| /* origin: OpenBSD /usr/src/lib/libm/src/ld80/e_log10l.c */ |
| /* |
| * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net> |
| * |
| * Permission to use, copy, modify, and distribute this software for any |
| * purpose with or without fee is hereby granted, provided that the above |
| * copyright notice and this permission notice appear in all copies. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR |
| * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN |
| * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF |
| * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| */ |
| /* |
| * Common logarithm, long double precision |
| * |
| * |
| * SYNOPSIS: |
| * |
| * long double x, y, log10l(); |
| * |
| * y = log10l( x ); |
| * |
| * |
| * DESCRIPTION: |
| * |
| * Returns the base 10 logarithm of x. |
| * |
| * The argument is separated into its exponent and fractional |
| * parts. If the exponent is between -1 and +1, the logarithm |
| * of the fraction is approximated by |
| * |
| * log(1+x) = x - 0.5 x**2 + x**3 P(x)/Q(x). |
| * |
| * Otherwise, setting z = 2(x-1)/x+1), |
| * |
| * log(x) = z + z**3 P(z)/Q(z). |
| * |
| * |
| * ACCURACY: |
| * |
| * Relative error: |
| * arithmetic domain # trials peak rms |
| * IEEE 0.5, 2.0 30000 9.0e-20 2.6e-20 |
| * IEEE exp(+-10000) 30000 6.0e-20 2.3e-20 |
| * |
| * In the tests over the interval exp(+-10000), the logarithms |
| * of the random arguments were uniformly distributed over |
| * [-10000, +10000]. |
| * |
| * ERROR MESSAGES: |
| * |
| * log singularity: x = 0; returns MINLOG |
| * log domain: x < 0; returns MINLOG |
| */ |
| |
| #include "libm.h" |
| |
| #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024 |
| long double log10l(long double x) |
| { |
| return log10(x); |
| } |
| #elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384 |
| /* Coefficients for log(1+x) = x - x**2/2 + x**3 P(x)/Q(x) |
| * 1/sqrt(2) <= x < sqrt(2) |
| * Theoretical peak relative error = 6.2e-22 |
| */ |
| static const long double P[] = { |
| 4.9962495940332550844739E-1L, |
| 1.0767376367209449010438E1L, |
| 7.7671073698359539859595E1L, |
| 2.5620629828144409632571E2L, |
| 4.2401812743503691187826E2L, |
| 3.4258224542413922935104E2L, |
| 1.0747524399916215149070E2L, |
| }; |
| static const long double Q[] = { |
| /* 1.0000000000000000000000E0,*/ |
| 2.3479774160285863271658E1L, |
| 1.9444210022760132894510E2L, |
| 7.7952888181207260646090E2L, |
| 1.6911722418503949084863E3L, |
| 2.0307734695595183428202E3L, |
| 1.2695660352705325274404E3L, |
| 3.2242573199748645407652E2L, |
| }; |
| |
| /* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2), |
| * where z = 2(x-1)/(x+1) |
| * 1/sqrt(2) <= x < sqrt(2) |
| * Theoretical peak relative error = 6.16e-22 |
| */ |
| static const long double R[4] = { |
| 1.9757429581415468984296E-3L, |
| -7.1990767473014147232598E-1L, |
| 1.0777257190312272158094E1L, |
| -3.5717684488096787370998E1L, |
| }; |
| static const long double S[4] = { |
| /* 1.00000000000000000000E0L,*/ |
| -2.6201045551331104417768E1L, |
| 1.9361891836232102174846E2L, |
| -4.2861221385716144629696E2L, |
| }; |
| /* log10(2) */ |
| #define L102A 0.3125L |
| #define L102B -1.1470004336018804786261e-2L |
| /* log10(e) */ |
| #define L10EA 0.5L |
| #define L10EB -6.5705518096748172348871e-2L |
| |
| #define SQRTH 0.70710678118654752440L |
| |
| long double log10l(long double x) |
| { |
| long double y, z; |
| int e; |
| |
| if (isnan(x)) |
| return x; |
| if(x <= 0.0) { |
| if(x == 0.0) |
| return -1.0 / (x*x); |
| return (x - x) / 0.0; |
| } |
| if (x == INFINITY) |
| return INFINITY; |
| /* separate mantissa from exponent */ |
| /* Note, frexp is used so that denormal numbers |
| * will be handled properly. |
| */ |
| x = frexpl(x, &e); |
| |
| /* logarithm using log(x) = z + z**3 P(z)/Q(z), |
| * where z = 2(x-1)/x+1) |
| */ |
| if (e > 2 || e < -2) { |
| if (x < SQRTH) { /* 2(2x-1)/(2x+1) */ |
| e -= 1; |
| z = x - 0.5; |
| y = 0.5 * z + 0.5; |
| } else { /* 2 (x-1)/(x+1) */ |
| z = x - 0.5; |
| z -= 0.5; |
| y = 0.5 * x + 0.5; |
| } |
| x = z / y; |
| z = x*x; |
| y = x * (z * __polevll(z, R, 3) / __p1evll(z, S, 3)); |
| goto done; |
| } |
| |
| /* logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) */ |
| if (x < SQRTH) { |
| e -= 1; |
| x = 2.0*x - 1.0; |
| } else { |
| x = x - 1.0; |
| } |
| z = x*x; |
| y = x * (z * __polevll(x, P, 6) / __p1evll(x, Q, 7)); |
| y = y - 0.5*z; |
| |
| done: |
| /* Multiply log of fraction by log10(e) |
| * and base 2 exponent by log10(2). |
| * |
| * ***CAUTION*** |
| * |
| * This sequence of operations is critical and it may |
| * be horribly defeated by some compiler optimizers. |
| */ |
| z = y * (L10EB); |
| z += x * (L10EB); |
| z += e * (L102B); |
| z += y * (L10EA); |
| z += x * (L10EA); |
| z += e * (L102A); |
| return z; |
| } |
| #elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384 |
| // TODO: broken implementation to make things compile |
| long double log10l(long double x) |
| { |
| return log10(x); |
| } |
| #endif |