| /* origin: FreeBSD /usr/src/lib/msun/src/s_log1p.c */ |
| /* |
| * ==================================================== |
| * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
| * |
| * Developed at SunPro, a Sun Microsystems, Inc. business. |
| * Permission to use, copy, modify, and distribute this |
| * software is freely granted, provided that this notice |
| * is preserved. |
| * ==================================================== |
| */ |
| /* double log1p(double x) |
| * Return the natural logarithm of 1+x. |
| * |
| * Method : |
| * 1. Argument Reduction: find k and f such that |
| * 1+x = 2^k * (1+f), |
| * where sqrt(2)/2 < 1+f < sqrt(2) . |
| * |
| * Note. If k=0, then f=x is exact. However, if k!=0, then f |
| * may not be representable exactly. In that case, a correction |
| * term is need. Let u=1+x rounded. Let c = (1+x)-u, then |
| * log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u), |
| * and add back the correction term c/u. |
| * (Note: when x > 2**53, one can simply return log(x)) |
| * |
| * 2. Approximation of log(1+f): See log.c |
| * |
| * 3. Finally, log1p(x) = k*ln2 + log(1+f) + c/u. See log.c |
| * |
| * Special cases: |
| * log1p(x) is NaN with signal if x < -1 (including -INF) ; |
| * log1p(+INF) is +INF; log1p(-1) is -INF with signal; |
| * log1p(NaN) is that NaN with no signal. |
| * |
| * Accuracy: |
| * according to an error analysis, the error is always less than |
| * 1 ulp (unit in the last place). |
| * |
| * Constants: |
| * The hexadecimal values are the intended ones for the following |
| * constants. The decimal values may be used, provided that the |
| * compiler will convert from decimal to binary accurately enough |
| * to produce the hexadecimal values shown. |
| * |
| * Note: Assuming log() return accurate answer, the following |
| * algorithm can be used to compute log1p(x) to within a few ULP: |
| * |
| * u = 1+x; |
| * if(u==1.0) return x ; else |
| * return log(u)*(x/(u-1.0)); |
| * |
| * See HP-15C Advanced Functions Handbook, p.193. |
| */ |
| |
| #include "libm.h" |
| |
| static const double |
| ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */ |
| ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */ |
| Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */ |
| Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */ |
| Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */ |
| Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */ |
| Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */ |
| Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */ |
| Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */ |
| |
| double log1p(double x) |
| { |
| union {double f; uint64_t i;} u = {x}; |
| double_t hfsq,f,c,s,z,R,w,t1,t2,dk; |
| uint32_t hx,hu; |
| int k; |
| |
| hx = u.i>>32; |
| k = 1; |
| if (hx < 0x3fda827a || hx>>31) { /* 1+x < sqrt(2)+ */ |
| if (hx >= 0xbff00000) { /* x <= -1.0 */ |
| if (x == -1) |
| return x/0.0; /* log1p(-1) = -inf */ |
| return (x-x)/0.0; /* log1p(x<-1) = NaN */ |
| } |
| if (hx<<1 < 0x3ca00000<<1) { /* |x| < 2**-53 */ |
| /* underflow if subnormal */ |
| if ((hx&0x7ff00000) == 0) |
| FORCE_EVAL((float)x); |
| return x; |
| } |
| if (hx <= 0xbfd2bec4) { /* sqrt(2)/2- <= 1+x < sqrt(2)+ */ |
| k = 0; |
| c = 0; |
| f = x; |
| } |
| } else if (hx >= 0x7ff00000) |
| return x; |
| if (k) { |
| u.f = 1 + x; |
| hu = u.i>>32; |
| hu += 0x3ff00000 - 0x3fe6a09e; |
| k = (int)(hu>>20) - 0x3ff; |
| /* correction term ~ log(1+x)-log(u), avoid underflow in c/u */ |
| if (k < 54) { |
| c = k >= 2 ? 1-(u.f-x) : x-(u.f-1); |
| c /= u.f; |
| } else |
| c = 0; |
| /* reduce u into [sqrt(2)/2, sqrt(2)] */ |
| hu = (hu&0x000fffff) + 0x3fe6a09e; |
| u.i = (uint64_t)hu<<32 | (u.i&0xffffffff); |
| f = u.f - 1; |
| } |
| hfsq = 0.5*f*f; |
| s = f/(2.0+f); |
| z = s*s; |
| w = z*z; |
| t1 = w*(Lg2+w*(Lg4+w*Lg6)); |
| t2 = z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7))); |
| R = t2 + t1; |
| dk = k; |
| return s*(hfsq+R) + (dk*ln2_lo+c) - hfsq + f + dk*ln2_hi; |
| } |