| /* origin: OpenBSD /usr/src/lib/libm/src/ld80/s_log1pl.c */ |
| /* |
| * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net> |
| * |
| * Permission to use, copy, modify, and distribute this software for any |
| * purpose with or without fee is hereby granted, provided that the above |
| * copyright notice and this permission notice appear in all copies. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR |
| * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN |
| * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF |
| * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| */ |
| /* |
| * Relative error logarithm |
| * Natural logarithm of 1+x, long double precision |
| * |
| * |
| * SYNOPSIS: |
| * |
| * long double x, y, log1pl(); |
| * |
| * y = log1pl( x ); |
| * |
| * |
| * DESCRIPTION: |
| * |
| * Returns the base e (2.718...) logarithm of 1+x. |
| * |
| * The argument 1+x is separated into its exponent and fractional |
| * parts. If the exponent is between -1 and +1, the logarithm |
| * of the fraction is approximated by |
| * |
| * log(1+x) = x - 0.5 x^2 + x^3 P(x)/Q(x). |
| * |
| * Otherwise, setting z = 2(x-1)/x+1), |
| * |
| * log(x) = z + z^3 P(z)/Q(z). |
| * |
| * |
| * ACCURACY: |
| * |
| * Relative error: |
| * arithmetic domain # trials peak rms |
| * IEEE -1.0, 9.0 100000 8.2e-20 2.5e-20 |
| */ |
| |
| #include "libm.h" |
| |
| #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024 |
| long double log1pl(long double x) |
| { |
| return log1p(x); |
| } |
| #elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384 |
| /* Coefficients for log(1+x) = x - x^2 / 2 + x^3 P(x)/Q(x) |
| * 1/sqrt(2) <= x < sqrt(2) |
| * Theoretical peak relative error = 2.32e-20 |
| */ |
| static const long double P[] = { |
| 4.5270000862445199635215E-5L, |
| 4.9854102823193375972212E-1L, |
| 6.5787325942061044846969E0L, |
| 2.9911919328553073277375E1L, |
| 6.0949667980987787057556E1L, |
| 5.7112963590585538103336E1L, |
| 2.0039553499201281259648E1L, |
| }; |
| static const long double Q[] = { |
| /* 1.0000000000000000000000E0,*/ |
| 1.5062909083469192043167E1L, |
| 8.3047565967967209469434E1L, |
| 2.2176239823732856465394E2L, |
| 3.0909872225312059774938E2L, |
| 2.1642788614495947685003E2L, |
| 6.0118660497603843919306E1L, |
| }; |
| |
| /* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2), |
| * where z = 2(x-1)/(x+1) |
| * 1/sqrt(2) <= x < sqrt(2) |
| * Theoretical peak relative error = 6.16e-22 |
| */ |
| static const long double R[4] = { |
| 1.9757429581415468984296E-3L, |
| -7.1990767473014147232598E-1L, |
| 1.0777257190312272158094E1L, |
| -3.5717684488096787370998E1L, |
| }; |
| static const long double S[4] = { |
| /* 1.00000000000000000000E0L,*/ |
| -2.6201045551331104417768E1L, |
| 1.9361891836232102174846E2L, |
| -4.2861221385716144629696E2L, |
| }; |
| static const long double C1 = 6.9314575195312500000000E-1L; |
| static const long double C2 = 1.4286068203094172321215E-6L; |
| |
| #define SQRTH 0.70710678118654752440L |
| |
| long double log1pl(long double xm1) |
| { |
| long double x, y, z; |
| int e; |
| |
| if (isnan(xm1)) |
| return xm1; |
| if (xm1 == INFINITY) |
| return xm1; |
| if (xm1 == 0.0) |
| return xm1; |
| |
| x = xm1 + 1.0; |
| |
| /* Test for domain errors. */ |
| if (x <= 0.0) { |
| if (x == 0.0) |
| return -1/(x*x); /* -inf with divbyzero */ |
| return 0/0.0f; /* nan with invalid */ |
| } |
| |
| /* Separate mantissa from exponent. |
| Use frexp so that denormal numbers will be handled properly. */ |
| x = frexpl(x, &e); |
| |
| /* logarithm using log(x) = z + z^3 P(z)/Q(z), |
| where z = 2(x-1)/x+1) */ |
| if (e > 2 || e < -2) { |
| if (x < SQRTH) { /* 2(2x-1)/(2x+1) */ |
| e -= 1; |
| z = x - 0.5; |
| y = 0.5 * z + 0.5; |
| } else { /* 2 (x-1)/(x+1) */ |
| z = x - 0.5; |
| z -= 0.5; |
| y = 0.5 * x + 0.5; |
| } |
| x = z / y; |
| z = x*x; |
| z = x * (z * __polevll(z, R, 3) / __p1evll(z, S, 3)); |
| z = z + e * C2; |
| z = z + x; |
| z = z + e * C1; |
| return z; |
| } |
| |
| /* logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) */ |
| if (x < SQRTH) { |
| e -= 1; |
| if (e != 0) |
| x = 2.0 * x - 1.0; |
| else |
| x = xm1; |
| } else { |
| if (e != 0) |
| x = x - 1.0; |
| else |
| x = xm1; |
| } |
| z = x*x; |
| y = x * (z * __polevll(x, P, 6) / __p1evll(x, Q, 6)); |
| y = y + e * C2; |
| z = y - 0.5 * z; |
| z = z + x; |
| z = z + e * C1; |
| return z; |
| } |
| #elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384 |
| // TODO: broken implementation to make things compile |
| long double log1pl(long double x) |
| { |
| return log1p(x); |
| } |
| #endif |