|  | /* ===-- divxc3.c - Implement __divxc3 -------------------------------------=== | 
|  | * | 
|  | *                     The LLVM Compiler Infrastructure | 
|  | * | 
|  | * This file is dual licensed under the MIT and the University of Illinois Open | 
|  | * Source Licenses. See LICENSE.TXT for details. | 
|  | * | 
|  | * ===----------------------------------------------------------------------=== | 
|  | * | 
|  | * This file implements __divxc3 for the compiler_rt library. | 
|  | * | 
|  | */ | 
|  |  | 
|  | #if !_ARCH_PPC | 
|  |  | 
|  | #include "int_lib.h" | 
|  | #include "int_math.h" | 
|  |  | 
|  | /* Returns: the quotient of (a + ib) / (c + id) */ | 
|  |  | 
|  | COMPILER_RT_ABI Lcomplex | 
|  | __divxc3(long double __a, long double __b, long double __c, long double __d) | 
|  | { | 
|  | int __ilogbw = 0; | 
|  | long double __logbw = crt_logbl(crt_fmaxl(crt_fabsl(__c), crt_fabsl(__d))); | 
|  | if (crt_isfinite(__logbw)) | 
|  | { | 
|  | __ilogbw = (int)__logbw; | 
|  | __c = crt_scalbnl(__c, -__ilogbw); | 
|  | __d = crt_scalbnl(__d, -__ilogbw); | 
|  | } | 
|  | long double __denom = __c * __c + __d * __d; | 
|  | Lcomplex z; | 
|  | COMPLEX_REAL(z) = crt_scalbnl((__a * __c + __b * __d) / __denom, -__ilogbw); | 
|  | COMPLEX_IMAGINARY(z) = crt_scalbnl((__b * __c - __a * __d) / __denom, -__ilogbw); | 
|  | if (crt_isnan(COMPLEX_REAL(z)) && crt_isnan(COMPLEX_IMAGINARY(z))) | 
|  | { | 
|  | if ((__denom == 0) && (!crt_isnan(__a) || !crt_isnan(__b))) | 
|  | { | 
|  | COMPLEX_REAL(z) = crt_copysignl(CRT_INFINITY, __c) * __a; | 
|  | COMPLEX_IMAGINARY(z) = crt_copysignl(CRT_INFINITY, __c) * __b; | 
|  | } | 
|  | else if ((crt_isinf(__a) || crt_isinf(__b)) && | 
|  | crt_isfinite(__c) && crt_isfinite(__d)) | 
|  | { | 
|  | __a = crt_copysignl(crt_isinf(__a) ? 1 : 0, __a); | 
|  | __b = crt_copysignl(crt_isinf(__b) ? 1 : 0, __b); | 
|  | COMPLEX_REAL(z) = CRT_INFINITY * (__a * __c + __b * __d); | 
|  | COMPLEX_IMAGINARY(z) = CRT_INFINITY * (__b * __c - __a * __d); | 
|  | } | 
|  | else if (crt_isinf(__logbw) && __logbw > 0 && | 
|  | crt_isfinite(__a) && crt_isfinite(__b)) | 
|  | { | 
|  | __c = crt_copysignl(crt_isinf(__c) ? 1 : 0, __c); | 
|  | __d = crt_copysignl(crt_isinf(__d) ? 1 : 0, __d); | 
|  | COMPLEX_REAL(z) = 0 * (__a * __c + __b * __d); | 
|  | COMPLEX_IMAGINARY(z) = 0 * (__b * __c - __a * __d); | 
|  | } | 
|  | } | 
|  | return z; | 
|  | } | 
|  |  | 
|  | #endif |