| /* origin: FreeBSD /usr/src/lib/msun/src/e_exp.c */ |
| /* |
| * ==================================================== |
| * Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved. |
| * |
| * Permission to use, copy, modify, and distribute this |
| * software is freely granted, provided that this notice |
| * is preserved. |
| * ==================================================== |
| */ |
| /* exp(x) |
| * Returns the exponential of x. |
| * |
| * Method |
| * 1. Argument reduction: |
| * Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658. |
| * Given x, find r and integer k such that |
| * |
| * x = k*ln2 + r, |r| <= 0.5*ln2. |
| * |
| * Here r will be represented as r = hi-lo for better |
| * accuracy. |
| * |
| * 2. Approximation of exp(r) by a special rational function on |
| * the interval [0,0.34658]: |
| * Write |
| * R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ... |
| * We use a special Remez algorithm on [0,0.34658] to generate |
| * a polynomial of degree 5 to approximate R. The maximum error |
| * of this polynomial approximation is bounded by 2**-59. In |
| * other words, |
| * R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5 |
| * (where z=r*r, and the values of P1 to P5 are listed below) |
| * and |
| * | 5 | -59 |
| * | 2.0+P1*z+...+P5*z - R(z) | <= 2 |
| * | | |
| * The computation of exp(r) thus becomes |
| * 2*r |
| * exp(r) = 1 + ---------- |
| * R(r) - r |
| * r*c(r) |
| * = 1 + r + ----------- (for better accuracy) |
| * 2 - c(r) |
| * where |
| * 2 4 10 |
| * c(r) = r - (P1*r + P2*r + ... + P5*r ). |
| * |
| * 3. Scale back to obtain exp(x): |
| * From step 1, we have |
| * exp(x) = 2^k * exp(r) |
| * |
| * Special cases: |
| * exp(INF) is INF, exp(NaN) is NaN; |
| * exp(-INF) is 0, and |
| * for finite argument, only exp(0)=1 is exact. |
| * |
| * Accuracy: |
| * according to an error analysis, the error is always less than |
| * 1 ulp (unit in the last place). |
| * |
| * Misc. info. |
| * For IEEE double |
| * if x > 709.782712893383973096 then exp(x) overflows |
| * if x < -745.133219101941108420 then exp(x) underflows |
| */ |
| |
| #include "libm.h" |
| |
| static const double |
| half[2] = {0.5,-0.5}, |
| ln2hi = 6.93147180369123816490e-01, /* 0x3fe62e42, 0xfee00000 */ |
| ln2lo = 1.90821492927058770002e-10, /* 0x3dea39ef, 0x35793c76 */ |
| invln2 = 1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */ |
| P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */ |
| P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */ |
| P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */ |
| P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */ |
| P5 = 4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */ |
| |
| double exp(double x) |
| { |
| double_t hi, lo, c, xx, y; |
| int k, sign; |
| uint32_t hx; |
| |
| GET_HIGH_WORD(hx, x); |
| sign = hx>>31; |
| hx &= 0x7fffffff; /* high word of |x| */ |
| |
| /* special cases */ |
| if (hx >= 0x4086232b) { /* if |x| >= 708.39... */ |
| if (isnan(x)) |
| return x; |
| if (x > 709.782712893383973096) { |
| /* overflow if x!=inf */ |
| x *= 0x1p1023; |
| return x; |
| } |
| if (x < -708.39641853226410622) { |
| /* underflow if x!=-inf */ |
| FORCE_EVAL((float)(-0x1p-149/x)); |
| if (x < -745.13321910194110842) |
| return 0; |
| } |
| } |
| |
| /* argument reduction */ |
| if (hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */ |
| if (hx >= 0x3ff0a2b2) /* if |x| >= 1.5 ln2 */ |
| k = (int)(invln2*x + half[sign]); |
| else |
| k = 1 - sign - sign; |
| hi = x - k*ln2hi; /* k*ln2hi is exact here */ |
| lo = k*ln2lo; |
| x = hi - lo; |
| } else if (hx > 0x3e300000) { /* if |x| > 2**-28 */ |
| k = 0; |
| hi = x; |
| lo = 0; |
| } else { |
| /* inexact if x!=0 */ |
| FORCE_EVAL(0x1p1023 + x); |
| return 1 + x; |
| } |
| |
| /* x is now in primary range */ |
| xx = x*x; |
| c = x - xx*(P1+xx*(P2+xx*(P3+xx*(P4+xx*P5)))); |
| y = 1 + (x*c/(2-c) - lo + hi); |
| if (k == 0) |
| return y; |
| return scalbn(y, k); |
| } |