| /* origin: FreeBSD /usr/src/lib/msun/src/e_jnf.c */ |
| /* |
| * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. |
| */ |
| /* |
| * ==================================================== |
| * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
| * |
| * Developed at SunPro, a Sun Microsystems, Inc. business. |
| * Permission to use, copy, modify, and distribute this |
| * software is freely granted, provided that this notice |
| * is preserved. |
| * ==================================================== |
| */ |
| |
| #define _GNU_SOURCE |
| #include "libm.h" |
| |
| float jnf(int n, float x) |
| { |
| uint32_t ix; |
| int nm1, sign, i; |
| float a, b, temp; |
| |
| GET_FLOAT_WORD(ix, x); |
| sign = ix>>31; |
| ix &= 0x7fffffff; |
| if (ix > 0x7f800000) /* nan */ |
| return x; |
| |
| /* J(-n,x) = J(n,-x), use |n|-1 to avoid overflow in -n */ |
| if (n == 0) |
| return j0f(x); |
| if (n < 0) { |
| nm1 = -(n+1); |
| x = -x; |
| sign ^= 1; |
| } else |
| nm1 = n-1; |
| if (nm1 == 0) |
| return j1f(x); |
| |
| sign &= n; /* even n: 0, odd n: signbit(x) */ |
| x = fabsf(x); |
| if (ix == 0 || ix == 0x7f800000) /* if x is 0 or inf */ |
| b = 0.0f; |
| else if (nm1 < x) { |
| /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */ |
| a = j0f(x); |
| b = j1f(x); |
| for (i=0; i<nm1; ){ |
| i++; |
| temp = b; |
| b = b*(2.0f*i/x) - a; |
| a = temp; |
| } |
| } else { |
| if (ix < 0x35800000) { /* x < 2**-20 */ |
| /* x is tiny, return the first Taylor expansion of J(n,x) |
| * J(n,x) = 1/n!*(x/2)^n - ... |
| */ |
| if (nm1 > 8) /* underflow */ |
| nm1 = 8; |
| temp = 0.5f * x; |
| b = temp; |
| a = 1.0f; |
| for (i=2; i<=nm1+1; i++) { |
| a *= (float)i; /* a = n! */ |
| b *= temp; /* b = (x/2)^n */ |
| } |
| b = b/a; |
| } else { |
| /* use backward recurrence */ |
| /* x x^2 x^2 |
| * J(n,x)/J(n-1,x) = ---- ------ ------ ..... |
| * 2n - 2(n+1) - 2(n+2) |
| * |
| * 1 1 1 |
| * (for large x) = ---- ------ ------ ..... |
| * 2n 2(n+1) 2(n+2) |
| * -- - ------ - ------ - |
| * x x x |
| * |
| * Let w = 2n/x and h=2/x, then the above quotient |
| * is equal to the continued fraction: |
| * 1 |
| * = ----------------------- |
| * 1 |
| * w - ----------------- |
| * 1 |
| * w+h - --------- |
| * w+2h - ... |
| * |
| * To determine how many terms needed, let |
| * Q(0) = w, Q(1) = w(w+h) - 1, |
| * Q(k) = (w+k*h)*Q(k-1) - Q(k-2), |
| * When Q(k) > 1e4 good for single |
| * When Q(k) > 1e9 good for double |
| * When Q(k) > 1e17 good for quadruple |
| */ |
| /* determine k */ |
| float t,q0,q1,w,h,z,tmp,nf; |
| int k; |
| |
| nf = nm1+1.0f; |
| w = 2*nf/x; |
| h = 2/x; |
| z = w+h; |
| q0 = w; |
| q1 = w*z - 1.0f; |
| k = 1; |
| while (q1 < 1.0e4f) { |
| k += 1; |
| z += h; |
| tmp = z*q1 - q0; |
| q0 = q1; |
| q1 = tmp; |
| } |
| for (t=0.0f, i=k; i>=0; i--) |
| t = 1.0f/(2*(i+nf)/x-t); |
| a = t; |
| b = 1.0f; |
| /* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n) |
| * Hence, if n*(log(2n/x)) > ... |
| * single 8.8722839355e+01 |
| * double 7.09782712893383973096e+02 |
| * long double 1.1356523406294143949491931077970765006170e+04 |
| * then recurrent value may overflow and the result is |
| * likely underflow to zero |
| */ |
| tmp = nf*logf(fabsf(w)); |
| if (tmp < 88.721679688f) { |
| for (i=nm1; i>0; i--) { |
| temp = b; |
| b = 2.0f*i*b/x - a; |
| a = temp; |
| } |
| } else { |
| for (i=nm1; i>0; i--){ |
| temp = b; |
| b = 2.0f*i*b/x - a; |
| a = temp; |
| /* scale b to avoid spurious overflow */ |
| if (b > 0x1p60f) { |
| a /= b; |
| t /= b; |
| b = 1.0f; |
| } |
| } |
| } |
| z = j0f(x); |
| w = j1f(x); |
| if (fabsf(z) >= fabsf(w)) |
| b = t*z/b; |
| else |
| b = t*w/a; |
| } |
| } |
| return sign ? -b : b; |
| } |
| |
| float ynf(int n, float x) |
| { |
| uint32_t ix, ib; |
| int nm1, sign, i; |
| float a, b, temp; |
| |
| GET_FLOAT_WORD(ix, x); |
| sign = ix>>31; |
| ix &= 0x7fffffff; |
| if (ix > 0x7f800000) /* nan */ |
| return x; |
| if (sign && ix != 0) /* x < 0 */ |
| return 0/0.0f; |
| if (ix == 0x7f800000) |
| return 0.0f; |
| |
| if (n == 0) |
| return y0f(x); |
| if (n < 0) { |
| nm1 = -(n+1); |
| sign = n&1; |
| } else { |
| nm1 = n-1; |
| sign = 0; |
| } |
| if (nm1 == 0) |
| return sign ? -y1f(x) : y1f(x); |
| |
| a = y0f(x); |
| b = y1f(x); |
| /* quit if b is -inf */ |
| GET_FLOAT_WORD(ib,b); |
| for (i = 0; i < nm1 && ib != 0xff800000; ) { |
| i++; |
| temp = b; |
| b = (2.0f*i/x)*b - a; |
| GET_FLOAT_WORD(ib, b); |
| a = temp; |
| } |
| return sign ? -b : b; |
| } |