; |
| MOTION_VECTOR_INFO *this_motion_vector_info = |
| &cpi->fp_motion_vector_info[mb_index]; |
| if (!is_second_mv) { |
| this_motion_vector_info->ref_frame[0] = LAST_FRAME; |
| this_motion_vector_info->mv[0].as_mv.row = mv->row; |
| this_motion_vector_info->mv[0].as_mv.col = mv->col; |
| return; |
| } |
| this_motion_vector_info->ref_frame[1] = GOLDEN_FRAME; |
| this_motion_vector_info->mv[1].as_mv.row = mv->row; |
| this_motion_vector_info->mv[1].as_mv.col = mv->col; |
| } |
| #endif // CONFIG_RATE_CTRL |
| |
| #define NZ_MOTION_PENALTY 128 |
| #define INTRA_MODE_PENALTY 1024 |
| void vp9_first_pass_encode_tile_mb_row(VP9_COMP *cpi, ThreadData *td, |
| FIRSTPASS_DATA *fp_acc_data, |
| TileDataEnc *tile_data, MV *best_ref_mv, |
| int mb_row) { |
| int mb_col; |
| MACROBLOCK *const x = &td->mb; |
| VP9_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| TileInfo tile = tile_data->tile_info; |
| const int mb_col_start = ROUND_POWER_OF_TWO(tile.mi_col_start, 1); |
| const int mb_col_end = ROUND_POWER_OF_TWO(tile.mi_col_end, 1); |
| struct macroblock_plane *const p = x->plane; |
| struct macroblockd_plane *const pd = xd->plane; |
| const PICK_MODE_CONTEXT *ctx = &td->pc_root->none; |
| int i, c; |
| int num_mb_cols = get_num_cols(tile_data->tile_info, 1); |
| |
| int recon_yoffset, recon_uvoffset; |
| const int intrapenalty = INTRA_MODE_PENALTY; |
| const MV zero_mv = { 0, 0 }; |
| int recon_y_stride, recon_uv_stride, uv_mb_height; |
| |
| YV12_BUFFER_CONFIG *const lst_yv12 = get_ref_frame_buffer(cpi, LAST_FRAME); |
| YV12_BUFFER_CONFIG *gld_yv12 = get_ref_frame_buffer(cpi, GOLDEN_FRAME); |
| YV12_BUFFER_CONFIG *const new_yv12 = get_frame_new_buffer(cm); |
| const YV12_BUFFER_CONFIG *first_ref_buf = lst_yv12; |
| |
| MODE_INFO mi_above, mi_left; |
| |
| double mb_intra_factor; |
| double mb_brightness_factor; |
| double mb_neutral_count; |
| int scaled_low_intra_thresh = scale_sse_threshold(cm, LOW_I_THRESH); |
| |
| // First pass code requires valid last and new frame buffers. |
| assert(new_yv12 != NULL); |
| assert(frame_is_intra_only(cm) || (lst_yv12 != NULL)); |
| |
| xd->mi = cm->mi_grid_visible + xd->mi_stride * (mb_row << 1) + mb_col_start; |
| xd->mi[0] = cm->mi + xd->mi_stride * (mb_row << 1) + mb_col_start; |
| |
| for (i = 0; i < MAX_MB_PLANE; ++i) { |
| p[i].coeff = ctx->coeff_pbuf[i][1]; |
| p[i].qcoeff = ctx->qcoeff_pbuf[i][1]; |
| pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][1]; |
| p[i].eobs = ctx->eobs_pbuf[i][1]; |
| } |
| |
| recon_y_stride = new_yv12->y_stride; |
| recon_uv_stride = new_yv12->uv_stride; |
| uv_mb_height = 16 >> (new_yv12->y_height > new_yv12->uv_height); |
| |
| // Reset above block coeffs. |
| recon_yoffset = (mb_row * recon_y_stride * 16) + mb_col_start * 16; |
| recon_uvoffset = |
| (mb_row * recon_uv_stride * uv_mb_height) + mb_col_start * uv_mb_height; |
| |
| // Set up limit values for motion vectors to prevent them extending |
| // outside the UMV borders. |
| x->mv_limits.row_min = -((mb_row * 16) + BORDER_MV_PIXELS_B16); |
| x->mv_limits.row_max = |
| ((cm->mb_rows - 1 - mb_row) * 16) + BORDER_MV_PIXELS_B16; |
| |
| for (mb_col = mb_col_start, c = 0; mb_col < mb_col_end; ++mb_col, c++) { |
| int this_error; |
| int this_intra_error; |
| const int use_dc_pred = (mb_col || mb_row) && (!mb_col || !mb_row); |
| const BLOCK_SIZE bsize = get_bsize(cm, mb_row, mb_col); |
| double log_intra; |
| int level_sample; |
| const int mb_index = mb_row * cm->mb_cols + mb_col; |
| |
| #if CONFIG_FP_MB_STATS |
| const int mb_index = mb_row * cm->mb_cols + mb_col; |
| #endif |
| |
| (*(cpi->row_mt_sync_read_ptr))(&tile_data->row_mt_sync, mb_row, c); |
| |
| // Adjust to the next column of MBs. |
| x->plane[0].src.buf = cpi->Source->y_buffer + |
| mb_row * 16 * x->plane[0].src.stride + mb_col * 16; |
| x->plane[1].src.buf = cpi->Source->u_buffer + |
| mb_row * uv_mb_height * x->plane[1].src.stride + |
| mb_col * uv_mb_height; |
| x->plane[2].src.buf = cpi->Source->v_buffer + |
| mb_row * uv_mb_height * x->plane[1].src.stride + |
| mb_col * uv_mb_height; |
| |
| vpx_clear_system_state(); |
| |
| xd->plane[0].dst.buf = new_yv12->y_buffer + recon_yoffset; |
| xd->plane[1].dst.buf = new_yv12->u_buffer + recon_uvoffset; |
| xd->plane[2].dst.buf = new_yv12->v_buffer + recon_uvoffset; |
| xd->mi[0]->sb_type = bsize; |
| xd->mi[0]->ref_frame[0] = INTRA_FRAME; |
| set_mi_row_col(xd, &tile, mb_row << 1, num_8x8_blocks_high_lookup[bsize], |
| mb_col << 1, num_8x8_blocks_wide_lookup[bsize], cm->mi_rows, |
| cm->mi_cols); |
| // Are edges available for intra prediction? |
| // Since the firstpass does not populate the mi_grid_visible, |
| // above_mi/left_mi must be overwritten with a nonzero value when edges |
| // are available. Required by vp9_predict_intra_block(). |
| xd->above_mi = (mb_row != 0) ? &mi_above : NULL; |
| xd->left_mi = ((mb_col << 1) > tile.mi_col_start) ? &mi_left : NULL; |
| |
| // Do intra 16x16 prediction. |
| x->skip_encode = 0; |
| x->fp_src_pred = 0; |
| // Do intra prediction based on source pixels for tile boundaries |
| if (mb_col == mb_col_start && mb_col != 0) { |
| xd->left_mi = &mi_left; |
| x->fp_src_pred = 1; |
| } |
| xd->mi[0]->mode = DC_PRED; |
| xd->mi[0]->tx_size = |
| use_dc_pred ? (bsize >= BLOCK_16X16 ? TX_16X16 : TX_8X8) : TX_4X4; |
| // Fix - zero the 16x16 block first. This ensures correct this_error for |
| // block sizes smaller than 16x16. |
| vp9_zero_array(x->plane[0].src_diff, 256); |
| vp9_encode_intra_block_plane(x, bsize, 0, 0); |
| this_error = vpx_get_mb_ss(x->plane[0].src_diff); |
| this_intra_error = this_error; |
| |
| // Keep a record of blocks that have very low intra error residual |
| // (i.e. are in effect completely flat and untextured in the intra |
| // domain). In natural videos this is uncommon, but it is much more |
| // common in animations, graphics and screen content, so may be used |
| // as a signal to detect these types of content. |
| if (this_error < get_ul_intra_threshold(cm)) { |
| ++(fp_acc_data->intra_skip_count); |
| } else if ((mb_col > 0) && |
| (fp_acc_data->image_data_start_row == INVALID_ROW)) { |
| fp_acc_data->image_data_start_row = mb_row; |
| } |
| |
| // Blocks that are mainly smooth in the intra domain. |
| // Some special accounting for CQ but also these are better for testing |
| // noise levels. |
| if (this_error < get_smooth_intra_threshold(cm)) { |
| ++(fp_acc_data->intra_smooth_count); |
| } |
| |
| // Special case noise measurement for first frame. |
| if (cm->current_video_frame == 0) { |
| if (this_intra_error < scale_sse_threshold(cm, LOW_I_THRESH)) { |
| fp_acc_data->frame_noise_energy += fp_estimate_block_noise(x, bsize); |
| } else { |
| fp_acc_data->frame_noise_energy += (int64_t)SECTION_NOISE_DEF; |
| } |
| } |
| |
| #if CONFIG_VP9_HIGHBITDEPTH |
| if (cm->use_highbitdepth) { |
| switch (cm->bit_depth) { |
| case VPX_BITS_8: break; |
| case VPX_BITS_10: this_error >>= 4; break; |
| default: |
| assert(cm->bit_depth == VPX_BITS_12); |
| this_error >>= 8; |
| break; |
| } |
| } |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| |
| vpx_clear_system_state(); |
| log_intra = log(this_error + 1.0); |
| if (log_intra < 10.0) { |
| mb_intra_factor = 1.0 + ((10.0 - log_intra) * 0.05); |
| fp_acc_data->intra_factor += mb_intra_factor; |
| if (cpi->row_mt_bit_exact) |
| cpi->twopass.fp_mb_float_stats[mb_index].frame_mb_intra_factor = |
| mb_intra_factor; |
| } else { |
| fp_acc_data->intra_factor += 1.0; |
| if (cpi->row_mt_bit_exact) |
| cpi->twopass.fp_mb_float_stats[mb_index].frame_mb_intra_factor = 1.0; |
| } |
| |
| #if CONFIG_VP9_HIGHBITDEPTH |
| if (cm->use_highbitdepth) |
| level_sample = CONVERT_TO_SHORTPTR(x->plane[0].src.buf)[0]; |
| else |
| level_sample = x->plane[0].src.buf[0]; |
| #else |
| level_sample = x->plane[0].src.buf[0]; |
| #endif |
| if ((level_sample < DARK_THRESH) && (log_intra < 9.0)) { |
| mb_brightness_factor = 1.0 + (0.01 * (DARK_THRESH - level_sample)); |
| fp_acc_data->brightness_factor += mb_brightness_factor; |
| if (cpi->row_mt_bit_exact) |
| cpi->twopass.fp_mb_float_stats[mb_index].frame_mb_brightness_factor = |
| mb_brightness_factor; |
| } else { |
| fp_acc_data->brightness_factor += 1.0; |
| if (cpi->row_mt_bit_exact) |
| cpi->twopass.fp_mb_float_stats[mb_index].frame_mb_brightness_factor = |
| 1.0; |
| } |
| |
| // Intrapenalty below deals with situations where the intra and inter |
| // error scores are very low (e.g. a plain black frame). |
| // We do not have special cases in first pass for 0,0 and nearest etc so |
| // all inter modes carry an overhead cost estimate for the mv. |
| // When the error score is very low this causes us to pick all or lots of |
| // INTRA modes and throw lots of key frames. |
| // This penalty adds a cost matching that of a 0,0 mv to the intra case. |
| this_error += intrapenalty; |
| |
| // Accumulate the intra error. |
| fp_acc_data->intra_error += (int64_t)this_error; |
| |
| #if CONFIG_FP_MB_STATS |
| if (cpi->use_fp_mb_stats) { |
| // initialization |
| cpi->twopass.frame_mb_stats_buf[mb_index] = 0; |
| } |
| #endif |
| |
| // Set up limit values for motion vectors to prevent them extending |
| // outside the UMV borders. |
| x->mv_limits.col_min = -((mb_col * 16) + BORDER_MV_PIXELS_B16); |
| x->mv_limits.col_max = |
| ((cm->mb_cols - 1 - mb_col) * 16) + BORDER_MV_PIXELS_B16; |
| |
| // Other than for the first frame do a motion search. |
| if (cm->current_video_frame > 0) { |
| int tmp_err, motion_error, this_motion_error, raw_motion_error; |
| // Assume 0,0 motion with no mv overhead. |
| MV mv = { 0, 0 }, tmp_mv = { 0, 0 }; |
| struct buf_2d unscaled_last_source_buf_2d; |
| vp9_variance_fn_ptr_t v_fn_ptr = cpi->fn_ptr[bsize]; |
| |
| xd->plane[0].pre[0].buf = first_ref_buf->y_buffer + recon_yoffset; |
| #if CONFIG_VP9_HIGHBITDEPTH |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| motion_error = highbd_get_prediction_error( |
| bsize, &x->plane[0].src, &xd->plane[0].pre[0], xd->bd); |
| this_motion_error = highbd_get_prediction_error( |
| bsize, &x->plane[0].src, &xd->plane[0].pre[0], 8); |
| } else { |
| motion_error = |
| get_prediction_error(bsize, &x->plane[0].src, &xd->plane[0].pre[0]); |
| this_motion_error = motion_error; |
| } |
| #else |
| motion_error = |
| get_prediction_error(bsize, &x->plane[0].src, &xd->plane[0].pre[0]); |
| this_motion_error = motion_error; |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| |
| // Compute the motion error of the 0,0 motion using the last source |
| // frame as the reference. Skip the further motion search on |
| // reconstructed frame if this error is very small. |
| unscaled_last_source_buf_2d.buf = |
| cpi->unscaled_last_source->y_buffer + recon_yoffset; |
| unscaled_last_source_buf_2d.stride = cpi->unscaled_last_source->y_stride; |
| #if CONFIG_VP9_HIGHBITDEPTH |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| raw_motion_error = highbd_get_prediction_error( |
| bsize, &x->plane[0].src, &unscaled_last_source_buf_2d, xd->bd); |
| } else { |
| raw_motion_error = get_prediction_error(bsize, &x->plane[0].src, |
| &unscaled_last_source_buf_2d); |
| } |
| #else |
| raw_motion_error = get_prediction_error(bsize, &x->plane[0].src, |
| &unscaled_last_source_buf_2d); |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| |
| if (raw_motion_error > NZ_MOTION_PENALTY) { |
| // Test last reference frame using the previous best mv as the |
| // starting point (best reference) for the search. |
| first_pass_motion_search(cpi, x, best_ref_mv, &mv, &motion_error); |
| |
| v_fn_ptr.vf = get_block_variance_fn(bsize); |
| #if CONFIG_VP9_HIGHBITDEPTH |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| v_fn_ptr.vf = highbd_get_block_variance_fn(bsize, 8); |
| } |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| this_motion_error = |
| vp9_get_mvpred_var(x, &mv, best_ref_mv, &v_fn_ptr, 0); |
| |
| // If the current best reference mv is not centered on 0,0 then do a |
| // 0,0 based search as well. |
| if (!is_zero_mv(best_ref_mv)) { |
| tmp_err = INT_MAX; |
| first_pass_motion_search(cpi, x, &zero_mv, &tmp_mv, &tmp_err); |
| |
| if (tmp_err < motion_error) { |
| motion_error = tmp_err; |
| mv = tmp_mv; |
| this_motion_error = |
| vp9_get_mvpred_var(x, &tmp_mv, &zero_mv, &v_fn_ptr, 0); |
| } |
| } |
| #if CONFIG_RATE_CTRL |
| store_fp_motion_vector(cpi, &mv, mb_row, mb_col, /*is_second_mv=*/0); |
| #endif // CONFIG_RAGE_CTRL |
| |
| // Search in an older reference frame. |
| if ((cm->current_video_frame > 1) && gld_yv12 != NULL) { |
| // Assume 0,0 motion with no mv overhead. |
| int gf_motion_error; |
| |
| xd->plane[0].pre[0].buf = gld_yv12->y_buffer + recon_yoffset; |
| #if CONFIG_VP9_HIGHBITDEPTH |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| gf_motion_error = highbd_get_prediction_error( |
| bsize, &x->plane[0].src, &xd->plane[0].pre[0], xd->bd); |
| } else { |
| gf_motion_error = get_prediction_error(bsize, &x->plane[0].src, |
| &xd->plane[0].pre[0]); |
| } |
| #else |
| gf_motion_error = get_prediction_error(bsize, &x->plane[0].src, |
| &xd->plane[0].pre[0]); |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| |
| first_pass_motion_search(cpi, x, &zero_mv, &tmp_mv, &gf_motion_error); |
| #if CONFIG_RATE_CTRL |
| store_fp_motion_vector(cpi, &tmp_mv, mb_row, mb_col, |
| /*is_second_mv=*/1); |
| #endif // CONFIG_RAGE_CTRL |
| |
| if (gf_motion_error < motion_error && gf_motion_error < this_error) |
| ++(fp_acc_data->second_ref_count); |
| |
| // Reset to last frame as reference buffer. |
| xd->plane[0].pre[0].buf = first_ref_buf->y_buffer + recon_yoffset; |
| xd->plane[1].pre[0].buf = first_ref_buf->u_buffer + recon_uvoffset; |
| xd->plane[2].pre[0].buf = first_ref_buf->v_buffer + recon_uvoffset; |
| |
| // In accumulating a score for the older reference frame take the |
| // best of the motion predicted score and the intra coded error |
| // (just as will be done for) accumulation of "coded_error" for |
| // the last frame. |
| if (gf_motion_error < this_error) |
| fp_acc_data->sr_coded_error += gf_motion_error; |
| else |
| fp_acc_data->sr_coded_error += this_error; |
| } else { |
| fp_acc_data->sr_coded_error += motion_error; |
| } |
| } else { |
| fp_acc_data->sr_coded_error += motion_error; |
| } |
| |
| // Start by assuming that intra mode is best. |
| best_ref_mv->row = 0; |
| best_ref_mv->col = 0; |
| |
| #if CONFIG_FP_MB_STATS |
| if (cpi->use_fp_mb_stats) { |
| // intra prediction statistics |
| cpi->twopass.frame_mb_stats_buf[mb_index] = 0; |
| cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_DCINTRA_MASK; |
| cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_MOTION_ZERO_MASK; |
| if (this_error > FPMB_ERROR_LARGE_TH) { |
| cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_ERROR_LARGE_MASK; |
| } else if (this_error < FPMB_ERROR_SMALL_TH) { |
| cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_ERROR_SMALL_MASK; |
| } |
| } |
| #endif |
| |
| if (motion_error <= this_error) { |
| vpx_clear_system_state(); |
| |
| // Keep a count of cases where the inter and intra were very close |
| // and very low. This helps with scene cut detection for example in |
| // cropped clips with black bars at the sides or top and bottom. |
| if (((this_error - intrapenalty) * 9 <= motion_error * 10) && |
| (this_error < (2 * intrapenalty))) { |
| fp_acc_data->neutral_count += 1.0; |
| if (cpi->row_mt_bit_exact) |
| cpi->twopass.fp_mb_float_stats[mb_index].frame_mb_neutral_count = |
| 1.0; |
| // Also track cases where the intra is not much worse than the inter |
| // and use this in limiting the GF/arf group length. |
| } else if ((this_error > NCOUNT_INTRA_THRESH) && |
| (this_error < (NCOUNT_INTRA_FACTOR * motion_error))) { |
| mb_neutral_count = |
| (double)motion_error / DOUBLE_DIVIDE_CHECK((double)this_error); |
| fp_acc_data->neutral_count += mb_neutral_count; |
| if (cpi->row_mt_bit_exact) |
| cpi->twopass.fp_mb_float_stats[mb_index].frame_mb_neutral_count = |
| mb_neutral_count; |
| } |
| |
| mv.row *= 8; |
| mv.col *= 8; |
| this_error = motion_error; |
| xd->mi[0]->mode = NEWMV; |
| xd->mi[0]->mv[0].as_mv = mv; |
| xd->mi[0]->tx_size = TX_4X4; |
| xd->mi[0]->ref_frame[0] = LAST_FRAME; |
| xd->mi[0]->ref_frame[1] = NONE; |
| vp9_build_inter_predictors_sby(xd, mb_row << 1, mb_col << 1, bsize); |
| vp9_encode_sby_pass1(x, bsize); |
| fp_acc_data->sum_mvr += mv.row; |
| fp_acc_data->sum_mvr_abs += abs(mv.row); |
| fp_acc_data->sum_mvc += mv.col; |
| fp_acc_data->sum_mvc_abs += abs(mv.col); |
| fp_acc_data->sum_mvrs += mv.row * mv.row; |
| fp_acc_data->sum_mvcs += mv.col * mv.col; |
| ++(fp_acc_data->intercount); |
| |
| *best_ref_mv = mv; |
| |
| #if CONFIG_FP_MB_STATS |
| if (cpi->use_fp_mb_stats) { |
| // inter prediction statistics |
| cpi->twopass.frame_mb_stats_buf[mb_index] = 0; |
| cpi->twopass.frame_mb_stats_buf[mb_index] &= ~FPMB_DCINTRA_MASK; |
| cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_MOTION_ZERO_MASK; |
| if (this_error > FPMB_ERROR_LARGE_TH) { |
| cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_ERROR_LARGE_MASK; |
| } else if (this_error < FPMB_ERROR_SMALL_TH) { |
| cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_ERROR_SMALL_MASK; |
| } |
| } |
| #endif |
| |
| if (!is_zero_mv(&mv)) { |
| ++(fp_acc_data->mvcount); |
| |
| #if CONFIG_FP_MB_STATS |
| if (cpi->use_fp_mb_stats) { |
| cpi->twopass.frame_mb_stats_buf[mb_index] &= ~FPMB_MOTION_ZERO_MASK; |
| // check estimated motion direction |
| if (mv.as_mv.col > 0 && mv.as_mv.col >= abs(mv.as_mv.row)) { |
| // right direction |
| cpi->twopass.frame_mb_stats_buf[mb_index] |= |
| FPMB_MOTION_RIGHT_MASK; |
| } else if (mv.as_mv.row < 0 && |
| abs(mv.as_mv.row) >= abs(mv.as_mv.col)) { |
| // up direction |
| cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_MOTION_UP_MASK; |
| } else if (mv.as_mv.col < 0 && |
| abs(mv.as_mv.col) >= abs(mv.as_mv.row)) { |
| // left direction |
| cpi->twopass.frame_mb_stats_buf[mb_index] |= |
| FPMB_MOTION_LEFT_MASK; |
| } else { |
| // down direction |
| cpi->twopass.frame_mb_stats_buf[mb_index] |= |
| FPMB_MOTION_DOWN_MASK; |
| } |
| } |
| #endif |
| // Does the row vector point inwards or outwards? |
| if (mb_row < cm->mb_rows / 2) { |
| if (mv.row > 0) |
| --(fp_acc_data->sum_in_vectors); |
| else if (mv.row < 0) |
| ++(fp_acc_data->sum_in_vectors); |
| } else if (mb_row > cm->mb_rows / 2) { |
| if (mv.row > 0) |
| ++(fp_acc_data->sum_in_vectors); |
| else if (mv.row < 0) |
| --(fp_acc_data->sum_in_vectors); |
| } |
| |
| // Does the col vector point inwards or outwards? |
| if (mb_col < cm->mb_cols / 2) { |
| if (mv.col > 0) |
| --(fp_acc_data->sum_in_vectors); |
| else if (mv.col < 0) |
| ++(fp_acc_data->sum_in_vectors); |
| } else if (mb_col > cm->mb_cols / 2) { |
| if (mv.col > 0) |
| ++(fp_acc_data->sum_in_vectors); |
| else if (mv.col < 0) |
| --(fp_acc_data->sum_in_vectors); |
| } |
| } |
| if (this_intra_error < scaled_low_intra_thresh) { |
| fp_acc_data->frame_noise_energy += fp_estimate_block_noise(x, bsize); |
| } else { |
| fp_acc_data->frame_noise_energy += (int64_t)SECTION_NOISE_DEF; |
| } |
| } else { // Intra < inter error |
| if (this_intra_error < scaled_low_intra_thresh) { |
| fp_acc_data->frame_noise_energy += fp_estimate_block_noise(x, bsize); |
| if (this_motion_error < scaled_low_intra_thresh) { |
| fp_acc_data->intra_count_low += 1.0; |
| } else { |
| fp_acc_data->intra_count_high += 1.0; |
| } |
| } else { |
| fp_acc_data->frame_noise_energy += (int64_t)SECTION_NOISE_DEF; |
| fp_acc_data->intra_count_high += 1.0; |
| } |
| } |
| } else { |
| fp_acc_data->sr_coded_error += (int64_t)this_error; |
| } |
| fp_acc_data->coded_error += (int64_t)this_error; |
| |
| recon_yoffset += 16; |
| recon_uvoffset += uv_mb_height; |
| |
| // Accumulate row level stats to the corresponding tile stats |
| if (cpi->row_mt && mb_col == mb_col_end - 1) |
| accumulate_fp_mb_row_stat(tile_data, fp_acc_data); |
| |
| (*(cpi->row_mt_sync_write_ptr))(&tile_data->row_mt_sync, mb_row, c, |
| num_mb_cols); |
| } |
| vpx_clear_system_state(); |
| } |
| |
| static void first_pass_encode(VP9_COMP *cpi, FIRSTPASS_DATA *fp_acc_data) { |
| VP9_COMMON *const cm = &cpi->common; |
| int mb_row; |
| TileDataEnc tile_data; |
| TileInfo *tile = &tile_data.tile_info; |
| MV zero_mv = { 0, 0 }; |
| MV best_ref_mv; |
| // Tiling is ignored in the first pass. |
| vp9_tile_init(tile, cm, 0, 0); |
| |
| for (mb_row = 0; mb_row < cm->mb_rows; ++mb_row) { |
| best_ref_mv = zero_mv; |
| vp9_first_pass_encode_tile_mb_row(cpi, &cpi->td, fp_acc_data, &tile_data, |
| &best_ref_mv, mb_row); |
| } |
| } |
| |
| void vp9_first_pass(VP9_COMP *cpi, const struct lookahead_entry *source) { |
| MACROBLOCK *const x = &cpi->td.mb; |
| VP9_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| TWO_PASS *twopass = &cpi->twopass; |
| |
| YV12_BUFFER_CONFIG *const lst_yv12 = get_ref_frame_buffer(cpi, LAST_FRAME); |
| YV12_BUFFER_CONFIG *gld_yv12 = get_ref_frame_buffer(cpi, GOLDEN_FRAME); |
| YV12_BUFFER_CONFIG *const new_yv12 = get_frame_new_buffer(cm); |
| const YV12_BUFFER_CONFIG *first_ref_buf = lst_yv12; |
| |
| BufferPool *const pool = cm->buffer_pool; |
| |
| FIRSTPASS_DATA fp_temp_data; |
| FIRSTPASS_DATA *fp_acc_data = &fp_temp_data; |
| |
| vpx_clear_system_state(); |
| vp9_zero(fp_temp_data); |
| fp_acc_data->image_data_start_row = INVALID_ROW; |
| |
| // First pass code requires valid last and new frame buffers. |
| assert(new_yv12 != NULL); |
| assert(frame_is_intra_only(cm) || (lst_yv12 != NULL)); |
| |
| #if CONFIG_FP_MB_STATS |
| if (cpi->use_fp_mb_stats) { |
| vp9_zero_array(cpi->twopass.frame_mb_stats_buf, cm->initial_mbs); |
| } |
| #endif |
| |
| set_first_pass_params(cpi); |
| vp9_set_quantizer(cpi, find_fp_qindex(cm->bit_depth)); |
| |
| vp9_setup_block_planes(&x->e_mbd, cm->subsampling_x, cm->subsampling_y); |
| |
| vp9_setup_src_planes(x, cpi->Source, 0, 0); |
| vp9_setup_dst_planes(xd->plane, new_yv12, 0, 0); |
| |
| if (!frame_is_intra_only(cm)) { |
| vp9_setup_pre_planes(xd, 0, first_ref_buf, 0, 0, NULL); |
| } |
| |
| xd->mi = cm->mi_grid_visible; |
| xd->mi[0] = cm->mi; |
| |
| vp9_frame_init_quantizer(cpi); |
| |
| x->skip_recode = 0; |
| |
| vp9_init_mv_probs(cm); |
| vp9_initialize_rd_consts(cpi); |
| |
| cm->log2_tile_rows = 0; |
| |
| if (cpi->row_mt_bit_exact && cpi->twopass.fp_mb_float_stats == NULL) |
| CHECK_MEM_ERROR( |
| cm, cpi->twopass.fp_mb_float_stats, |
| vpx_calloc(cm->MBs * sizeof(*cpi->twopass.fp_mb_float_stats), 1)); |
| |
| { |
| FIRSTPASS_STATS fps; |
| TileDataEnc *first_tile_col; |
| if (!cpi->row_mt) { |
| cm->log2_tile_cols = 0; |
| cpi->row_mt_sync_read_ptr = vp9_row_mt_sync_read_dummy; |
| cpi->row_mt_sync_write_ptr = vp9_row_mt_sync_write_dummy; |
| first_pass_encode(cpi, fp_acc_data); |
| first_pass_stat_calc(cpi, &fps, fp_acc_data); |
| } else { |
| cpi->row_mt_sync_read_ptr = vp9_row_mt_sync_read; |
| cpi->row_mt_sync_write_ptr = vp9_row_mt_sync_write; |
| if (cpi->row_mt_bit_exact) { |
| cm->log2_tile_cols = 0; |
| vp9_zero_array(cpi->twopass.fp_mb_float_stats, cm->MBs); |
| } |
| vp9_encode_fp_row_mt(cpi); |
| first_tile_col = &cpi->tile_data[0]; |
| if (cpi->row_mt_bit_exact) |
| accumulate_floating_point_stats(cpi, first_tile_col); |
| first_pass_stat_calc(cpi, &fps, &(first_tile_col->fp_data)); |
| } |
| |
| // Dont allow a value of 0 for duration. |
| // (Section duration is also defaulted to minimum of 1.0). |
| fps.duration = VPXMAX(1.0, (double)(source->ts_end - source->ts_start)); |
| |
| // Don't want to do output stats with a stack variable! |
| twopass->this_frame_stats = fps; |
| output_stats(&twopass->this_frame_stats); |
| accumulate_stats(&twopass->total_stats, &fps); |
| |
| #if CONFIG_FP_MB_STATS |
| if (cpi->use_fp_mb_stats) { |
| output_fpmb_stats(twopass->frame_mb_stats_buf, cm, cpi->output_pkt_list); |
| } |
| #endif |
| } |
| |
| // Copy the previous Last Frame back into gf and and arf buffers if |
| // the prediction is good enough... but also don't allow it to lag too far. |
| if ((twopass->sr_update_lag > 3) || |
| ((cm->current_video_frame > 0) && |
| (twopass->this_frame_stats.pcnt_inter > 0.20) && |
| ((twopass->this_frame_stats.intra_error / |
| DOUBLE_DIVIDE_CHECK(twopass->this_frame_stats.coded_error)) > 2.0))) { |
| if (gld_yv12 != NULL) { |
| ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[cpi->gld_fb_idx], |
| cm->ref_frame_map[cpi->lst_fb_idx]); |
| } |
| twopass->sr_update_lag = 1; |
| } else { |
| ++twopass->sr_update_lag; |
| } |
| |
| vpx_extend_frame_borders(new_yv12); |
| |
| // The frame we just compressed now becomes the last frame. |
| ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[cpi->lst_fb_idx], |
| cm->new_fb_idx); |
| |
| // Special case for the first frame. Copy into the GF buffer as a second |
| // reference. |
| if (cm->current_video_frame == 0 && cpi->gld_fb_idx != INVALID_IDX) { |
| ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[cpi->gld_fb_idx], |
| cm->ref_frame_map[cpi->lst_fb_idx]); |
| } |
| |
| // Use this to see what the first pass reconstruction looks like. |
| if (0) { |
| char filename[512]; |
| FILE *recon_file; |
| snprintf(filename, sizeof(filename), "enc%04d.yuv", |
| (int)cm->current_video_frame); |
| |
| if (cm->current_video_frame == 0) |
| recon_file = fopen(filename, "wb"); |
| else |
| recon_file = fopen(filename, "ab"); |
| |
| (void)fwrite(lst_yv12->buffer_alloc, lst_yv12->frame_size, 1, recon_file); |
| fclose(recon_file); |
| } |
| |
| // In the first pass, every frame is considered as a show frame. |
| update_frame_indexes(cm, /*show_frame=*/1); |
| if (cpi->use_svc) vp9_inc_frame_in_layer(cpi); |
| } |
| |
| static const double q_pow_term[(QINDEX_RANGE >> 5) + 1] = { 0.65, 0.70, 0.75, |
| 0.85, 0.90, 0.90, |
| 0.90, 1.00, 1.25 }; |
| |
| static double calc_correction_factor(double err_per_mb, double err_divisor, |
| int q) { |
| const double error_term = err_per_mb / DOUBLE_DIVIDE_CHECK(err_divisor); |
| const int index = q >> 5; |
| double power_term; |
| |
| assert((index >= 0) && (index < (QINDEX_RANGE >> 5))); |
| |
| // Adjustment based on quantizer to the power term. |
| power_term = |
| q_pow_term[index] + |
| (((q_pow_term[index + 1] - q_pow_term[index]) * (q % 32)) / 32.0); |
| |
| // Calculate correction factor. |
| if (power_term < 1.0) assert(error_term >= 0.0); |
| |
| return fclamp(pow(error_term, power_term), 0.05, 5.0); |
| } |
| |
| static double wq_err_divisor(VP9_COMP *cpi) { |
| const VP9_COMMON *const cm = &cpi->common; |
| unsigned int screen_area = (cm->width * cm->height); |
| |
| // Use a different error per mb factor for calculating boost for |
| // different formats. |
| if (screen_area <= 640 * 360) { |
| return 115.0; |
| } else if (screen_area < 1280 * 720) { |
| return 125.0; |
| } else if (screen_area <= 1920 * 1080) { |
| return 130.0; |
| } else if (screen_area < 3840 * 2160) { |
| return 150.0; |
| } |
| |
| // Fall through to here only for 4K and above. |
| return 200.0; |
| } |
| |
| #define NOISE_FACTOR_MIN 0.9 |
| #define NOISE_FACTOR_MAX 1.1 |
| static int get_twopass_worst_quality(VP9_COMP *cpi, const double section_err, |
| double inactive_zone, double section_noise, |
| int section_target_bandwidth) { |
| const RATE_CONTROL *const rc = &cpi->rc; |
| const VP9EncoderConfig *const oxcf = &cpi->oxcf; |
| TWO_PASS *const twopass = &cpi->twopass; |
| double last_group_rate_err; |
| |
| // Clamp the target rate to VBR min / max limts. |
| const int target_rate = |
| vp9_rc_clamp_pframe_target_size(cpi, section_target_bandwidth); |
| double noise_factor = pow((section_noise / SECTION_NOISE_DEF), 0.5); |
| noise_factor = fclamp(noise_factor, NOISE_FACTOR_MIN, NOISE_FACTOR_MAX); |
| inactive_zone = fclamp(inactive_zone, 0.0, 1.0); |
| |
| // TODO(jimbankoski): remove #if here or below when this has been |
| // well tested. |
| #if CONFIG_ALWAYS_ADJUST_BPM |
| // based on recent history adjust expectations of bits per macroblock. |
| last_group_rate_err = |
| (double)twopass->rolling_arf_group_actual_bits / |
| DOUBLE_DIVIDE_CHECK((double)twopass->rolling_arf_group_target_bits); |
| last_group_rate_err = VPXMAX(0.25, VPXMIN(4.0, last_group_rate_err)); |
| twopass->bpm_factor *= (3.0 + last_group_rate_err) / 4.0; |
| twopass->bpm_factor = VPXMAX(0.25, VPXMIN(4.0, twopass->bpm_factor)); |
| #endif |
| |
| if (target_rate <= 0) { |
| return rc->worst_quality; // Highest value allowed |
| } else { |
| const int num_mbs = (cpi->oxcf.resize_mode != RESIZE_NONE) |
| ? cpi->initial_mbs |
| : cpi->common.MBs; |
| const double active_pct = VPXMAX(0.01, 1.0 - inactive_zone); |
| const int active_mbs = (int)VPXMAX(1, (double)num_mbs * active_pct); |
| const double av_err_per_mb = section_err / active_pct; |
| const double speed_term = 1.0 + 0.04 * oxcf->speed; |
| const int target_norm_bits_per_mb = |
| (int)(((uint64_t)target_rate << BPER_MB_NORMBITS) / active_mbs); |
| int q; |
| |
| // TODO(jimbankoski): remove #if here or above when this has been |
| // well tested. |
| #if !CONFIG_ALWAYS_ADJUST_BPM |
| // based on recent history adjust expectations of bits per macroblock. |
| last_group_rate_err = |
| (double)twopass->rolling_arf_group_actual_bits / |
| DOUBLE_DIVIDE_CHECK((double)twopass->rolling_arf_group_target_bits); |
| last_group_rate_err = VPXMAX(0.25, VPXMIN(4.0, last_group_rate_err)); |
| twopass->bpm_factor *= (3.0 + last_group_rate_err) / 4.0; |
| twopass->bpm_factor = VPXMAX(0.25, VPXMIN(4.0, twopass->bpm_factor)); |
| #endif |
| |
| // Try and pick a max Q that will be high enough to encode the |
| // content at the given rate. |
| for (q = rc->best_quality; q < rc->worst_quality; ++q) { |
| const double factor = |
| calc_correction_factor(av_err_per_mb, wq_err_divisor(cpi), q); |
| const int bits_per_mb = vp9_rc_bits_per_mb( |
| INTER_FRAME, q, |
| factor * speed_term * cpi->twopass.bpm_factor * noise_factor, |
| cpi->common.bit_depth); |
| if (bits_per_mb <= target_norm_bits_per_mb) break; |
| } |
| |
| // Restriction on active max q for constrained quality mode. |
| if (cpi->oxcf.rc_mode == VPX_CQ) q = VPXMAX(q, oxcf->cq_level); |
| return q; |
| } |
| } |
| |
| static void setup_rf_level_maxq(VP9_COMP *cpi) { |
| int i; |
| RATE_CONTROL *const rc = &cpi->rc; |
| for (i = INTER_NORMAL; i < RATE_FACTOR_LEVELS; ++i) { |
| int qdelta = vp9_frame_type_qdelta(cpi, i, rc->worst_quality); |
| rc->rf_level_maxq[i] = VPXMAX(rc->worst_quality + qdelta, rc->best_quality); |
| } |
| } |
| |
| static void init_subsampling(VP9_COMP *cpi) { |
| const VP9_COMMON *const cm = &cpi->common; |
| RATE_CONTROL *const rc = &cpi->rc; |
| const int w = cm->width; |
| const int h = cm->height; |
| int i; |
| |
| for (i = 0; i < FRAME_SCALE_STEPS; ++i) { |
| // Note: Frames with odd-sized dimensions may result from this scaling. |
| rc->frame_width[i] = (w * 16) / frame_scale_factor[i]; |
| rc->frame_height[i] = (h * 16) / frame_scale_factor[i]; |
| } |
| |
| setup_rf_level_maxq(cpi); |
| } |
| |
| void calculate_coded_size(VP9_COMP *cpi, int *scaled_frame_width, |
| int *scaled_frame_height) { |
| RATE_CONTROL *const rc = &cpi->rc; |
| *scaled_frame_width = rc->frame_width[rc->frame_size_selector]; |
| *scaled_frame_height = rc->frame_height[rc->frame_size_selector]; |
| } |
| |
| void vp9_init_second_pass(VP9_COMP *cpi) { |
| VP9EncoderConfig *const oxcf = &cpi->oxcf; |
| RATE_CONTROL *const rc = &cpi->rc; |
| TWO_PASS *const twopass = &cpi->twopass; |
| double frame_rate; |
| FIRSTPASS_STATS *stats; |
| |
| zero_stats(&twopass->total_stats); |
| zero_stats(&twopass->total_left_stats); |
| |
| if (!twopass->stats_in_end) return; |
| |
| stats = &twopass->total_stats; |
| |
| *stats = *twopass->stats_in_end; |
| twopass->total_left_stats = *stats; |
| |
| // Scan the first pass file and calculate a modified score for each |
| // frame that is used to distribute bits. The modified score is assumed |
| // to provide a linear basis for bit allocation. I.e a frame A with a score |
| // that is double that of frame B will be allocated 2x as many bits. |
| { |
| double modified_score_total = 0.0; |
| const FIRSTPASS_STATS *s = twopass->stats_in; |
| double av_err; |
| |
| if (oxcf->vbr_corpus_complexity) { |
| twopass->mean_mod_score = (double)oxcf->vbr_corpus_complexity / 10.0; |
| av_err = get_distribution_av_err(cpi, twopass); |
| } else { |
| av_err = get_distribution_av_err(cpi, twopass); |
| // The first scan is unclamped and gives a raw average. |
| while (s < twopass->stats_in_end) { |
| modified_score_total += calculate_mod_frame_score(cpi, oxcf, s, av_err); |
| ++s; |
| } |
| |
| // The average error from this first scan is used to define the midpoint |
| // error for the rate distribution function. |
| twopass->mean_mod_score = |
| modified_score_total / DOUBLE_DIVIDE_CHECK(stats->count); |
| } |
| |
| // Second scan using clamps based on the previous cycle average. |
| // This may modify the total and average somewhat but we dont bother with |
| // further itterations. |
| modified_score_total = 0.0; |
| s = twopass->stats_in; |
| while (s < twopass->stats_in_end) { |
| modified_score_total += |
| calculate_norm_frame_score(cpi, twopass, oxcf, s, av_err); |
| ++s; |
| } |
| twopass->normalized_score_left = modified_score_total; |
| |
| // If using Corpus wide VBR mode then update the clip target bandwidth to |
| // reflect how the clip compares to the rest of the corpus. |
| if (oxcf->vbr_corpus_complexity) { |
| oxcf->target_bandwidth = |
| (int64_t)((double)oxcf->target_bandwidth * |
| (twopass->normalized_score_left / stats->count)); |
| } |
| |
| #if COMPLEXITY_STATS_OUTPUT |
| { |
| FILE *compstats; |
| compstats = fopen("complexity_stats.stt", "a"); |
| fprintf(compstats, "%10.3lf\n", |
| twopass->normalized_score_left / stats->count); |
| fclose(compstats); |
| } |
| #endif |
| } |
| |
| frame_rate = 10000000.0 * stats->count / stats->duration; |
| // Each frame can have a different duration, as the frame rate in the source |
| // isn't guaranteed to be constant. The frame rate prior to the first frame |
| // encoded in the second pass is a guess. However, the sum duration is not. |
| // It is calculated based on the actual durations of all frames from the |
| // first pass. |
| vp9_new_framerate(cpi, frame_rate); |
| twopass->bits_left = |
| (int64_t)(stats->duration * oxcf->target_bandwidth / 10000000.0); |
| |
| // This variable monitors how far behind the second ref update is lagging. |
| twopass->sr_update_lag = 1; |
| |
| // Reset the vbr bits off target counters |
| rc->vbr_bits_off_target = 0; |
| rc->vbr_bits_off_target_fast = 0; |
| rc->rate_error_estimate = 0; |
| |
| // Static sequence monitor variables. |
| twopass->kf_zeromotion_pct = 100; |
| twopass->last_kfgroup_zeromotion_pct = 100; |
| |
| // Initialize bits per macro_block estimate correction factor. |
| twopass->bpm_factor = 1.0; |
| // Initialize actual and target bits counters for ARF groups so that |
| // at the start we have a neutral bpm adjustment. |
| twopass->rolling_arf_group_target_bits = 1; |
| twopass->rolling_arf_group_actual_bits = 1; |
| |
| if (oxcf->resize_mode != RESIZE_NONE) { |
| init_subsampling(cpi); |
| } |
| |
| // Initialize the arnr strangth adjustment to 0 |
| twopass->arnr_strength_adjustment = 0; |
| } |
| |
| #define SR_DIFF_PART 0.0015 |
| #define INTRA_PART 0.005 |
| #define DEFAULT_DECAY_LIMIT 0.75 |
| #define LOW_SR_DIFF_TRHESH 0.1 |
| #define SR_DIFF_MAX 128.0 |
| #define LOW_CODED_ERR_PER_MB 10.0 |
| #define NCOUNT_FRAME_II_THRESH 6.0 |
| |
| static double get_sr_decay_rate(const FRAME_INFO *frame_info, |
| const FIRSTPASS_STATS *frame) { |
| double sr_diff = (frame->sr_coded_error - frame->coded_error); |
| double sr_decay = 1.0; |
| double modified_pct_inter; |
| double modified_pcnt_intra; |
| const double motion_amplitude_part = |
| frame->pcnt_motion * |
| ((frame->mvc_abs + frame->mvr_abs) / |
| (frame_info->frame_height + frame_info->frame_width)); |
| |
| modified_pct_inter = frame->pcnt_inter; |
| if ((frame->coded_error > LOW_CODED_ERR_PER_MB) && |
| ((frame->intra_error / DOUBLE_DIVIDE_CHECK(frame->coded_error)) < |
| (double)NCOUNT_FRAME_II_THRESH)) { |
| modified_pct_inter = |
| frame->pcnt_inter + frame->pcnt_intra_low - frame->pcnt_neutral; |
| } |
| modified_pcnt_intra = 100 * (1.0 - modified_pct_inter); |
| |
| if ((sr_diff > LOW_SR_DIFF_TRHESH)) { |
| sr_diff = VPXMIN(sr_diff, SR_DIFF_MAX); |
| sr_decay = 1.0 - (SR_DIFF_PART * sr_diff) - motion_amplitude_part - |
| (INTRA_PART * modified_pcnt_intra); |
| } |
| return VPXMAX(sr_decay, DEFAULT_DECAY_LIMIT); |
| } |
| |
| // This function gives an estimate of how badly we believe the prediction |
| // quality is decaying from frame to frame. |
| static double get_zero_motion_factor(const FRAME_INFO *frame_info, |
| const FIRSTPASS_STATS *frame_stats) { |
| const double zero_motion_pct = |
| frame_stats->pcnt_inter - frame_stats->pcnt_motion; |
| double sr_decay = get_sr_decay_rate(frame_info, frame_stats); |
| return VPXMIN(sr_decay, zero_motion_pct); |
| } |
| |
| #define ZM_POWER_FACTOR 0.75 |
| |
| static double get_prediction_decay_rate(const FRAME_INFO *frame_info, |
| const FIRSTPASS_STATS *frame_stats) { |
| const double sr_decay_rate = get_sr_decay_rate(frame_info, frame_stats); |
| const double zero_motion_factor = |
| (0.95 * pow((frame_stats->pcnt_inter - frame_stats->pcnt_motion), |
| ZM_POWER_FACTOR)); |
| |
| return VPXMAX(zero_motion_factor, |
| (sr_decay_rate + ((1.0 - sr_decay_rate) * zero_motion_factor))); |
| } |
| |
| static int get_show_idx(const TWO_PASS *twopass) { |
| return (int)(twopass->stats_in - twopass->stats_in_start); |
| } |
| // Function to test for a condition where a complex transition is followed |
| // by a static section. For example in slide shows where there is a fade |
| // between slides. This is to help with more optimal kf and gf positioning. |
| static int check_transition_to_still(const FIRST_PASS_INFO *first_pass_info, |
| int show_idx, int still_interval) { |
| int j; |
| int num_frames = fps_get_num_frames(first_pass_info); |
| if (show_idx + still_interval > num_frames) { |
| return 0; |
| } |
| |
| // Look ahead a few frames to see if static condition persists... |
| for (j = 0; j < still_interval; ++j) { |
| const FIRSTPASS_STATS *stats = |
| fps_get_frame_stats(first_pass_info, show_idx + j); |
| if (stats->pcnt_inter - stats->pcnt_motion < 0.999) break; |
| } |
| |
| // Only if it does do we signal a transition to still. |
| return j == still_interval; |
| } |
| |
| // This function detects a flash through the high relative pcnt_second_ref |
| // score in the frame following a flash frame. The offset passed in should |
| // reflect this. |
| static int detect_flash_from_frame_stats(const FIRSTPASS_STATS *frame_stats) { |
| // What we are looking for here is a situation where there is a |
| // brief break in prediction (such as a flash) but subsequent frames |
| // are reasonably well predicted by an earlier (pre flash) frame. |
| // The recovery after a flash is indicated by a high pcnt_second_ref |
| // useage or a second ref coded error notabley lower than the last |
| // frame coded error. |
| if (frame_stats == NULL) { |
| return 0; |
| } |
| return (frame_stats->sr_coded_error < frame_stats->coded_error) || |
| ((frame_stats->pcnt_second_ref > frame_stats->pcnt_inter) && |
| (frame_stats->pcnt_second_ref >= 0.5)); |
| } |
| |
| static int detect_flash(const TWO_PASS *twopass, int offset) { |
| const FIRSTPASS_STATS *const next_frame = read_frame_stats(twopass, offset); |
| return detect_flash_from_frame_stats(next_frame); |
| } |
| |
| // Update the motion related elements to the GF arf boost calculation. |
| static void accumulate_frame_motion_stats(const FIRSTPASS_STATS *stats, |
| double *mv_in_out, |
| double *mv_in_out_accumulator, |
| double *abs_mv_in_out_accumulator, |
| double *mv_ratio_accumulator) { |
| const double pct = stats->pcnt_motion; |
| |
| // Accumulate Motion In/Out of frame stats. |
| *mv_in_out = stats->mv_in_out_count * pct; |
| *mv_in_out_accumulator += *mv_in_out; |
| *abs_mv_in_out_accumulator += fabs(*mv_in_out); |
| |
| // Accumulate a measure of how uniform (or conversely how random) the motion |
| // field is (a ratio of abs(mv) / mv). |
| if (pct > 0.05) { |
| const double mvr_ratio = |
| fabs(stats->mvr_abs) / DOUBLE_DIVIDE_CHECK(fabs(stats->MVr)); |
| const double mvc_ratio = |
| fabs(stats->mvc_abs) / DOUBLE_DIVIDE_CHECK(fabs(stats->MVc)); |
| |
| *mv_ratio_accumulator += |
| pct * (mvr_ratio < stats->mvr_abs ? mvr_ratio : stats->mvr_abs); |
| *mv_ratio_accumulator += |
| pct * (mvc_ratio < stats->mvc_abs ? mvc_ratio : stats->mvc_abs); |
| } |
| } |
| |
| #define BASELINE_ERR_PER_MB 12500.0 |
| #define GF_MAX_BOOST 96.0 |
| static double calc_frame_boost(const FRAME_INFO *frame_info, |
| const FIRSTPASS_STATS *this_frame, |
| int avg_frame_qindex, |
| double this_frame_mv_in_out) { |
| double frame_boost; |
| const double lq = |
| vp9_convert_qindex_to_q(avg_frame_qindex, frame_info->bit_depth); |
| const double boost_q_correction = VPXMIN((0.5 + (lq * 0.015)), 1.5); |
| const double active_area = calculate_active_area(frame_info, this_frame); |
| |
| // Underlying boost factor is based on inter error ratio. |
| frame_boost = (BASELINE_ERR_PER_MB * active_area) / |
| DOUBLE_DIVIDE_CHECK(this_frame->coded_error); |
| |
| // Small adjustment for cases where there is a zoom out |
| if (this_frame_mv_in_out > 0.0) |
| frame_boost += frame_boost * (this_frame_mv_in_out * 2.0); |
| |
| // Q correction and scalling |
| frame_boost = frame_boost * boost_q_correction; |
| |
| return VPXMIN(frame_boost, GF_MAX_BOOST * boost_q_correction); |
| } |
| |
| static double kf_err_per_mb(VP9_COMP *cpi) { |
| const VP9_COMMON *const cm = &cpi->common; |
| unsigned int screen_area = (cm->width * cm->height); |
| |
| // Use a different error per mb factor for calculating boost for |
| // different formats. |
| if (screen_area < 1280 * 720) { |
| return 2000.0; |
| } else if (screen_area < 1920 * 1080) { |
| return 500.0; |
| } |
| return 250.0; |
| } |
| |
| static double calc_kf_frame_boost(VP9_COMP *cpi, |
| const FIRSTPASS_STATS *this_frame, |
| double *sr_accumulator, |
| double this_frame_mv_in_out, |
| double max_boost) { |
| double frame_boost; |
| const double lq = vp9_convert_qindex_to_q( |
| cpi->rc.avg_frame_qindex[INTER_FRAME], cpi->common.bit_depth); |
| const double boost_q_correction = VPXMIN((0.50 + (lq * 0.015)), 2.00); |
| const double active_area = |
| calculate_active_area(&cpi->frame_info, this_frame); |
| |
| // Underlying boost factor is based on inter error ratio. |
| frame_boost = (kf_err_per_mb(cpi) * active_area) / |
| DOUBLE_DIVIDE_CHECK(this_frame->coded_error + *sr_accumulator); |
| |
| // Update the accumulator for second ref error difference. |
| // This is intended to give an indication of how much the coded error is |
| // increasing over time. |
| *sr_accumulator += (this_frame->sr_coded_error - this_frame->coded_error); |
| *sr_accumulator = VPXMAX(0.0, *sr_accumulator); |
| |
| // Small adjustment for cases where there is a zoom out |
| if (this_frame_mv_in_out > 0.0) |
| frame_boost += frame_boost * (this_frame_mv_in_out * 2.0); |
| |
| // Q correction and scaling |
| // The 40.0 value here is an experimentally derived baseline minimum. |
| // This value is in line with the minimum per frame boost in the alt_ref |
| // boost calculation. |
| frame_boost = ((frame_boost + 40.0) * boost_q_correction); |
| |
| return VPXMIN(frame_boost, max_boost * boost_q_correction); |
| } |
| |
| static int compute_arf_boost(const FRAME_INFO *frame_info, |
| const FIRST_PASS_INFO *first_pass_info, |
| int arf_show_idx, int f_frames, int b_frames, |
| int avg_frame_qindex) { |
| int i; |
| double boost_score = 0.0; |
| double mv_ratio_accumulator = 0.0; |
| double decay_accumulator = 1.0; |
| double this_frame_mv_in_out = 0.0; |
| double mv_in_out_accumulator = 0.0; |
| double abs_mv_in_out_accumulator = 0.0; |
| int arf_boost; |
| int flash_detected = 0; |
| |
| // Search forward from the proposed arf/next gf position. |
| for (i = 0; i < f_frames; ++i) { |
| const FIRSTPASS_STATS *this_frame = |
| fps_get_frame_stats(first_pass_info, arf_show_idx + i); |
| const FIRSTPASS_STATS *next_frame = |
| fps_get_frame_stats(first_pass_info, arf_show_idx + i + 1); |
| if (this_frame == NULL) break; |
| |
| // Update the motion related elements to the boost calculation. |
| accumulate_frame_motion_stats( |
| this_frame, &this_frame_mv_in_out, &mv_in_out_accumulator, |
| &abs_mv_in_out_accumulator, &mv_ratio_accumulator); |
| |
| // We want to discount the flash frame itself and the recovery |
| // frame that follows as both will have poor scores. |
| flash_detected = detect_flash_from_frame_stats(this_frame) || |
| detect_flash_from_frame_stats(next_frame); |
| |
| // Accumulate the effect of prediction quality decay. |
| if (!flash_detected) { |
| decay_accumulator *= get_prediction_decay_rate(frame_info, this_frame); |
| decay_accumulator = decay_accumulator < MIN_DECAY_FACTOR |
| ? MIN_DECAY_FACTOR |
| : decay_accumulator; |
| } |
| boost_score += decay_accumulator * calc_frame_boost(frame_info, this_frame, |
| avg_frame_qindex, |
| this_frame_mv_in_out); |
| } |
| |
| arf_boost = (int)boost_score; |
| |
| // Reset for backward looking loop. |
| boost_score = 0.0; |
| mv_ratio_accumulator = 0.0; |
| decay_accumulator = 1.0; |
| this_frame_mv_in_out = 0.0; |
| mv_in_out_accumulator = 0.0; |
| abs_mv_in_out_accumulator = 0.0; |
| |
| // Search backward towards last gf position. |
| for (i = -1; i >= -b_frames; --i) { |
| const FIRSTPASS_STATS *this_frame = |
| fps_get_frame_stats(first_pass_info, arf_show_idx + i); |
| const FIRSTPASS_STATS *next_frame = |
| fps_get_frame_stats(first_pass_info, arf_show_idx + i + 1); |
| if (this_frame == NULL) break; |
| |
| // Update the motion related elements to the boost calculation. |
| accumulate_frame_motion_stats( |
| this_frame, &this_frame_mv_in_out, &mv_in_out_accumulator, |
| &abs_mv_in_out_accumulator, &mv_ratio_accumulator); |
| |
| // We want to discount the the flash frame itself and the recovery |
| // frame that follows as both will have poor scores. |
| flash_detected = detect_flash_from_frame_stats(this_frame) || |
| detect_flash_from_frame_stats(next_frame); |
| |
| // Cumulative effect of prediction quality decay. |
| if (!flash_detected) { |
| decay_accumulator *= get_prediction_decay_rate(frame_info, this_frame); |
| decay_accumulator = decay_accumulator < MIN_DECAY_FACTOR |
| ? MIN_DECAY_FACTOR |
| : decay_accumulator; |
| } |
| boost_score += decay_accumulator * calc_frame_boost(frame_info, this_frame, |
| avg_frame_qindex, |
| this_frame_mv_in_out); |
| } |
| arf_boost += (int)boost_score; |
| |
| if (arf_boost < ((b_frames + f_frames) * 40)) |
| arf_boost = ((b_frames + f_frames) * 40); |
| arf_boost = VPXMAX(arf_boost, MIN_ARF_GF_BOOST); |
| |
| return arf_boost; |
| } |
| |
| static int calc_arf_boost(VP9_COMP *cpi, int f_frames, int b_frames) { |
| const FRAME_INFO *frame_info = &cpi->frame_info; |
| TWO_PASS *const twopass = &cpi->twopass; |
| const int avg_inter_frame_qindex = cpi->rc.avg_frame_qindex[INTER_FRAME]; |
| int arf_show_idx = get_show_idx(twopass); |
| return compute_arf_boost(frame_info, &twopass->first_pass_info, arf_show_idx, |
| f_frames, b_frames, avg_inter_frame_qindex); |
| } |
| |
| // Calculate a section intra ratio used in setting max loop filter. |
| static int calculate_section_intra_ratio(const FIRSTPASS_STATS *begin, |
| const FIRSTPASS_STATS *end, |
| int section_length) { |
| const FIRSTPASS_STATS *s = begin; |
| double intra_error = 0.0; |
| double coded_error = 0.0; |
| int i = 0; |
| |
| while (s < end && i < section_length) { |
| intra_error += s->intra_error; |
| coded_error += s->coded_error; |
| ++s; |
| ++i; |
| } |
| |
| return (int)(intra_error / DOUBLE_DIVIDE_CHECK(coded_error)); |
| } |
| |
| // Calculate the total bits to allocate in this GF/ARF group. |
| static int64_t calculate_total_gf_group_bits(VP9_COMP *cpi, |
| double gf_group_err) { |
| VP9_COMMON *const cm = &cpi->common; |
| const RATE_CONTROL *const rc = &cpi->rc; |
| const TWO_PASS *const twopass = &cpi->twopass; |
| const int max_bits = frame_max_bits(rc, &cpi->oxcf); |
| int64_t total_group_bits; |
| const int is_key_frame = frame_is_intra_only(cm); |
| const int arf_active_or_kf = is_key_frame || rc->source_alt_ref_active; |
| int gop_frames = |
| rc->baseline_gf_interval + rc->source_alt_ref_pending - arf_active_or_kf; |
| |
| // Calculate the bits to be allocated to the group as a whole. |
| if ((twopass->kf_group_bits > 0) && (twopass->kf_group_error_left > 0.0)) { |
| int key_frame_interval = rc->frames_since_key + rc->frames_to_key; |
| int distance_from_next_key_frame = |
| rc->frames_to_key - |
| (rc->baseline_gf_interval + rc->source_alt_ref_pending); |
| int max_gf_bits_bias = rc->avg_frame_bandwidth; |
| double gf_interval_bias_bits_normalize_factor = |
| (double)rc->baseline_gf_interval / 16; |
| total_group_bits = (int64_t)(twopass->kf_group_bits * |
| (gf_group_err / twopass->kf_group_error_left)); |
| // TODO(ravi): Experiment with different values of max_gf_bits_bias |
| total_group_bits += |
| (int64_t)((double)distance_from_next_key_frame / key_frame_interval * |
| max_gf_bits_bias * gf_interval_bias_bits_normalize_factor); |
| } else { |
| total_group_bits = 0; |
| } |
| |
| // Clamp odd edge cases. |
| total_group_bits = (total_group_bits < 0) |
| ? 0 |
| : (total_group_bits > twopass->kf_group_bits) |
| ? twopass->kf_group_bits |
| : total_group_bits; |
| |
| // Clip based on user supplied data rate variability limit. |
| if (total_group_bits > (int64_t)max_bits * gop_frames) |
| total_group_bits = (int64_t)max_bits * gop_frames; |
| |
| return total_group_bits; |
| } |
| |
| // Calculate the number bits extra to assign to boosted frames in a group. |
| static int calculate_boost_bits(int frame_count, int boost, |
| int64_t total_group_bits) { |
| int allocation_chunks; |
| |
| // return 0 for invalid inputs (could arise e.g. through rounding errors) |
| if (!boost || (total_group_bits <= 0) || (frame_count < 0)) return 0; |
| |
| allocation_chunks = (frame_count * NORMAL_BOOST) + boost; |
| |
| // Prevent overflow. |
| if (boost > 1023) { |
| int divisor = boost >> 10; |
| boost /= divisor; |
| allocation_chunks /= divisor; |
| } |
| |
| // Calculate the number of extra bits for use in the boosted frame or frames. |
| return VPXMAX((int)(((int64_t)boost * total_group_bits) / allocation_chunks), |
| 0); |
| } |
| |
| // Used in corpus vbr: Calculates the total normalized group complexity score |
| // for a given number of frames starting at the current position in the stats |
| // file. |
| static double calculate_group_score(VP9_COMP *cpi, double av_score, |
| int frame_count) { |
| VP9EncoderConfig *const oxcf = &cpi->oxcf; |
| TWO_PASS *const twopass = &cpi->twopass; |
| const FIRSTPASS_STATS *s = twopass->stats_in; |
| double score_total = 0.0; |
| int i = 0; |
| |
| // We dont ever want to return a 0 score here. |
| if (frame_count == 0) return 1.0; |
| |
| while ((i < frame_count) && (s < twopass->stats_in_end)) { |
| score_total += calculate_norm_frame_score(cpi, twopass, oxcf, s, av_score); |
| ++s; |
| ++i; |
| } |
| |
| return score_total; |
| } |
| |
| static void find_arf_order(VP9_COMP *cpi, GF_GROUP *gf_group, |
| int *index_counter, int depth, int start, int end) { |
| TWO_PASS *twopass = &cpi->twopass; |
| const FIRSTPASS_STATS *const start_pos = twopass->stats_in; |
| FIRSTPASS_STATS fpf_frame; |
| const int mid = (start + end + 1) >> 1; |
| const int min_frame_interval = 2; |
| int idx; |
| |
| // Process regular P frames |
| if ((end - start < min_frame_interval) || |
| (depth > gf_group->allowed_max_layer_depth)) { |
| for (idx = start; idx <= end; ++idx) { |
| gf_group->update_type[*index_counter] = LF_UPDATE; |
| gf_group->arf_src_offset[*index_counter] = 0; |
| gf_group->frame_gop_index[*index_counter] = idx; |
| gf_group->rf_level[*index_counter] = INTER_NORMAL; |
| gf_group->layer_depth[*index_counter] = depth; |
| gf_group->gfu_boost[*index_counter] = NORMAL_BOOST; |
| ++(*index_counter); |
| } |
| gf_group->max_layer_depth = VPXMAX(gf_group->max_layer_depth, depth); |
| return; |
| } |
| |
| assert(abs(mid - start) >= 1 && abs(mid - end) >= 1); |
| |
| // Process ARF frame |
| gf_group->layer_depth[*index_counter] = depth; |
| gf_group->update_type[*index_counter] = ARF_UPDATE; |
| gf_group->arf_src_offset[*index_counter] = mid - start; |
| gf_group->frame_gop_index[*index_counter] = mid; |
| gf_group->rf_level[*index_counter] = GF_ARF_LOW; |
| |
| for (idx = 0; idx <= mid; ++idx) |
| if (EOF == input_stats(twopass, &fpf_frame)) break; |
| |
| gf_group->gfu_boost[*index_counter] = |
| VPXMAX(MIN_ARF_GF_BOOST, |
| calc_arf_boost(cpi, end - mid + 1, mid - start) >> depth); |
| |
| reset_fpf_position(twopass, start_pos); |
| |
| ++(*index_counter); |
| |
| find_arf_order(cpi, gf_group, index_counter, depth + 1, start, mid - 1); |
| |
| gf_group->update_type[*index_counter] = USE_BUF_FRAME; |
| gf_group->arf_src_offset[*index_counter] = 0; |
| gf_group->frame_gop_index[*index_counter] = mid; |
| gf_group->rf_level[*index_counter] = INTER_NORMAL; |
| gf_group->layer_depth[*index_counter] = depth; |
| ++(*index_counter); |
| |
| find_arf_order(cpi, gf_group, index_counter, depth + 1, mid + 1, end); |
| } |
| |
| static INLINE void set_gf_overlay_frame_type(GF_GROUP *gf_group, |
| int frame_index, |
| int source_alt_ref_active) { |
| if (source_alt_ref_active) { |
| gf_group->update_type[frame_index] = OVERLAY_UPDATE; |
| gf_group->rf_level[frame_index] = INTER_NORMAL; |
| gf_group->layer_depth[frame_index] = MAX_ARF_LAYERS - 1; |
| gf_group->gfu_boost[frame_index] = NORMAL_BOOST; |
| } else { |
| gf_group->update_type[frame_index] = GF_UPDATE; |
| gf_group->rf_level[frame_index] = GF_ARF_STD; |
| gf_group->layer_depth[frame_index] = 0; |
| } |
| } |
| |
| static void define_gf_group_structure(VP9_COMP *cpi) { |
| RATE_CONTROL *const rc = &cpi->rc; |
| TWO_PASS *const twopass = &cpi->twopass; |
| GF_GROUP *const gf_group = &twopass->gf_group; |
| int frame_index = 0; |
| int key_frame = cpi->common.frame_type == KEY_FRAME; |
| int layer_depth = 1; |
| int gop_frames = |
| rc->baseline_gf_interval - (key_frame || rc->source_alt_ref_pending); |
| |
| gf_group->frame_start = cpi->common.current_video_frame; |
| gf_group->frame_end = gf_group->frame_start + rc->baseline_gf_interval; |
| gf_group->max_layer_depth = 0; |
| gf_group->allowed_max_layer_depth = 0; |
| |
| // For key frames the frame target rate is already set and it |
| // is also the golden frame. |
| // === [frame_index == 0] === |
| if (!key_frame) |
| set_gf_overlay_frame_type(gf_group, frame_index, rc->source_alt_ref_active); |
| |
| ++frame_index; |
| |
| // === [frame_index == 1] === |
| if (rc->source_alt_ref_pending) { |
| gf_group->update_type[frame_index] = ARF_UPDATE; |
| gf_group->rf_level[frame_index] = GF_ARF_STD; |
| gf_group->layer_depth[frame_index] = layer_depth; |
| gf_group->arf_src_offset[frame_index] = |
| (unsigned char)(rc->baseline_gf_interval - 1); |
| gf_group->frame_gop_index[frame_index] = rc->baseline_gf_interval; |
| gf_group->max_layer_depth = 1; |
| ++frame_index; |
| ++layer_depth; |
| gf_group->allowed_max_layer_depth = cpi->oxcf.enable_auto_arf; |
| } |
| |
| find_arf_order(cpi, gf_group, &frame_index, layer_depth, 1, gop_frames); |
| |
| set_gf_overlay_frame_type(gf_group, frame_index, rc->source_alt_ref_pending); |
| gf_group->arf_src_offset[frame_index] = 0; |
| gf_group->frame_gop_index[frame_index] = rc->baseline_gf_interval; |
| |
| // Set the frame ops number. |
| gf_group->gf_group_size = frame_index; |
| } |
| |
| static void allocate_gf_group_bits(VP9_COMP *cpi, int64_t gf_group_bits, |
| int gf_arf_bits) { |
| VP9EncoderConfig *const oxcf = &cpi->oxcf; |
| RATE_CONTROL *const rc = &cpi->rc; |
| TWO_PASS *const twopass = &cpi->twopass; |
| GF_GROUP *const gf_group = &twopass->gf_group; |
| FIRSTPASS_STATS frame_stats; |
| int i; |
| int frame_index = 0; |
| int target_frame_size; |
| int key_frame; |
| const int max_bits = frame_max_bits(&cpi->rc, oxcf); |
| int64_t total_group_bits = gf_group_bits; |
| int mid_frame_idx; |
| int normal_frames; |
| int normal_frame_bits; |
| int last_frame_reduction = 0; |
| double av_score = 1.0; |
| double tot_norm_frame_score = 1.0; |
| double this_frame_score = 1.0; |
| |
| // Define the GF structure and specify |
| int gop_frames = gf_group->gf_group_size; |
| |
| key_frame = cpi->common.frame_type == KEY_FRAME; |
| |
| // For key frames the frame target rate is already set and it |
| // is also the golden frame. |
| // === [frame_index == 0] === |
| if (!key_frame) { |
| gf_group->bit_allocation[frame_index] = |
| rc->source_alt_ref_active ? 0 : gf_arf_bits; |
| } |
| |
| // Deduct the boost bits for arf (or gf if it is not a key frame) |
| // from the group total. |
| if (rc->source_alt_ref_pending || !key_frame) total_group_bits -= gf_arf_bits; |
| |
| ++frame_index; |
| |
| // === [frame_index == 1] === |
| // Store the bits to spend on the ARF if there is one. |
| if (rc->source_alt_ref_pending) { |
| gf_group->bit_allocation[frame_index] = gf_arf_bits; |
| |
| ++frame_index; |
| } |
| |
| // Define middle frame |
| mid_frame_idx = frame_index + (rc->baseline_gf_interval >> 1) - 1; |
| |
| normal_frames = (rc->baseline_gf_interval - 1); |
| if (normal_frames > 1) |
| normal_frame_bits = (int)(total_group_bits / normal_frames); |
| else |
| normal_frame_bits = (int)total_group_bits; |
| |
| gf_group->gfu_boost[1] = rc->gfu_boost; |
| |
| if (cpi->multi_layer_arf) { |
| int idx; |
| int arf_depth_bits[MAX_ARF_LAYERS] = { 0 }; |
| int arf_depth_count[MAX_ARF_LAYERS] = { 0 }; |
| int arf_depth_boost[MAX_ARF_LAYERS] = { 0 }; |
| int total_arfs = 1; // Account for the base layer ARF. |
| |
| for (idx = 0; idx < gop_frames; ++idx) { |
| if (gf_group->update_type[idx] == ARF_UPDATE) { |
| arf_depth_boost[gf_group->layer_depth[idx]] += gf_group->gfu_boost[idx]; |
| ++arf_depth_count[gf_group->layer_depth[idx]]; |
| } |
| } |
| |
| for (idx = 2; idx < MAX_ARF_LAYERS; ++idx) { |
| if (arf_depth_boost[idx] == 0) break; |
| arf_depth_bits[idx] = calculate_boost_bits( |
| rc->baseline_gf_interval - total_arfs - arf_depth_count[idx], |
| arf_depth_boost[idx], total_group_bits); |
| |
| total_group_bits -= arf_depth_bits[idx]; |
| total_arfs += arf_depth_count[idx]; |
| } |
| |
| // offset the base layer arf |
| normal_frames -= (total_arfs - 1); |
| if (normal_frames > 1) |
| normal_frame_bits = (int)(total_group_bits / normal_frames); |
| else |
| normal_frame_bits = (int)total_group_bits; |
| |
| target_frame_size = normal_frame_bits; |
| target_frame_size = |
| clamp(target_frame_size, 0, VPXMIN(max_bits, (int)total_group_bits)); |
| |
| // The first layer ARF has its bit allocation assigned. |
| for (idx = frame_index; idx < gop_frames; ++idx) { |
| switch (gf_group->update_type[idx]) { |
| case ARF_UPDATE: |
| gf_group->bit_allocation[idx] = |
| (int)(((int64_t)arf_depth_bits[gf_group->layer_depth[idx]] * |
| gf_group->gfu_boost[idx]) / |
| arf_depth_boost[gf_group->layer_depth[idx]]); |
| break; |
| case USE_BUF_FRAME: gf_group->bit_allocation[idx] = 0; break; |
| default: gf_group->bit_allocation[idx] = target_frame_size; break; |
| } |
| } |
| gf_group->bit_allocation[idx] = 0; |
| |
| return; |
| } |
| |
| if (oxcf->vbr_corpus_complexity) { |
| av_score = get_distribution_av_err(cpi, twopass); |
| tot_norm_frame_score = calculate_group_score(cpi, av_score, normal_frames); |
| } |
| |
| // Allocate bits to the other frames in the group. |
| for (i = 0; i < normal_frames; ++i) { |
| if (EOF == input_stats(twopass, &frame_stats)) break; |
| if (oxcf->vbr_corpus_complexity) { |
| this_frame_score = calculate_norm_frame_score(cpi, twopass, oxcf, |
| &frame_stats, av_score); |
| normal_frame_bits = (int)((double)total_group_bits * |
| (this_frame_score / tot_norm_frame_score)); |
| } |
| |
| target_frame_size = normal_frame_bits; |
| if ((i == (normal_frames - 1)) && (i >= 1)) { |
| last_frame_reduction = normal_frame_bits / 16; |
| target_frame_size -= last_frame_reduction; |
| } |
| |
| target_frame_size = |
| clamp(target_frame_size, 0, VPXMIN(max_bits, (int)total_group_bits)); |
| |
| gf_group->bit_allocation[frame_index] = target_frame_size; |
| ++frame_index; |
| } |
| |
| // Add in some extra bits for the middle frame in the group. |
| gf_group->bit_allocation[mid_frame_idx] += last_frame_reduction; |
| |
| // Note: |
| // We need to configure the frame at the end of the sequence + 1 that will be |
| // the start frame for the next group. Otherwise prior to the call to |
| // vp9_rc_get_second_pass_params() the data will be undefined. |
| } |
| |
| // Adjusts the ARNF filter for a GF group. |
| static void adjust_group_arnr_filter(VP9_COMP *cpi, double section_noise, |
| double section_inter, |
| double section_motion) { |
| TWO_PASS *const twopass = &cpi->twopass; |
| double section_zeromv = section_inter - section_motion; |
| |
| twopass->arnr_strength_adjustment = 0; |
| |
| if (section_noise < 150) { |
| twopass->arnr_strength_adjustment -= 1; |
| if (section_noise < 75) twopass->arnr_strength_adjustment -= 1; |
| } else if (section_noise > 250) |
| twopass->arnr_strength_adjustment += 1; |
| |
| if (section_zeromv > 0.50) twopass->arnr_strength_adjustment += 1; |
| } |
| |
| // Analyse and define a gf/arf group. |
| #define ARF_ABS_ZOOM_THRESH 4.0 |
| |
| #define MAX_GF_BOOST 5400 |
| |
| typedef struct RANGE { |
| int min; |
| int max; |
| } RANGE; |
| |
| /* get_gop_coding_frame_num() depends on several fields in RATE_CONTROL *rc as |
| * follows. |
| * Static fields: |
| * (The following fields will remain unchanged after initialization of encoder.) |
| * rc->static_scene_max_gf_interval |
| * rc->min_gf_interval |
| * |
| * Dynamic fields: |
| * (The following fields will be updated before or after coding each frame.) |
| * rc->frames_to_key |
| * rc->frames_since_key |
| * rc->source_alt_ref_active |
| * |
| * Special case: if CONFIG_RATE_CTRL is true, the external arf indexes will |
| * determine the arf position. |
| * |
| * TODO(angiebird): Separate the dynamic fields and static fields into two |
| * structs. |
| */ |
| static int get_gop_coding_frame_num( |
| int *use_alt_ref, const FRAME_INFO *frame_info, |
| const FIRST_PASS_INFO *first_pass_info, const RATE_CONTROL *rc, |
| int gf_start_show_idx, const RANGE *active_gf_interval, |
| double gop_intra_factor, int lag_in_frames) { |
| double loop_decay_rate = 1.00; |
| double mv_ratio_accumulator = 0.0; |
| double this_frame_mv_in_out = 0.0; |
| double mv_in_out_accumulator = 0.0; |
| double abs_mv_in_out_accumulator = 0.0; |
| double sr_accumulator = 0.0; |
| // Motion breakout threshold for loop below depends on image size. |
| double mv_ratio_accumulator_thresh = |
| (frame_info->frame_height + frame_info->frame_width) / 4.0; |
| double zero_motion_accumulator = 1.0; |
| int gop_coding_frames; |
| |
| *use_alt_ref = 1; |
| gop_coding_frames = 0; |
| while (gop_coding_frames < rc->static_scene_max_gf_interval && |
| gop_coding_frames < rc->frames_to_key) { |
| const FIRSTPASS_STATS *next_next_frame; |
| const FIRSTPASS_STATS *next_frame; |
| int flash_detected; |
| ++gop_coding_frames; |
| |
| next_frame = fps_get_frame_stats(first_pass_info, |
| gf_start_show_idx + gop_coding_frames); |
| if (next_frame == NULL) { |
| break; |
| } |
| |
| // Test for the case where there is a brief flash but the prediction |
| // quality back to an earlier frame is then restored. |
| next_next_frame = fps_get_frame_stats( |
| first_pass_info, gf_start_show_idx + gop_coding_frames + 1); |
| flash_detected = detect_flash_from_frame_stats(next_next_frame); |
| |
| // Update the motion related elements to the boost calculation. |
| accumulate_frame_motion_stats( |
| next_frame, &this_frame_mv_in_out, &mv_in_out_accumulator, |
| &abs_mv_in_out_accumulator, &mv_ratio_accumulator); |
| |
| // Monitor for static sections. |
| if ((rc->frames_since_key + gop_coding_frames - 1) > 1) { |
| zero_motion_accumulator = |
| VPXMIN(zero_motion_accumulator, |
| get_zero_motion_factor(frame_info, next_frame)); |
| } |
| |
| // Accumulate the effect of prediction quality decay. |
| if (!flash_detected) { |
| double last_loop_decay_rate = loop_decay_rate; |
| loop_decay_rate = get_prediction_decay_rate(frame_info, next_frame); |
| |
| // Break clause to detect very still sections after motion. For example, |
| // a static image after a fade or other transition. |
| if (gop_coding_frames > rc->min_gf_interval && loop_decay_rate >= 0.999 && |
| last_loop_decay_rate < 0.9) { |
| int still_interval = 5; |
| if (check_transition_to_still(first_pass_info, |
| gf_start_show_idx + gop_coding_frames, |
| still_interval)) { |
| *use_alt_ref = 0; |
| break; |
| } |
| } |
| |
| // Update the accumulator for second ref error difference. |
| // This is intended to give an indication of how much the coded error is |
| // increasing over time. |
| if (gop_coding_frames == 1) { |
| sr_accumulator += next_frame->coded_error; |
| } else { |
| sr_accumulator += |
| (next_frame->sr_coded_error - next_frame->coded_error); |
| } |
| } |
| |
| // Break out conditions. |
| // Break at maximum of active_gf_interval->max unless almost totally |
| // static. |
| // |
| // Note that the addition of a test of rc->source_alt_ref_active is |
| // deliberate. The effect of this is that after a normal altref group even |
| // if the material is static there will be one normal length GF group |
| // before allowing longer GF groups. The reason for this is that in cases |
| // such as slide shows where slides are separated by a complex transition |
| // such as a fade, the arf group spanning the transition may not be coded |
| // at a very high quality and hence this frame (with its overlay) is a |
| // poor golden frame to use for an extended group. |
| if ((gop_coding_frames >= active_gf_interval->max) && |
| ((zero_motion_accumulator < 0.995) || (rc->source_alt_ref_active))) { |
| break; |
| } |
| if ( |
| // Don't break out with a very short interval. |
| (gop_coding_frames >= active_gf_interval->min) && |
| // If possible dont break very close to a kf |
| ((rc->frames_to_key - gop_coding_frames) >= rc->min_gf_interval) && |
| (gop_coding_frames & 0x01) && (!flash_detected) && |
| ((mv_ratio_accumulator > mv_ratio_accumulator_thresh) || |
| (abs_mv_in_out_accumulator > ARF_ABS_ZOOM_THRESH) || |
| (sr_accumulator > gop_intra_factor * next_frame->intra_error))) { |
| break; |
| } |
| } |
| *use_alt_ref &= zero_motion_accumulator < 0.995; |
| *use_alt_ref &= gop_coding_frames < lag_in_frames; |
| *use_alt_ref &= gop_coding_frames >= rc->min_gf_interval; |
| return gop_coding_frames; |
| } |
| |
| static RANGE get_active_gf_inverval_range( |
| const FRAME_INFO *frame_info, const RATE_CONTROL *rc, int arf_active_or_kf, |
| int gf_start_show_idx, int active_worst_quality, int last_boosted_qindex) { |
| RANGE active_gf_interval; |
| #if CONFIG_RATE_CTRL |
| (void)frame_info; |
| (void)gf_start_show_idx; |
| (void)active_worst_quality; |
| (void)last_boosted_qindex; |
| active_gf_interval.min = rc->min_gf_interval + arf_active_or_kf + 2; |
| |
| active_gf_interval.max = 16 + arf_active_or_kf; |
| |
| if ((active_gf_interval.max <= rc->frames_to_key) && |
| (active_gf_interval.max >= (rc->frames_to_key - rc->min_gf_interval))) { |
| active_gf_interval.min = rc->frames_to_key / 2; |
| active_gf_interval.max = rc->frames_to_key / 2; |
| } |
| #else |
| int int_max_q = (int)(vp9_convert_qindex_to_q(active_worst_quality, |
| frame_info->bit_depth)); |
| int q_term = (gf_start_show_idx == 0) |
| ? int_max_q / 32 |
| : (int)(vp9_convert_qindex_to_q(last_boosted_qindex, |
| frame_info->bit_depth) / |
| 6); |
| active_gf_interval.min = |
| rc->min_gf_interval + arf_active_or_kf + VPXMIN(2, int_max_q / 200); |
| active_gf_interval.min = |
| VPXMIN(active_gf_interval.min, rc->max_gf_interval + arf_active_or_kf); |
| |
| // The value chosen depends on the active Q range. At low Q we have |
| // bits to spare and are better with a smaller interval and smaller boost. |
| // At high Q when there are few bits to spare we are better with a longer |
| // interval to spread the cost of the GF. |
| active_gf_interval.max = 11 + arf_active_or_kf + VPXMIN(5, q_term); |
| |
| // Force max GF interval to be odd. |
| active_gf_interval.max = active_gf_interval.max | 0x01; |
| |
| // We have: active_gf_interval.min <= |
| // rc->max_gf_interval + arf_active_or_kf. |
| if (active_gf_interval.max < active_gf_interval.min) { |
| active_gf_interval.max = active_gf_interval.min; |
| } else { |
| active_gf_interval.max = |
| VPXMIN(active_gf_interval.max, rc->max_gf_interval + arf_active_or_kf); |
| } |
| |
| // Would the active max drop us out just before the near the next kf? |
| if ((active_gf_interval.max <= rc->frames_to_key) && |
| (active_gf_interval.max >= (rc->frames_to_key - rc->min_gf_interval))) { |
| active_gf_interval.max = rc->frames_to_key / 2; |
| } |
| active_gf_interval.max = |
| VPXMAX(active_gf_interval.max, active_gf_interval.min); |
| #endif |
| return active_gf_interval; |
| } |
| |
| static int get_arf_layers(int multi_layer_arf, int max_layers, |
| int coding_frame_num) { |
| assert(max_layers <= MAX_ARF_LAYERS); |
| if (multi_layer_arf) { |
| int layers = 0; |
| int i; |
| for (i = coding_frame_num; i > 0; i >>= 1) { |
| ++layers; |
| } |
| layers = VPXMIN(max_layers, layers); |
| return layers; |
| } else { |
| return 1; |
| } |
| } |
| |
| static void define_gf_group(VP9_COMP *cpi, int gf_start_show_idx) { |
| VP9_COMMON *const cm = &cpi->common; |
| RATE_CONTROL *const rc = &cpi->rc; |
| VP9EncoderConfig *const oxcf = &cpi->oxcf; |
| TWO_PASS *const twopass = &cpi->twopass; |
| const FRAME_INFO *frame_info = &cpi->frame_info; |
| const FIRST_PASS_INFO *first_pass_info = &twopass->first_pass_info; |
| const FIRSTPASS_STATS *const start_pos = twopass->stats_in; |
| int gop_coding_frames; |
| |
| double gf_group_err = 0.0; |
| double gf_group_raw_error = 0.0; |
| double gf_group_noise = 0.0; |
| double gf_group_skip_pct = 0.0; |
| double gf_group_inactive_zone_rows = 0.0; |
| double gf_group_inter = 0.0; |
| double gf_group_motion = 0.0; |
| |
| int allow_alt_ref = is_altref_enabled(cpi); |
| int use_alt_ref; |
| |
| int64_t gf_group_bits; |
| int gf_arf_bits; |
| const int is_key_frame = frame_is_intra_only(cm); |
| // If this is a key frame or the overlay from a previous arf then |
| // the error score / cost of this frame has already been accounted for. |
| const int arf_active_or_kf = is_key_frame || rc->source_alt_ref_active; |
| int is_alt_ref_flash = 0; |
| |
| double gop_intra_factor; |
| int gop_frames; |
| RANGE active_gf_interval; |
| |
| // Reset the GF group data structures unless this is a key |
| // frame in which case it will already have been done. |
| if (is_key_frame == 0) { |
| vp9_zero(twopass->gf_group); |
| } |
| |
| vpx_clear_system_state(); |
| |
| active_gf_interval = get_active_gf_inverval_range( |
| frame_info, rc, arf_active_or_kf, gf_start_show_idx, |
| twopass->active_worst_quality, rc->last_boosted_qindex); |
| |
| if (cpi->multi_layer_arf) { |
| int arf_layers = get_arf_layers(cpi->multi_layer_arf, oxcf->enable_auto_arf, |
| active_gf_interval.max); |
| gop_intra_factor = 1.0 + 0.25 * arf_layers; |
| } else { |
| gop_intra_factor = 1.0; |
| } |
| |
| #if CONFIG_RATE_CTRL |
| { |
| const GOP_COMMAND *gop_command = &cpi->encode_command.gop_command; |
| assert(allow_alt_ref == 1); |
| if (gop_command->use) { |
| gop_coding_frames = gop_command_coding_frame_count(gop_command); |
| use_alt_ref = gop_command->use_alt_ref; |
| } else { |
| gop_coding_frames = get_gop_coding_frame_num( |
| &use_alt_ref, frame_info, first_pass_info, rc, gf_start_show_idx, |
| &active_gf_interval, gop_intra_factor, cpi->oxcf.lag_in_frames); |
| use_alt_ref &= allow_alt_ref; |
| } |
| } |
| #else |
| gop_coding_frames = get_gop_coding_frame_num( |
| &use_alt_ref, frame_info, first_pass_info, rc, gf_start_show_idx, |
| &active_gf_interval, gop_intra_factor, cpi->oxcf.lag_in_frames); |
| use_alt_ref &= allow_alt_ref; |
| #endif |
| |
| // Was the group length constrained by the requirement for a new KF? |
| rc->constrained_gf_group = (gop_coding_frames >= rc->frames_to_key) ? 1 : 0; |
| |
| // Should we use the alternate reference frame. |
| if (use_alt_ref) { |
| const int f_frames = |
| (rc->frames_to_key - gop_coding_frames >= gop_coding_frames - 1) |
| ? gop_coding_frames - 1 |
| : VPXMAX(0, rc->frames_to_key - gop_coding_frames); |
| const int b_frames = gop_coding_frames - 1; |
| const int avg_inter_frame_qindex = rc->avg_frame_qindex[INTER_FRAME]; |
| // TODO(angiebird): figure out why arf's location is assigned this way |
| const int arf_show_idx = VPXMIN(gf_start_show_idx + gop_coding_frames + 1, |
| fps_get_num_frames(first_pass_info)); |
| |
| // Calculate the boost for alt ref. |
| rc->gfu_boost = |
| compute_arf_boost(frame_info, first_pass_info, arf_show_idx, f_frames, |
| b_frames, avg_inter_frame_qindex); |
| rc->source_alt_ref_pending = 1; |
| } else { |
| const int f_frames = gop_coding_frames - 1; |
| const int b_frames = 0; |
| const int avg_inter_frame_qindex = rc->avg_frame_qindex[INTER_FRAME]; |
| // TODO(angiebird): figure out why arf's location is assigned this way |
| const int gld_show_idx = |
| VPXMIN(gf_start_show_idx + 1, fps_get_num_frames(first_pass_info)); |
| const int arf_boost = |
| compute_arf_boost(frame_info, first_pass_info, gld_show_idx, f_frames, |
| b_frames, avg_inter_frame_qindex); |
| rc->gfu_boost = VPXMIN(MAX_GF_BOOST, arf_boost); |
| rc->source_alt_ref_pending = 0; |
| } |
| |
| #define LAST_ALR_ACTIVE_BEST_QUALITY_ADJUSTMENT_FACTOR 0.2 |
| rc->arf_active_best_quality_adjustment_factor = 1.0; |
| rc->arf_increase_active_best_quality = 0; |
| |
| if (!is_lossless_requested(&cpi->oxcf)) { |
| if (rc->frames_since_key >= rc->frames_to_key) { |
| // Increase the active best quality in the second half of key frame |
| // interval. |
| rc->arf_active_best_quality_adjustment_factor = |
| LAST_ALR_ACTIVE_BEST_QUALITY_ADJUSTMENT_FACTOR + |
| (1.0 - LAST_ALR_ACTIVE_BEST_QUALITY_ADJUSTMENT_FACTOR) * |
| (rc->frames_to_key - gop_coding_frames) / |
| (VPXMAX(1, ((rc->frames_to_key + rc->frames_since_key) / 2 - |
| gop_coding_frames))); |
| rc->arf_increase_active_best_quality = 1; |
| } else if ((rc->frames_to_key - gop_coding_frames) > 0) { |
| // Reduce the active best quality in the first half of key frame interval. |
| rc->arf_active_best_quality_adjustment_factor = |
| LAST_ALR_ACTIVE_BEST_QUALITY_ADJUSTMENT_FACTOR + |
| (1.0 - LAST_ALR_ACTIVE_BEST_QUALITY_ADJUSTMENT_FACTOR) * |
| (rc->frames_since_key + gop_coding_frames) / |
| (VPXMAX(1, (rc->frames_to_key + rc->frames_since_key) / 2 + |
| gop_coding_frames)); |
| rc->arf_increase_active_best_quality = -1; |
| } |
| } |
| |
| #ifdef AGGRESSIVE_VBR |
| // Limit maximum boost based on interval length. |
| rc->gfu_boost = VPXMIN((int)rc->gfu_boost, gop_coding_frames * 140); |
| #else |
| rc->gfu_boost = VPXMIN((int)rc->gfu_boost, gop_coding_frames * 200); |
| #endif |
| |
| // Cap the ARF boost when perceptual quality AQ mode is enabled. This is |
| // designed to improve the perceptual quality of high value content and to |
| // make consistent quality across consecutive frames. It will hurt objective |
| // quality. |
| if (oxcf->aq_mode == PERCEPTUAL_AQ) |
| rc->gfu_boost = VPXMIN(rc->gfu_boost, MIN_ARF_GF_BOOST); |
| |
| rc->baseline_gf_interval = gop_coding_frames - rc->source_alt_ref_pending; |
| |
| if (rc->source_alt_ref_pending) |
| is_alt_ref_flash = detect_flash(twopass, rc->baseline_gf_interval); |
| |
| { |
| const double av_err = get_distribution_av_err(cpi, twopass); |
| const double mean_mod_score = twopass->mean_mod_score; |
| // If the first frame is a key frame or the overlay from a previous arf then |
| // the error score / cost of this frame has already been accounted for. |
| int start_idx = arf_active_or_kf ? 1 : 0; |
| int j; |
| for (j = start_idx; j < gop_coding_frames; ++j) { |
| int show_idx = gf_start_show_idx + j; |
| const FIRSTPASS_STATS *frame_stats = |
| fps_get_frame_stats(first_pass_info, show_idx); |
| // Accumulate error score of frames in this gf group. |
| gf_group_err += calc_norm_frame_score(oxcf, frame_info, frame_stats, |
| mean_mod_score, av_err); |
| gf_group_raw_error += frame_stats->coded_error; |
| gf_group_noise += frame_stats->frame_noise_energy; |
| gf_group_skip_pct += frame_stats->intra_skip_pct; |
| gf_group_inactive_zone_rows += frame_stats->inactive_zone_rows; |
| gf_group_inter += frame_stats->pcnt_inter; |
| gf_group_motion += frame_stats->pcnt_motion; |
| } |
| } |
| |
| // Calculate the bits to be allocated to the gf/arf group as a whole |
| gf_group_bits = calculate_total_gf_group_bits(cpi, gf_group_err); |
| |
| gop_frames = |
| rc->baseline_gf_interval + rc->source_alt_ref_pending - arf_active_or_kf; |
| |
| // Store the average moise level measured for the group |
| // TODO(any): Experiment with removal of else condition (gop_frames = 0) so |
| // that consumption of group noise energy is based on previous gf group |
| if (gop_frames > 0) |
| twopass->gf_group.group_noise_energy = (int)(gf_group_noise / gop_frames); |
| else |
| twopass->gf_group.group_noise_energy = 0; |
| |
| // Calculate an estimate of the maxq needed for the group. |
| // We are more aggressive about correcting for sections |
| // where there could be significant overshoot than for easier |
| // sections where we do not wish to risk creating an overshoot |
| // of the allocated bit budget. |
| if ((cpi->oxcf.rc_mode != VPX_Q) && (rc->baseline_gf_interval > 1)) { |
| const int vbr_group_bits_per_frame = (int)(gf_group_bits / gop_frames); |
| const double group_av_err = gf_group_raw_error / gop_frames; |
| const double group_av_noise = gf_group_noise / gop_frames; |
| const double group_av_skip_pct = gf_group_skip_pct / gop_frames; |
| const double group_av_inactive_zone = ((gf_group_inactive_zone_rows * 2) / |
| (gop_frames * (double)cm->mb_rows)); |
| int tmp_q = get_twopass_worst_quality( |
| cpi, group_av_err, (group_av_skip_pct + group_av_inactive_zone), |
| group_av_noise, vbr_group_bits_per_frame); |
| twopass->active_worst_quality = |
| (tmp_q + (twopass->active_worst_quality * 3)) >> 2; |
| |
| #if CONFIG_ALWAYS_ADJUST_BPM |
| // Reset rolling actual and target bits counters for ARF groups. |
| twopass->rolling_arf_group_target_bits = 0; |
| twopass->rolling_arf_group_actual_bits = 0; |
| #endif |
| } |
| |
| // Context Adjustment of ARNR filter strength |
| if (rc->baseline_gf_interval > 1) { |
| adjust_group_arnr_filter(cpi, (gf_group_noise / gop_frames), |
| (gf_group_inter / gop_frames), |
| (gf_group_motion / gop_frames)); |
| } else { |
| twopass->arnr_strength_adjustment = 0; |
| } |
| |
| // Calculate the extra bits to be used for boosted frame(s) |
| gf_arf_bits = calculate_boost_bits((rc->baseline_gf_interval - 1), |
| rc->gfu_boost, gf_group_bits); |
| |
| // Adjust KF group bits and error remaining. |
| twopass->kf_group_error_left -= gf_group_err; |
| |
| // Decide GOP structure. |
| define_gf_group_structure(cpi); |
| |
| // Allocate bits to each of the frames in the GF group. |
| allocate_gf_group_bits(cpi, gf_group_bits, gf_arf_bits); |
| |
| // Reset the file position. |
| reset_fpf_position(twopass, start_pos); |
| |
| // Calculate a section intra ratio used in setting max loop filter. |
| twopass->section_intra_rating = calculate_section_intra_ratio( |
| start_pos, twopass->stats_in_end, rc->baseline_gf_interval); |
| |
| if (oxcf->resize_mode == RESIZE_DYNAMIC) { |
| // Default to starting GF groups at normal frame size. |
| cpi->rc.next_frame_size_selector = UNSCALED; |
| } |
| #if !CONFIG_ALWAYS_ADJUST_BPM |
| // Reset rolling actual and target bits counters for ARF groups. |
| twopass->rolling_arf_group_target_bits = 0; |
| twopass->rolling_arf_group_actual_bits = 0; |
| #endif |
| rc->preserve_arf_as_gld = rc->preserve_next_arf_as_gld; |
| rc->preserve_next_arf_as_gld = 0; |
| // If alt ref frame is flash do not set preserve_arf_as_gld |
| if (!is_lossless_requested(&cpi->oxcf) && !cpi->use_svc && |
| cpi->oxcf.aq_mode == NO_AQ && cpi->multi_layer_arf && !is_alt_ref_flash) |
| rc->preserve_next_arf_as_gld = 1; |
| } |
| |
| // Intra / Inter threshold very low |
| #define VERY_LOW_II 1.5 |
| // Clean slide transitions we expect a sharp single frame spike in error. |
| #define ERROR_SPIKE 5.0 |
| |
| // Slide show transition detection. |
| // Tests for case where there is very low error either side of the current frame |
| // but much higher just for this frame. This can help detect key frames in |
| // slide shows even where the slides are pictures of different sizes. |
| // Also requires that intra and inter errors are very similar to help eliminate |
| // harmful false positives. |
| // It will not help if the transition is a fade or other multi-frame effect. |
| static int slide_transition(const FIRSTPASS_STATS *this_frame, |
| const FIRSTPASS_STATS *last_frame, |
| const FIRSTPASS_STATS *next_frame) { |
| return (this_frame->intra_error < (this_frame->coded_error * VERY_LOW_II)) && |
| (this_frame->coded_error > (last_frame->coded_error * ERROR_SPIKE)) && |
| (this_frame->coded_error > (next_frame->coded_error * ERROR_SPIKE)); |
| } |
| |
| // This test looks for anomalous changes in the nature of the intra signal |
| // related to the previous and next frame as an indicator for coding a key |
| // frame. This test serves to detect some additional scene cuts, |
| // especially in lowish motion and low contrast sections, that are missed |
| // by the other tests. |
| static int intra_step_transition(const FIRSTPASS_STATS *this_frame, |
| const FIRSTPASS_STATS *last_frame, |
| const FIRSTPASS_STATS *next_frame) { |
| double last_ii_ratio; |
| double this_ii_ratio; |
| double next_ii_ratio; |
| double last_pcnt_intra = 1.0 - last_frame->pcnt_inter; |
| double this_pcnt_intra = 1.0 - this_frame->pcnt_inter; |
| double next_pcnt_intra = 1.0 - next_frame->pcnt_inter; |
| double mod_this_intra = this_pcnt_intra + this_frame->pcnt_neutral; |
| |
| // Calculate ii ratio for this frame last frame and next frame. |
| last_ii_ratio = |
| last_frame->intra_error / DOUBLE_DIVIDE_CHECK(last_frame->coded_error); |
| this_ii_ratio = |
| this_frame->intra_error / DOUBLE_DIVIDE_CHECK(this_frame->coded_error); |
| next_ii_ratio = |
| next_frame->intra_error / DOUBLE_DIVIDE_CHECK(next_frame->coded_error); |
| |
| // Return true the intra/inter ratio for the current frame is |
| // low but better in the next and previous frame and the relative useage of |
| // intra in the current frame is markedly higher than the last and next frame. |
| if ((this_ii_ratio < 2.0) && (last_ii_ratio > 2.25) && |
| (next_ii_ratio > 2.25) && (this_pcnt_intra > (3 * last_pcnt_intra)) && |
| (this_pcnt_intra > (3 * next_pcnt_intra)) && |
| ((this_pcnt_intra > 0.075) || (mod_this_intra > 0.85))) { |
| return 1; |
| // Very low inter intra ratio (i.e. not much gain from inter coding), most |
| // blocks neutral on coding method and better inter prediction either side |
| } else if ((this_ii_ratio < 1.25) && (mod_this_intra > 0.85) && |
| (this_ii_ratio < last_ii_ratio * 0.9) && |
| (this_ii_ratio < next_ii_ratio * 0.9)) { |
| return 1; |
| } else { |
| return 0; |
| } |
| } |
| |
| // Minimum % intra coding observed in first pass (1.0 = 100%) |
| #define MIN_INTRA_LEVEL 0.25 |
| // Threshold for use of the lagging second reference frame. Scene cuts do not |
| // usually have a high second ref useage. |
| #define SECOND_REF_USEAGE_THRESH 0.2 |
| // Hard threshold where the first pass chooses intra for almost all blocks. |
| // In such a case even if the frame is not a scene cut coding a key frame |
| // may be a good option. |
| #define VERY_LOW_INTER_THRESH 0.05 |
| // Maximum threshold for the relative ratio of intra error score vs best |
| // inter error score. |
| #define KF_II_ERR_THRESHOLD 2.5 |
| #define KF_II_MAX 128.0 |
| #define II_FACTOR 12.5 |
| // Test for very low intra complexity which could cause false key frames |
| #define V_LOW_INTRA 0.5 |
| |
| static int test_candidate_kf(const FIRST_PASS_INFO *first_pass_info, |
| int show_idx) { |
| const FIRSTPASS_STATS *last_frame = |
| fps_get_frame_stats(first_pass_info, show_idx - 1); |
| const FIRSTPASS_STATS *this_frame = |
| fps_get_frame_stats(first_pass_info, show_idx); |
| const FIRSTPASS_STATS *next_frame = |
| fps_get_frame_stats(first_pass_info, show_idx + 1); |
| int is_viable_kf = 0; |
| double pcnt_intra = 1.0 - this_frame->pcnt_inter; |
| |
| // Does the frame satisfy the primary criteria of a key frame? |
| // See above for an explanation of the test criteria. |
| // If so, then examine how well it predicts subsequent frames. |
| detect_flash_from_frame_stats(next_frame); |
| if (!detect_flash_from_frame_stats(this_frame) && |
| !detect_flash_from_frame_stats(next_frame) && |
| (this_frame->pcnt_second_ref < SECOND_REF_USEAGE_THRESH) && |
| ((this_frame->pcnt_inter < VERY_LOW_INTER_THRESH) || |
| (slide_transition(this_frame, last_frame, next_frame)) || |
| (intra_step_transition(this_frame, last_frame, next_frame)) || |
| (((this_frame->coded_error > (next_frame->coded_error * 1.2)) && |
| (this_frame->coded_error > (last_frame->coded_error * 1.2))) && |
| (pcnt_intra > MIN_INTRA_LEVEL) && |
| ((pcnt_intra + this_frame->pcnt_neutral) > 0.5) && |
| ((this_frame->intra_error / |
| DOUBLE_DIVIDE_CHECK(this_frame->coded_error)) < |
| KF_II_ERR_THRESHOLD)))) { |
| int i; |
| double boost_score = 0.0; |
| double old_boost_score = 0.0; |
| double decay_accumulator = 1.0; |
| |
| // Examine how well the key frame predicts subsequent frames. |
| for (i = 0; i < 16; ++i) { |
| const FIRSTPASS_STATS *frame_stats = |
| fps_get_frame_stats(first_pass_info, show_idx + 1 + i); |
| double next_iiratio = (II_FACTOR * frame_stats->intra_error / |
| DOUBLE_DIVIDE_CHECK(frame_stats->coded_error)); |
| |
| if (next_iiratio > KF_II_MAX) next_iiratio = KF_II_MAX; |
| |
| // Cumulative effect of decay in prediction quality. |
| if (frame_stats->pcnt_inter > 0.85) |
| decay_accumulator *= frame_stats->pcnt_inter; |
| else |
| decay_accumulator *= (0.85 + frame_stats->pcnt_inter) / 2.0; |
| |
| // Keep a running total. |
| boost_score += (decay_accumulator * next_iiratio); |
| |
| // Test various breakout clauses. |
| if ((frame_stats->pcnt_inter < 0.05) || (next_iiratio < 1.5) || |
| (((frame_stats->pcnt_inter - frame_stats->pcnt_neutral) < 0.20) && |
| (next_iiratio < 3.0)) || |
| ((boost_score - old_boost_score) < 3.0) || |
| (frame_stats->intra_error < V_LOW_INTRA)) { |
| break; |
| } |
| |
| old_boost_score = boost_score; |
| |
| // Get the next frame details |
| if (show_idx + 1 + i == fps_get_num_frames(first_pass_info) - 1) break; |
| } |
| |
| // If there is tolerable prediction for at least the next 3 frames then |
| // break out else discard this potential key frame and move on |
| if (boost_score > 30.0 && (i > 3)) { |
| is_viable_kf = 1; |
| } else { |
| is_viable_kf = 0; |
| } |
| } |
| |
| return is_viable_kf; |
| } |
| |
| #define FRAMES_TO_CHECK_DECAY 8 |
| #define MIN_KF_TOT_BOOST 300 |
| #define DEFAULT_SCAN_FRAMES_FOR_KF_BOOST 32 |
| #define MAX_SCAN_FRAMES_FOR_KF_BOOST 48 |
| #define MIN_SCAN_FRAMES_FOR_KF_BOOST 32 |
| #define KF_ABS_ZOOM_THRESH 6.0 |
| |
| #ifdef AGGRESSIVE_VBR |
| #define KF_MAX_FRAME_BOOST 80.0 |
| #define MAX_KF_TOT_BOOST 4800 |
| #else |
| #define KF_MAX_FRAME_BOOST 96.0 |
| #define MAX_KF_TOT_BOOST 5400 |
| #endif |
| |
| int vp9_get_frames_to_next_key(const VP9EncoderConfig *oxcf, |
| const FRAME_INFO *frame_info, |
| const FIRST_PASS_INFO *first_pass_info, |
| int kf_show_idx, int min_gf_interval) { |
| double recent_loop_decay[FRAMES_TO_CHECK_DECAY]; |
| int j; |
| int frames_to_key; |
| int max_frames_to_key = first_pass_info->num_frames - kf_show_idx; |
| max_frames_to_key = VPXMIN(max_frames_to_key, oxcf->key_freq); |
| |
| // Initialize the decay rates for the recent frames to check |
| for (j = 0; j < FRAMES_TO_CHECK_DECAY; ++j) recent_loop_decay[j] = 1.0; |
| // Find the next keyframe. |
| if (!oxcf->auto_key) { |
| frames_to_key = max_frames_to_key; |
| } else { |
| frames_to_key = 1; |
| while (frames_to_key < max_frames_to_key) { |
| // Provided that we are not at the end of the file... |
| if (kf_show_idx + frames_to_key + 1 < first_pass_info->num_frames) { |
| double loop_decay_rate; |
| double decay_accumulator; |
| const FIRSTPASS_STATS *next_frame = fps_get_frame_stats( |
| first_pass_info, kf_show_idx + frames_to_key + 1); |
| |
| // Check for a scene cut. |
| if (test_candidate_kf(first_pass_info, kf_show_idx + frames_to_key)) |
| break; |
| |
| // How fast is the prediction quality decaying? |
| loop_decay_rate = get_prediction_decay_rate(frame_info, next_frame); |
| |
| // We want to know something about the recent past... rather than |
| // as used elsewhere where we are concerned with decay in prediction |
| // quality since the last GF or KF. |
| recent_loop_decay[(frames_to_key - 1) % FRAMES_TO_CHECK_DECAY] = |
| loop_decay_rate; |
| decay_accumulator = 1.0; |
| for (j = 0; j < FRAMES_TO_CHECK_DECAY; ++j) |
| decay_accumulator *= recent_loop_decay[j]; |
| |
| // Special check for transition or high motion followed by a |
| // static scene. |
| if ((frames_to_key - 1) > min_gf_interval && loop_decay_rate >= 0.999 && |
| decay_accumulator < 0.9) { |
| int still_interval = oxcf->key_freq - (frames_to_key - 1); |
| // TODO(angiebird): Figure out why we use "+1" here |
| int show_idx = kf_show_idx + frames_to_key; |
| if (check_transition_to_still(first_pass_info, show_idx, |
| still_interval)) { |
| break; |
| } |
| } |
| } |
| ++frames_to_key; |
| } |
| } |
| return frames_to_key; |
| } |
| |
| static void find_next_key_frame(VP9_COMP *cpi, int kf_show_idx) { |
| int i; |
| RATE_CONTROL *const rc = &cpi->rc; |
| TWO_PASS *const twopass = &cpi->twopass; |
| GF_GROUP *const gf_group = &twopass->gf_group; |
| const VP9EncoderConfig *const oxcf = &cpi->oxcf; |
| const FIRST_PASS_INFO *first_pass_info = &twopass->first_pass_info; |
| const FRAME_INFO *frame_info = &cpi->frame_info; |
| const FIRSTPASS_STATS *const start_position = twopass->stats_in; |
| const FIRSTPASS_STATS *keyframe_stats = |
| fps_get_frame_stats(first_pass_info, kf_show_idx); |
| FIRSTPASS_STATS next_frame; |
| int kf_bits = 0; |
| int64_t max_kf_bits; |
| double zero_motion_accumulator = 1.0; |
| double zero_motion_sum = 0.0; |
| double zero_motion_avg; |
| double motion_compensable_sum = 0.0; |
| double motion_compensable_avg; |
| int num_frames = 0; |
| int kf_boost_scan_frames = DEFAULT_SCAN_FRAMES_FOR_KF_BOOST; |
| double boost_score = 0.0; |
| double kf_mod_err = 0.0; |
| double kf_raw_err = 0.0; |
| double kf_group_err = 0.0; |
| double sr_accumulator = 0.0; |
| double abs_mv_in_out_accumulator = 0.0; |
| const double av_err = get_distribution_av_err(cpi, twopass); |
| const double mean_mod_score = twopass->mean_mod_score; |
| vp9_zero(next_frame); |
| |
| cpi->common.frame_type = KEY_FRAME; |
| rc->frames_since_key = 0; |
| |
| // Reset the GF group data structures. |
| vp9_zero(*gf_group); |
| |
| // Is this a forced key frame by interval. |
| rc->this_key_frame_forced = rc->next_key_frame_forced; |
| |
| // Clear the alt ref active flag and last group multi arf flags as they |
| // can never be set for a key frame. |
| rc->source_alt_ref_active = 0; |
| |
| // KF is always a GF so clear frames till next gf counter. |
| rc->frames_till_gf_update_due = 0; |
| |
| rc->frames_to_key = 1; |
| |
| twopass->kf_group_bits = 0; // Total bits available to kf group |
| twopass->kf_group_error_left = 0.0; // Group modified error score. |
| |
| kf_raw_err = keyframe_stats->intra_error; |
| kf_mod_err = calc_norm_frame_score(oxcf, frame_info, keyframe_stats, |
| mean_mod_score, av_err); |
| |
| rc->frames_to_key = vp9_get_frames_to_next_key( |
| oxcf, frame_info, first_pass_info, kf_show_idx, rc->min_gf_interval); |
| |
| // If there is a max kf interval set by the user we must obey it. |
| // We already breakout of the loop above at 2x max. |
| // This code centers the extra kf if the actual natural interval |
| // is between 1x and 2x. |
| if (rc->frames_to_key >= cpi->oxcf.key_freq) { |
| rc->next_key_frame_forced = 1; |
| } else { |
| rc->next_key_frame_forced = 0; |
| } |
| |
| for (i = 0; i < rc->frames_to_key; ++i) { |
| const FIRSTPASS_STATS *frame_stats = |
| fps_get_frame_stats(first_pass_info, kf_show_idx + i); |
| // Accumulate kf group error. |
| kf_group_err += calc_norm_frame_score(oxcf, frame_info, frame_stats, |
| mean_mod_score, av_err); |
| } |
| |
| // Calculate the number of bits that should be assigned to the kf group. |
| if (twopass->bits_left > 0 && twopass->normalized_score_left > 0.0) { |
| // Maximum number of bits for a single normal frame (not key frame). |
| const int max_bits = frame_max_bits(rc, &cpi->oxcf); |
| |
| // Maximum number of bits allocated to the key frame group. |
| int64_t max_grp_bits; |
| |
| // Default allocation based on bits left and relative |
| // complexity of the section. |
| twopass->kf_group_bits = (int64_t)( |
| twopass->bits_left * (kf_group_err / twopass->normalized_score_left)); |
| |
| // Clip based on maximum per frame rate defined by the user. |
| max_grp_bits = (int64_t)max_bits * (int64_t)rc->frames_to_key; |
| if (twopass->kf_group_bits > max_grp_bits) |
| twopass->kf_group_bits = max_grp_bits; |
| } else { |
| twopass->kf_group_bits = 0; |
| } |
| twopass->kf_group_bits = VPXMAX(0, twopass->kf_group_bits); |
| |
| // Scan through the kf group collating various stats used to determine |
| // how many bits to spend on it. |
| boost_score = 0.0; |
| |
| for (i = 0; i < VPXMIN(MAX_SCAN_FRAMES_FOR_KF_BOOST, (rc->frames_to_key - 1)); |
| ++i) { |
| if (EOF == input_stats(twopass, &next_frame)) break; |
| |
| zero_motion_sum += next_frame.pcnt_inter - next_frame.pcnt_motion; |
| motion_compensable_sum += |
| 1 - (double)next_frame.coded_error / next_frame.intra_error; |
| num_frames++; |
| } |
| |
| if (num_frames >= MIN_SCAN_FRAMES_FOR_KF_BOOST) { |
| zero_motion_avg = zero_motion_sum / num_frames; |
| motion_compensable_avg = motion_compensable_sum / num_frames; |
| kf_boost_scan_frames = (int)(VPXMAX(64 * zero_motion_avg - 16, |
| 160 * motion_compensable_avg - 112)); |
| kf_boost_scan_frames = |
| VPXMAX(VPXMIN(kf_boost_scan_frames, MAX_SCAN_FRAMES_FOR_KF_BOOST), |
| MIN_SCAN_FRAMES_FOR_KF_BOOST); |
| } |
| reset_fpf_position(twopass, start_position); |
| |
| for (i = 0; i < (rc->frames_to_key - 1); ++i) { |
| if (EOF == input_stats(twopass, &next_frame)) break; |
| |
| // The zero motion test here insures that if we mark a kf group as static |
| // it is static throughout not just the first KF_BOOST_SCAN_MAX_FRAMES. |
| // It also allows for a larger boost on long static groups. |
| if ((i <= kf_boost_scan_frames) || (zero_motion_accumulator >= 0.99)) { |
| double frame_boost; |
| double zm_factor; |
| |
| // Monitor for static sections. |
| // First frame in kf group the second ref indicator is invalid. |
| if (i > 0) { |
| zero_motion_accumulator = |
| VPXMIN(zero_motion_accumulator, |
| get_zero_motion_factor(&cpi->frame_info, &next_frame)); |
| } else { |
| zero_motion_accumulator = |
| next_frame.pcnt_inter - next_frame.pcnt_motion; |
| } |
| |
| // Factor 0.75-1.25 based on how much of frame is static. |
| zm_factor = (0.75 + (zero_motion_accumulator / 2.0)); |
| |
| // The second (lagging) ref error is not valid immediately after |
| // a key frame because either the lag has not built up (in the case of |
| // the first key frame or it points to a refernce before the new key |
| // frame. |
| if (i < 2) sr_accumulator = 0.0; |
| frame_boost = calc_kf_frame_boost(cpi, &next_frame, &sr_accumulator, 0, |
| KF_MAX_FRAME_BOOST * zm_factor); |
| |
| boost_score += frame_boost; |
| |
| // Measure of zoom. Large zoom tends to indicate reduced boost. |
| abs_mv_in_out_accumulator += |
| fabs(next_frame.mv_in_out_count * next_frame.pcnt_motion); |
| |
| if ((frame_boost < 25.00) || |
| (abs_mv_in_out_accumulator > KF_ABS_ZOOM_THRESH) || |
| (sr_accumulator > (kf_raw_err * 1.50))) |
| break; |
| } else { |
| break; |
| } |
| } |
| |
| reset_fpf_position(twopass, start_position); |
| |
| // Store the zero motion percentage |
| twopass->kf_zeromotion_pct = (int)(zero_motion_accumulator * 100.0); |
| |
| // Calculate a section intra ratio used in setting max loop filter. |
| twopass->key_frame_section_intra_rating = calculate_section_intra_ratio( |
| start_position, twopass->stats_in_end, rc->frames_to_key); |
| |
| // Special case for static / slide show content but dont apply |
| // if the kf group is very short. |
| if ((zero_motion_accumulator > 0.99) && (rc->frames_to_key > 8)) { |
| rc->kf_boost = MAX_KF_TOT_BOOST; |
| } else { |
| // Apply various clamps for min and max boost |
| rc->kf_boost = VPXMAX((int)boost_score, (rc->frames_to_key * 3)); |
| rc->kf_boost = VPXMAX(rc->kf_boost, MIN_KF_TOT_BOOST); |
| rc->kf_boost = VPXMIN(rc->kf_boost, MAX_KF_TOT_BOOST); |
| } |
| |
| // Work out how many bits to allocate for the key frame itself. |
| kf_bits = calculate_boost_bits((rc->frames_to_key - 1), rc->kf_boost, |
| twopass->kf_group_bits); |
| // Based on the spatial complexity, increase the bits allocated to key frame. |
| kf_bits += |
| (int)((twopass->kf_group_bits - kf_bits) * (kf_mod_err / kf_group_err)); |
| max_kf_bits = |
| twopass->kf_group_bits - (rc->frames_to_key - 1) * FRAME_OVERHEAD_BITS; |
| max_kf_bits = lclamp(max_kf_bits, 0, INT_MAX); |
| kf_bits = VPXMIN(kf_bits, (int)max_kf_bits); |
| |
| twopass->kf_group_bits -= kf_bits; |
| |
| // Save the bits to spend on the key frame. |
| gf_group->bit_allocation[0] = kf_bits; |
| gf_group->update_type[0] = KF_UPDATE; |
| gf_group->rf_level[0] = KF_STD; |
| gf_group->layer_depth[0] = 0; |
| |
| // Note the total error score of the kf group minus the key frame itself. |
| twopass->kf_group_error_left = (kf_group_err - kf_mod_err); |
| |
| // Adjust the count of total modified error left. |
| // The count of bits left is adjusted elsewhere based on real coded frame |
| // sizes. |
| twopass->normalized_score_left -= kf_group_err; |
| |
| if (oxcf->resize_mode == RESIZE_DYNAMIC) { |
| // Default to normal-sized frame on keyframes. |
| cpi->rc.next_frame_size_selector = UNSCALED; |
| } |
| } |
| |
| static int is_skippable_frame(const VP9_COMP *cpi) { |
| // If the current frame does not have non-zero motion vector detected in the |
| // first pass, and so do its previous and forward frames, then this frame |
| // can be skipped for partition check, and the partition size is assigned |
| // according to the variance |
| const TWO_PASS *const twopass = &cpi->twopass; |
| |
| return (!frame_is_intra_only(&cpi->common) && |
| twopass->stats_in - 2 > twopass->stats_in_start && |
| twopass->stats_in < twopass->stats_in_end && |
| (twopass->stats_in - 1)->pcnt_inter - |
| (twopass->stats_in - 1)->pcnt_motion == |
| 1 && |
| (twopass->stats_in - 2)->pcnt_inter - |
| (twopass->stats_in - 2)->pcnt_motion == |
| 1 && |
| twopass->stats_in->pcnt_inter - twopass->stats_in->pcnt_motion == 1); |
| } |
| |
| void vp9_rc_get_second_pass_params(VP9_COMP *cpi) { |
| VP9_COMMON *const cm = &cpi->common; |
| RATE_CONTROL *const rc = &cpi->rc; |
| TWO_PASS *const twopass = &cpi->twopass; |
| GF_GROUP *const gf_group = &twopass->gf_group; |
| FIRSTPASS_STATS this_frame; |
| const int show_idx = cm->current_video_frame; |
| |
| if (!twopass->stats_in) return; |
| |
| // If this is an arf frame then we dont want to read the stats file or |
| // advance the input pointer as we already have what we need. |
| if (gf_group->update_type[gf_group->index] == ARF_UPDATE) { |
| int target_rate; |
| |
| vp9_zero(this_frame); |
| this_frame = |
| cpi->twopass.stats_in_start[cm->current_video_frame + |
| gf_group->arf_src_offset[gf_group->index]]; |
| |
| vp9_configure_buffer_updates(cpi, gf_group->index); |
| |
| target_rate = gf_group->bit_allocation[gf_group->index]; |
| target_rate = vp9_rc_clamp_pframe_target_size(cpi, target_rate); |
| rc->base_frame_target = target_rate; |
| |
| cm->frame_type = INTER_FRAME; |
| |
| // Do the firstpass stats indicate that this frame is skippable for the |
| // partition search? |
| if (cpi->sf.allow_partition_search_skip && cpi->oxcf.pass == 2 && |
| !cpi->use_svc) { |
| cpi->partition_search_skippable_frame = is_skippable_frame(cpi); |
| } |
| |
| // The multiplication by 256 reverses a scaling factor of (>> 8) |
| // applied when combining MB error values for the frame. |
| twopass->mb_av_energy = log((this_frame.intra_error * 256.0) + 1.0); |
| twopass->mb_smooth_pct = this_frame.intra_smooth_pct; |
| |
| return; |
| } |
| |
| vpx_clear_system_state(); |
| |
| if (cpi->oxcf.rc_mode == VPX_Q) { |
| twopass->active_worst_quality = cpi->oxcf.cq_level; |
| } else if (cm->current_video_frame == 0) { |
| const int frames_left = |
| (int)(twopass->total_stats.count - cm->current_video_frame); |
| // Special case code for first frame. |
| const int section_target_bandwidth = |
| (int)(twopass->bits_left / frames_left); |
| const double section_length = twopass->total_left_stats.count; |
| const double section_error = |
| twopass->total_left_stats.coded_error / section_length; |
| const double section_intra_skip = |
| twopass->total_left_stats.intra_skip_pct / section_length; |
| const double section_inactive_zone = |
| (twopass->total_left_stats.inactive_zone_rows * 2) / |
| ((double)cm->mb_rows * section_length); |
| const double section_noise = |
| twopass->total_left_stats.frame_noise_energy / section_length; |
| int tmp_q; |
| |
| tmp_q = get_twopass_worst_quality( |
| cpi, section_error, section_intra_skip + section_inactive_zone, |
| section_noise, section_target_bandwidth); |
| |
| twopass->active_worst_quality = tmp_q; |
| twopass->baseline_active_worst_quality = tmp_q; |
| rc->ni_av_qi = tmp_q; |
| rc->last_q[INTER_FRAME] = tmp_q; |
| rc->avg_q = vp9_convert_qindex_to_q(tmp_q, cm->bit_depth); |
| rc->avg_frame_qindex[INTER_FRAME] = tmp_q; |
| rc->last_q[KEY_FRAME] = (tmp_q + cpi->oxcf.best_allowed_q) / 2; |
| rc->avg_frame_qindex[KEY_FRAME] = rc->last_q[KEY_FRAME]; |
| } |
| vp9_zero(this_frame); |
| if (EOF == input_stats(twopass, &this_frame)) return; |
| |
| // Set the frame content type flag. |
| if (this_frame.intra_skip_pct >= FC_ANIMATION_THRESH) |
| twopass->fr_content_type = FC_GRAPHICS_ANIMATION; |
| else |
| twopass->fr_content_type = FC_NORMAL; |
| |
| // Keyframe and section processing. |
| if (rc->frames_to_key == 0 || (cpi->frame_flags & FRAMEFLAGS_KEY)) { |
| // Define next KF group and assign bits to it. |
| find_next_key_frame(cpi, show_idx); |
| } else { |
| cm->frame_type = INTER_FRAME; |
| } |
| |
| // Define a new GF/ARF group. (Should always enter here for key frames). |
| if (rc->frames_till_gf_update_due == 0) { |
| define_gf_group(cpi, show_idx); |
| |
| rc->frames_till_gf_update_due = rc->baseline_gf_interval; |
| |
| #if ARF_STATS_OUTPUT |
| { |
| FILE *fpfile; |
| fpfile = fopen("arf.stt", "a"); |
| ++arf_count; |
| fprintf(fpfile, "%10d %10ld %10d %10d %10ld %10ld\n", |
| cm->current_video_frame, rc->frames_till_gf_update_due, |
| rc->kf_boost, arf_count, rc->gfu_boost, cm->frame_type); |
| |
| fclose(fpfile); |
| } |
| #endif |
| } |
| |
| vp9_configure_buffer_updates(cpi, gf_group->index); |
| |
| // Do the firstpass stats indicate that this frame is skippable for the |
| // partition search? |
| if (cpi->sf.allow_partition_search_skip && cpi->oxcf.pass == 2 && |
| !cpi->use_svc) { |
| cpi->partition_search_skippable_frame = is_skippable_frame(cpi); |
| } |
| |
| rc->base_frame_target = gf_group->bit_allocation[gf_group->index]; |
| |
| // The multiplication by 256 reverses a scaling factor of (>> 8) |
| // applied when combining MB error values for the frame. |
| twopass->mb_av_energy = log((this_frame.intra_error * 256.0) + 1.0); |
| twopass->mb_smooth_pct = this_frame.intra_smooth_pct; |
| |
| // Update the total stats remaining structure. |
| subtract_stats(&twopass->total_left_stats, &this_frame); |
| } |
| |
| #define MINQ_ADJ_LIMIT 48 |
| #define MINQ_ADJ_LIMIT_CQ 20 |
| #define HIGH_UNDERSHOOT_RATIO 2 |
| void vp9_twopass_postencode_update(VP9_COMP *cpi) { |
| TWO_PASS *const twopass = &cpi->twopass; |
| RATE_CONTROL *const rc = &cpi->rc; |
| VP9_COMMON *const cm = &cpi->common; |
| const int bits_used = rc->base_frame_target; |
| |
| // VBR correction is done through rc->vbr_bits_off_target. Based on the |
| // sign of this value, a limited % adjustment is made to the target rate |
| // of subsequent frames, to try and push it back towards 0. This method |
| // is designed to prevent extreme behaviour at the end of a clip |
| // or group of frames. |
| rc->vbr_bits_off_target += rc->base_frame_target - rc->projected_frame_size; |
| twopass->bits_left = VPXMAX(twopass->bits_left - bits_used, 0); |
| |
| // Target vs actual bits for this arf group. |
| twopass->rolling_arf_group_target_bits += rc->this_frame_target; |
| twopass->rolling_arf_group_actual_bits += rc->projected_frame_size; |
| |
| // Calculate the pct rc error. |
| if (rc->total_actual_bits) { |
| rc->rate_error_estimate = |
| (int)((rc->vbr_bits_off_target * 100) / rc->total_actual_bits); |
| rc->rate_error_estimate = clamp(rc->rate_error_estimate, -100, 100); |
| } else { |
| rc->rate_error_estimate = 0; |
| } |
| |
| if (cpi->common.frame_type != KEY_FRAME) { |
| twopass->kf_group_bits -= bits_used; |
| twopass->last_kfgroup_zeromotion_pct = twopass->kf_zeromotion_pct; |
| } |
| twopass->kf_group_bits = VPXMAX(twopass->kf_group_bits, 0); |
| |
| // Increment the gf group index ready for the next frame. |
| ++twopass->gf_group.index; |
| |
| // If the rate control is drifting consider adjustment to min or maxq. |
| if ((cpi->oxcf.rc_mode != VPX_Q) && !cpi->rc.is_src_frame_alt_ref) { |
| const int maxq_adj_limit = |
| rc->worst_quality - twopass->active_worst_quality; |
| const int minq_adj_limit = |
| (cpi->oxcf.rc_mode == VPX_CQ ? MINQ_ADJ_LIMIT_CQ : MINQ_ADJ_LIMIT); |
| int aq_extend_min = 0; |
| int aq_extend_max = 0; |
| |
| // Extend min or Max Q range to account for imbalance from the base |
| // value when using AQ. |
| if (cpi->oxcf.aq_mode != NO_AQ && cpi->oxcf.aq_mode != PSNR_AQ && |
| cpi->oxcf.aq_mode != PERCEPTUAL_AQ) { |
| if (cm->seg.aq_av_offset < 0) { |
| // The balance of the AQ map tends towarda lowering the average Q. |
| aq_extend_min = 0; |
| aq_extend_max = VPXMIN(maxq_adj_limit, -cm->seg.aq_av_offset); |
| } else { |
| // The balance of the AQ map tends towards raising the average Q. |
| aq_extend_min = VPXMIN(minq_adj_limit, cm->seg.aq_av_offset); |
| aq_extend_max = 0; |
| } |
| } |
| |
| // Undershoot. |
| if (rc->rate_error_estimate > cpi->oxcf.under_shoot_pct) { |
| --twopass->extend_maxq; |
| if (rc->rolling_target_bits >= rc->rolling_actual_bits) |
| ++twopass->extend_minq; |
| // Overshoot. |
| } else if (rc->rate_error_estimate < -cpi->oxcf.over_shoot_pct) { |
| --twopass->extend_minq; |
| if (rc->rolling_target_bits < rc->rolling_actual_bits) |
| ++twopass->extend_maxq; |
| } else { |
| // Adjustment for extreme local overshoot. |
| if (rc->projected_frame_size > (2 * rc->base_frame_target) && |
| rc->projected_frame_size > (2 * rc->avg_frame_bandwidth)) |
| ++twopass->extend_maxq; |
| |
| // Unwind undershoot or overshoot adjustment. |
| if (rc->rolling_target_bits < rc->rolling_actual_bits) |
| --twopass->extend_minq; |
| else if (rc->rolling_target_bits > rc->rolling_actual_bits) |
| --twopass->extend_maxq; |
| } |
| |
| twopass->extend_minq = |
| clamp(twopass->extend_minq, aq_extend_min, minq_adj_limit); |
| twopass->extend_maxq = |
| clamp(twopass->extend_maxq, aq_extend_max, maxq_adj_limit); |
| |
| // If there is a big and undexpected undershoot then feed the extra |
| // bits back in quickly. One situation where this may happen is if a |
| // frame is unexpectedly almost perfectly predicted by the ARF or GF |
| // but not very well predcited by the previous frame. |
| if (!frame_is_kf_gf_arf(cpi) && !cpi->rc.is_src_frame_alt_ref) { |
| int fast_extra_thresh = rc->base_frame_target / HIGH_UNDERSHOOT_RATIO; |
| if (rc->projected_frame_size < fast_extra_thresh) { |
| rc->vbr_bits_off_target_fast += |
| fast_extra_thresh - rc->projected_frame_size; |
| rc->vbr_bits_off_target_fast = |
| VPXMIN(rc->vbr_bits_off_target_fast, (4 * rc->avg_frame_bandwidth)); |
| |
| // Fast adaptation of minQ if necessary to use up the extra bits. |
| if (rc->avg_frame_bandwidth) { |
| twopass->extend_minq_fast = |
| (int)(rc->vbr_bits_off_target_fast * 8 / rc->avg_frame_bandwidth); |
| } |
| twopass->extend_minq_fast = VPXMIN( |
| twopass->extend_minq_fast, minq_adj_limit - twopass->extend_minq); |
| } else if (rc->vbr_bits_off_target_fast) { |
| twopass->extend_minq_fast = VPXMIN( |
| twopass->extend_minq_fast, minq_adj_limit - twopass->extend_minq); |
| } else { |
| twopass->extend_minq_fast = 0; |
| } |
| } |
| } |
| } |
| |
| #if CONFIG_RATE_CTRL |
| void vp9_get_next_group_of_picture(const VP9_COMP *cpi, int *first_is_key_frame, |
| int *use_alt_ref, int *coding_frame_count, |
| int *first_show_idx, |
| int *last_gop_use_alt_ref) { |
| const GOP_COMMAND *gop_command = &cpi->encode_command.gop_command; |
| // We make a copy of rc here because we want to get information from the |
| // encoder without changing its state. |
| // TODO(angiebird): Avoid copying rc here. |
| RATE_CONTROL rc = cpi->rc; |
| const int multi_layer_arf = 0; |
| const int allow_alt_ref = 1; |
| // We assume that current_video_frame is updated to the show index of the |
| // frame we are about to called. Note that current_video_frame is updated at |
| // the end of encode_frame_to_data_rate(). |
| // TODO(angiebird): Avoid this kind of fragile style. |
| *first_show_idx = cpi->common.current_video_frame; |
| *last_gop_use_alt_ref = rc.source_alt_ref_active; |
| |
| *first_is_key_frame = 0; |
| if (rc.frames_to_key == 0) { |
| rc.frames_to_key = vp9_get_frames_to_next_key( |
| &cpi->oxcf, &cpi->frame_info, &cpi->twopass.first_pass_info, |
| *first_show_idx, rc.min_gf_interval); |
| rc.frames_since_key = 0; |
| *first_is_key_frame = 1; |
| } |
| |
| if (gop_command->use) { |
| *coding_frame_count = gop_command_coding_frame_count(gop_command); |
| *use_alt_ref = gop_command->use_alt_ref; |
| assert(*coding_frame_count < rc.frames_to_key); |
| } else { |
| *coding_frame_count = vp9_get_gop_coding_frame_count( |
| &cpi->oxcf, &cpi->frame_info, &cpi->twopass.first_pass_info, &rc, |
| *first_show_idx, multi_layer_arf, allow_alt_ref, *first_is_key_frame, |
| *last_gop_use_alt_ref, use_alt_ref); |
| } |
| } |
| |
| int vp9_get_gop_coding_frame_count(const VP9EncoderConfig *oxcf, |
| const FRAME_INFO *frame_info, |
| const FIRST_PASS_INFO *first_pass_info, |
| const RATE_CONTROL *rc, int show_idx, |
| int multi_layer_arf, int allow_alt_ref, |
| int first_is_key_frame, |
| int last_gop_use_alt_ref, int *use_alt_ref) { |
| int frame_count; |
| double gop_intra_factor; |
| const int arf_active_or_kf = last_gop_use_alt_ref || first_is_key_frame; |
| RANGE active_gf_interval = get_active_gf_inverval_range( |
| frame_info, rc, arf_active_or_kf, show_idx, /*active_worst_quality=*/0, |
| /*last_boosted_qindex=*/0); |
| |
| const int arf_layers = get_arf_layers(multi_layer_arf, oxcf->enable_auto_arf, |
| active_gf_interval.max); |
| if (multi_layer_arf) { |
| gop_intra_factor = 1.0 + 0.25 * arf_layers; |
| } else { |
| gop_intra_factor = 1.0; |
| } |
| |
| frame_count = get_gop_coding_frame_num( |
| use_alt_ref, frame_info, first_pass_info, rc, show_idx, |
| &active_gf_interval, gop_intra_factor, oxcf->lag_in_frames); |
| *use_alt_ref &= allow_alt_ref; |
| return frame_count; |
| } |
| |
| // Under CONFIG_RATE_CTRL, once the first_pass_info is ready, the number of |
| // coding frames (including show frame and alt ref) can be determined. |
| int vp9_get_coding_frame_num(const VP9EncoderConfig *oxcf, |
| const FRAME_INFO *frame_info, |
| const FIRST_PASS_INFO *first_pass_info, |
| int multi_layer_arf, int allow_alt_ref) { |
| int coding_frame_num = 0; |
| RATE_CONTROL rc; |
| int gop_coding_frame_count; |
| int gop_show_frames; |
| int show_idx = 0; |
| int last_gop_use_alt_ref = 0; |
| vp9_rc_init(oxcf, 1, &rc); |
| |
| while (show_idx < first_pass_info->num_frames) { |
| int use_alt_ref; |
| int first_is_key_frame = 0; |
| if (rc.frames_to_key == 0) { |
| rc.frames_to_key = vp9_get_frames_to_next_key( |
| oxcf, frame_info, first_pass_info, show_idx, rc.min_gf_interval); |
| rc.frames_since_key = 0; |
| first_is_key_frame = 1; |
| } |
| |
| gop_coding_frame_count = vp9_get_gop_coding_frame_count( |
| oxcf, frame_info, first_pass_info, &rc, show_idx, multi_layer_arf, |
| allow_alt_ref, first_is_key_frame, last_gop_use_alt_ref, &use_alt_ref); |
| |
| rc.source_alt_ref_active = use_alt_ref; |
| last_gop_use_alt_ref = use_alt_ref; |
| gop_show_frames = gop_coding_frame_count - use_alt_ref; |
| rc.frames_to_key -= gop_show_frames; |
| rc.frames_since_key += gop_show_frames; |
| show_idx += gop_show_frames; |
| coding_frame_num += gop_show_frames + use_alt_ref; |
| } |
| return coding_frame_num; |
| } |
| |
| void vp9_get_key_frame_map(const VP9EncoderConfig *oxcf, |
| const FRAME_INFO *frame_info, |
| const FIRST_PASS_INFO *first_pass_info, |
| int *key_frame_map) { |
| int show_idx = 0; |
| RATE_CONTROL rc; |
| vp9_rc_init(oxcf, 1, &rc); |
| |
| // key_frame_map points to an int array with size equal to |
| // first_pass_info->num_frames, which is also the number of show frames in the |
| // video. |
| memset(key_frame_map, 0, |
| sizeof(*key_frame_map) * first_pass_info->num_frames); |
| while (show_idx < first_pass_info->num_frames) { |
| int key_frame_group_size; |
| key_frame_map[show_idx] = 1; |
| key_frame_group_size = vp9_get_frames_to_next_key( |
| oxcf, frame_info, first_pass_info, show_idx, rc.min_gf_interval); |
| assert(key_frame_group_size > 0); |
| show_idx += key_frame_group_size; |
| } |
| assert(show_idx == first_pass_info->num_frames); |
| } |
| #endif // CONFIG_RATE_CTRL |
| |
| FIRSTPASS_STATS vp9_get_frame_stats(const TWO_PASS *twopass) { |
| return twopass->this_frame_stats; |
| } |
| FIRSTPASS_STATS vp9_get_total_stats(const TWO_PASS *twopass) { |
| return twopass->total_stats; |
| } |