| // Copyright 2012 the V8 project authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #if V8_TARGET_ARCH_X64 |
| |
| #include "src/api/api-arguments.h" |
| #include "src/base/adapters.h" |
| #include "src/codegen/code-factory.h" |
| #include "src/deoptimizer/deoptimizer.h" |
| #include "src/execution/frame-constants.h" |
| #include "src/execution/frames.h" |
| #include "src/logging/counters.h" |
| // For interpreter_entry_return_pc_offset. TODO(jkummerow): Drop. |
| #include "src/codegen/macro-assembler-inl.h" |
| #include "src/codegen/register-configuration.h" |
| #include "src/heap/heap-inl.h" |
| #include "src/objects/cell.h" |
| #include "src/objects/debug-objects.h" |
| #include "src/objects/foreign.h" |
| #include "src/objects/heap-number.h" |
| #include "src/objects/js-generator.h" |
| #include "src/objects/objects-inl.h" |
| #include "src/objects/smi.h" |
| #include "src/wasm/wasm-linkage.h" |
| #include "src/wasm/wasm-objects.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| #define __ ACCESS_MASM(masm) |
| |
| void Builtins::Generate_Adaptor(MacroAssembler* masm, Address address) { |
| __ LoadAddress(kJavaScriptCallExtraArg1Register, |
| ExternalReference::Create(address)); |
| __ Jump(BUILTIN_CODE(masm->isolate(), AdaptorWithBuiltinExitFrame), |
| RelocInfo::CODE_TARGET); |
| } |
| |
| static void GenerateTailCallToReturnedCode(MacroAssembler* masm, |
| Runtime::FunctionId function_id) { |
| // ----------- S t a t e ------------- |
| // -- rdx : new target (preserved for callee) |
| // -- rdi : target function (preserved for callee) |
| // ----------------------------------- |
| { |
| FrameScope scope(masm, StackFrame::INTERNAL); |
| // Push a copy of the target function and the new target. |
| __ Push(rdi); |
| __ Push(rdx); |
| // Function is also the parameter to the runtime call. |
| __ Push(rdi); |
| |
| __ CallRuntime(function_id, 1); |
| __ movq(rcx, rax); |
| |
| // Restore target function and new target. |
| __ Pop(rdx); |
| __ Pop(rdi); |
| } |
| static_assert(kJavaScriptCallCodeStartRegister == rcx, "ABI mismatch"); |
| __ JumpCodeObject(rcx); |
| } |
| |
| namespace { |
| |
| void Generate_StackOverflowCheck( |
| MacroAssembler* masm, Register num_args, Register scratch, |
| Label* stack_overflow, |
| Label::Distance stack_overflow_distance = Label::kFar) { |
| // Check the stack for overflow. We are not trying to catch |
| // interruptions (e.g. debug break and preemption) here, so the "real stack |
| // limit" is checked. |
| __ LoadRoot(kScratchRegister, RootIndex::kRealStackLimit); |
| __ movq(scratch, rsp); |
| // Make scratch the space we have left. The stack might already be overflowed |
| // here which will cause scratch to become negative. |
| __ subq(scratch, kScratchRegister); |
| __ sarq(scratch, Immediate(kSystemPointerSizeLog2)); |
| // Check if the arguments will overflow the stack. |
| __ cmpq(scratch, num_args); |
| // Signed comparison. |
| __ j(less_equal, stack_overflow, stack_overflow_distance); |
| } |
| |
| void Generate_JSBuiltinsConstructStubHelper(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- rax: number of arguments |
| // -- rdi: constructor function |
| // -- rdx: new target |
| // -- rsi: context |
| // ----------------------------------- |
| |
| Label stack_overflow; |
| Generate_StackOverflowCheck(masm, rax, rcx, &stack_overflow, Label::kFar); |
| |
| // Enter a construct frame. |
| { |
| FrameScope scope(masm, StackFrame::CONSTRUCT); |
| |
| // Preserve the incoming parameters on the stack. |
| __ SmiTag(rcx, rax); |
| __ Push(rsi); |
| __ Push(rcx); |
| |
| // The receiver for the builtin/api call. |
| __ PushRoot(RootIndex::kTheHoleValue); |
| |
| // Set up pointer to last argument. |
| __ leaq(rbx, Operand(rbp, StandardFrameConstants::kCallerSPOffset)); |
| |
| // Copy arguments and receiver to the expression stack. |
| Label loop, entry; |
| __ movq(rcx, rax); |
| // ----------- S t a t e ------------- |
| // -- rax: number of arguments (untagged) |
| // -- rdi: constructor function |
| // -- rdx: new target |
| // -- rbx: pointer to last argument |
| // -- rcx: counter |
| // -- sp[0*kSystemPointerSize]: the hole (receiver) |
| // -- sp[1*kSystemPointerSize]: number of arguments (tagged) |
| // -- sp[2*kSystemPointerSize]: context |
| // ----------------------------------- |
| __ jmp(&entry); |
| __ bind(&loop); |
| __ Push(Operand(rbx, rcx, times_system_pointer_size, 0)); |
| __ bind(&entry); |
| __ decq(rcx); |
| __ j(greater_equal, &loop, Label::kNear); |
| |
| // Call the function. |
| // rax: number of arguments (untagged) |
| // rdi: constructor function |
| // rdx: new target |
| ParameterCount actual(rax); |
| __ InvokeFunction(rdi, rdx, actual, CALL_FUNCTION); |
| |
| // Restore context from the frame. |
| __ movq(rsi, Operand(rbp, ConstructFrameConstants::kContextOffset)); |
| // Restore smi-tagged arguments count from the frame. |
| __ movq(rbx, Operand(rbp, ConstructFrameConstants::kLengthOffset)); |
| |
| // Leave construct frame. |
| } |
| |
| // Remove caller arguments from the stack and return. |
| __ PopReturnAddressTo(rcx); |
| SmiIndex index = masm->SmiToIndex(rbx, rbx, kSystemPointerSizeLog2); |
| __ leaq(rsp, Operand(rsp, index.reg, index.scale, 1 * kSystemPointerSize)); |
| __ PushReturnAddressFrom(rcx); |
| |
| __ ret(0); |
| |
| __ bind(&stack_overflow); |
| { |
| FrameScope scope(masm, StackFrame::INTERNAL); |
| __ CallRuntime(Runtime::kThrowStackOverflow); |
| __ int3(); // This should be unreachable. |
| } |
| } |
| |
| } // namespace |
| |
| // The construct stub for ES5 constructor functions and ES6 class constructors. |
| void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- rax: number of arguments (untagged) |
| // -- rdi: constructor function |
| // -- rdx: new target |
| // -- rsi: context |
| // -- sp[...]: constructor arguments |
| // ----------------------------------- |
| |
| // Enter a construct frame. |
| { |
| FrameScope scope(masm, StackFrame::CONSTRUCT); |
| Label post_instantiation_deopt_entry, not_create_implicit_receiver; |
| |
| // Preserve the incoming parameters on the stack. |
| __ SmiTag(rcx, rax); |
| __ Push(rsi); |
| __ Push(rcx); |
| __ Push(rdi); |
| __ PushRoot(RootIndex::kTheHoleValue); |
| __ Push(rdx); |
| |
| // ----------- S t a t e ------------- |
| // -- sp[0*kSystemPointerSize]: new target |
| // -- sp[1*kSystemPointerSize]: padding |
| // -- rdi and sp[2*kSystemPointerSize]: constructor function |
| // -- sp[3*kSystemPointerSize]: argument count |
| // -- sp[4*kSystemPointerSize]: context |
| // ----------------------------------- |
| |
| __ LoadTaggedPointerField( |
| rbx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset)); |
| __ movl(rbx, FieldOperand(rbx, SharedFunctionInfo::kFlagsOffset)); |
| __ DecodeField<SharedFunctionInfo::FunctionKindBits>(rbx); |
| __ JumpIfIsInRange(rbx, kDefaultDerivedConstructor, kDerivedConstructor, |
| ¬_create_implicit_receiver, Label::kNear); |
| |
| // If not derived class constructor: Allocate the new receiver object. |
| __ IncrementCounter(masm->isolate()->counters()->constructed_objects(), 1); |
| __ Call(BUILTIN_CODE(masm->isolate(), FastNewObject), |
| RelocInfo::CODE_TARGET); |
| __ jmp(&post_instantiation_deopt_entry, Label::kNear); |
| |
| // Else: use TheHoleValue as receiver for constructor call |
| __ bind(¬_create_implicit_receiver); |
| __ LoadRoot(rax, RootIndex::kTheHoleValue); |
| |
| // ----------- S t a t e ------------- |
| // -- rax implicit receiver |
| // -- Slot 4 / sp[0*kSystemPointerSize] new target |
| // -- Slot 3 / sp[1*kSystemPointerSize] padding |
| // -- Slot 2 / sp[2*kSystemPointerSize] constructor function |
| // -- Slot 1 / sp[3*kSystemPointerSize] number of arguments (tagged) |
| // -- Slot 0 / sp[4*kSystemPointerSize] context |
| // ----------------------------------- |
| // Deoptimizer enters here. |
| masm->isolate()->heap()->SetConstructStubCreateDeoptPCOffset( |
| masm->pc_offset()); |
| __ bind(&post_instantiation_deopt_entry); |
| |
| // Restore new target. |
| __ Pop(rdx); |
| |
| // Push the allocated receiver to the stack. We need two copies |
| // because we may have to return the original one and the calling |
| // conventions dictate that the called function pops the receiver. |
| __ Push(rax); |
| __ Push(rax); |
| |
| // ----------- S t a t e ------------- |
| // -- sp[0*kSystemPointerSize] implicit receiver |
| // -- sp[1*kSystemPointerSize] implicit receiver |
| // -- sp[2*kSystemPointerSize] padding |
| // -- sp[3*kSystemPointerSize] constructor function |
| // -- sp[4*kSystemPointerSize] number of arguments (tagged) |
| // -- sp[5*kSystemPointerSize] context |
| // ----------------------------------- |
| |
| // Restore constructor function and argument count. |
| __ movq(rdi, Operand(rbp, ConstructFrameConstants::kConstructorOffset)); |
| __ SmiUntag(rax, Operand(rbp, ConstructFrameConstants::kLengthOffset)); |
| |
| // Set up pointer to last argument. |
| __ leaq(rbx, Operand(rbp, StandardFrameConstants::kCallerSPOffset)); |
| |
| // Check if we have enough stack space to push all arguments. |
| // Argument count in rax. Clobbers rcx. |
| Label enough_stack_space, stack_overflow; |
| Generate_StackOverflowCheck(masm, rax, rcx, &stack_overflow, Label::kNear); |
| __ jmp(&enough_stack_space, Label::kNear); |
| |
| __ bind(&stack_overflow); |
| // Restore context from the frame. |
| __ movq(rsi, Operand(rbp, ConstructFrameConstants::kContextOffset)); |
| __ CallRuntime(Runtime::kThrowStackOverflow); |
| // This should be unreachable. |
| __ int3(); |
| |
| __ bind(&enough_stack_space); |
| |
| // Copy arguments and receiver to the expression stack. |
| Label loop, entry; |
| __ movq(rcx, rax); |
| // ----------- S t a t e ------------- |
| // -- rax: number of arguments (untagged) |
| // -- rdx: new target |
| // -- rbx: pointer to last argument |
| // -- rcx: counter (tagged) |
| // -- sp[0*kSystemPointerSize]: implicit receiver |
| // -- sp[1*kSystemPointerSize]: implicit receiver |
| // -- sp[2*kSystemPointerSize]: padding |
| // -- rdi and sp[3*kSystemPointerSize]: constructor function |
| // -- sp[4*kSystemPointerSize]: number of arguments (tagged) |
| // -- sp[5*kSystemPointerSize]: context |
| // ----------------------------------- |
| __ jmp(&entry, Label::kNear); |
| __ bind(&loop); |
| __ Push(Operand(rbx, rcx, times_system_pointer_size, 0)); |
| __ bind(&entry); |
| __ decq(rcx); |
| __ j(greater_equal, &loop, Label::kNear); |
| |
| // Call the function. |
| ParameterCount actual(rax); |
| __ InvokeFunction(rdi, rdx, actual, CALL_FUNCTION); |
| |
| // ----------- S t a t e ------------- |
| // -- rax constructor result |
| // -- sp[0*kSystemPointerSize] implicit receiver |
| // -- sp[1*kSystemPointerSize] padding |
| // -- sp[2*kSystemPointerSize] constructor function |
| // -- sp[3*kSystemPointerSize] number of arguments |
| // -- sp[4*kSystemPointerSize] context |
| // ----------------------------------- |
| |
| // Store offset of return address for deoptimizer. |
| masm->isolate()->heap()->SetConstructStubInvokeDeoptPCOffset( |
| masm->pc_offset()); |
| |
| // Restore context from the frame. |
| __ movq(rsi, Operand(rbp, ConstructFrameConstants::kContextOffset)); |
| |
| // If the result is an object (in the ECMA sense), we should get rid |
| // of the receiver and use the result; see ECMA-262 section 13.2.2-7 |
| // on page 74. |
| Label use_receiver, do_throw, leave_frame; |
| |
| // If the result is undefined, we jump out to using the implicit receiver. |
| __ JumpIfRoot(rax, RootIndex::kUndefinedValue, &use_receiver, Label::kNear); |
| |
| // Otherwise we do a smi check and fall through to check if the return value |
| // is a valid receiver. |
| |
| // If the result is a smi, it is *not* an object in the ECMA sense. |
| __ JumpIfSmi(rax, &use_receiver, Label::kNear); |
| |
| // If the type of the result (stored in its map) is less than |
| // FIRST_JS_RECEIVER_TYPE, it is not an object in the ECMA sense. |
| STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE); |
| __ CmpObjectType(rax, FIRST_JS_RECEIVER_TYPE, rcx); |
| __ j(above_equal, &leave_frame, Label::kNear); |
| __ jmp(&use_receiver, Label::kNear); |
| |
| __ bind(&do_throw); |
| __ CallRuntime(Runtime::kThrowConstructorReturnedNonObject); |
| |
| // Throw away the result of the constructor invocation and use the |
| // on-stack receiver as the result. |
| __ bind(&use_receiver); |
| __ movq(rax, Operand(rsp, 0 * kSystemPointerSize)); |
| __ JumpIfRoot(rax, RootIndex::kTheHoleValue, &do_throw, Label::kNear); |
| |
| __ bind(&leave_frame); |
| // Restore the arguments count. |
| __ movq(rbx, Operand(rbp, ConstructFrameConstants::kLengthOffset)); |
| // Leave construct frame. |
| } |
| // Remove caller arguments from the stack and return. |
| __ PopReturnAddressTo(rcx); |
| SmiIndex index = masm->SmiToIndex(rbx, rbx, kSystemPointerSizeLog2); |
| __ leaq(rsp, Operand(rsp, index.reg, index.scale, 1 * kSystemPointerSize)); |
| __ PushReturnAddressFrom(rcx); |
| __ ret(0); |
| } |
| |
| void Builtins::Generate_JSBuiltinsConstructStub(MacroAssembler* masm) { |
| Generate_JSBuiltinsConstructStubHelper(masm); |
| } |
| |
| void Builtins::Generate_ConstructedNonConstructable(MacroAssembler* masm) { |
| FrameScope scope(masm, StackFrame::INTERNAL); |
| __ Push(rdi); |
| __ CallRuntime(Runtime::kThrowConstructedNonConstructable); |
| } |
| |
| namespace { |
| |
| // Called with the native C calling convention. The corresponding function |
| // signature is either: |
| // using JSEntryFunction = GeneratedCode<Address( |
| // Address root_register_value, Address new_target, Address target, |
| // Address receiver, intptr_t argc, Address** argv)>; |
| // or |
| // using JSEntryFunction = GeneratedCode<Address( |
| // Address root_register_value, MicrotaskQueue* microtask_queue)>; |
| void Generate_JSEntryVariant(MacroAssembler* masm, StackFrame::Type type, |
| Builtins::Name entry_trampoline) { |
| Label invoke, handler_entry, exit; |
| Label not_outermost_js, not_outermost_js_2; |
| |
| { // NOLINT. Scope block confuses linter. |
| NoRootArrayScope uninitialized_root_register(masm); |
| // Set up frame. |
| __ pushq(rbp); |
| __ movq(rbp, rsp); |
| |
| // Push the stack frame type. |
| __ Push(Immediate(StackFrame::TypeToMarker(type))); |
| // Reserve a slot for the context. It is filled after the root register has |
| // been set up. |
| __ AllocateStackSpace(kSystemPointerSize); |
| // Save callee-saved registers (X64/X32/Win64 calling conventions). |
| __ pushq(r12); |
| __ pushq(r13); |
| __ pushq(r14); |
| __ pushq(r15); |
| #ifdef V8_TARGET_OS_WIN |
| __ pushq(rdi); // Only callee save in Win64 ABI, argument in AMD64 ABI. |
| __ pushq(rsi); // Only callee save in Win64 ABI, argument in AMD64 ABI. |
| #endif |
| __ pushq(rbx); |
| |
| #ifdef V8_TARGET_OS_WIN |
| // On Win64 XMM6-XMM15 are callee-save. |
| __ AllocateStackSpace(EntryFrameConstants::kXMMRegistersBlockSize); |
| __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 0), xmm6); |
| __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 1), xmm7); |
| __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 2), xmm8); |
| __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 3), xmm9); |
| __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 4), xmm10); |
| __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 5), xmm11); |
| __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 6), xmm12); |
| __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 7), xmm13); |
| __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 8), xmm14); |
| __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 9), xmm15); |
| STATIC_ASSERT(EntryFrameConstants::kCalleeSaveXMMRegisters == 10); |
| STATIC_ASSERT(EntryFrameConstants::kXMMRegistersBlockSize == |
| EntryFrameConstants::kXMMRegisterSize * |
| EntryFrameConstants::kCalleeSaveXMMRegisters); |
| #endif |
| |
| // Initialize the root register. |
| // C calling convention. The first argument is passed in arg_reg_1. |
| __ movq(kRootRegister, arg_reg_1); |
| } |
| |
| // Save copies of the top frame descriptor on the stack. |
| ExternalReference c_entry_fp = ExternalReference::Create( |
| IsolateAddressId::kCEntryFPAddress, masm->isolate()); |
| { |
| Operand c_entry_fp_operand = masm->ExternalReferenceAsOperand(c_entry_fp); |
| __ Push(c_entry_fp_operand); |
| } |
| |
| // Store the context address in the previously-reserved slot. |
| ExternalReference context_address = ExternalReference::Create( |
| IsolateAddressId::kContextAddress, masm->isolate()); |
| __ Load(kScratchRegister, context_address); |
| static constexpr int kOffsetToContextSlot = -2 * kSystemPointerSize; |
| __ movq(Operand(rbp, kOffsetToContextSlot), kScratchRegister); |
| |
| // If this is the outermost JS call, set js_entry_sp value. |
| ExternalReference js_entry_sp = ExternalReference::Create( |
| IsolateAddressId::kJSEntrySPAddress, masm->isolate()); |
| __ Load(rax, js_entry_sp); |
| __ testq(rax, rax); |
| __ j(not_zero, ¬_outermost_js); |
| __ Push(Immediate(StackFrame::OUTERMOST_JSENTRY_FRAME)); |
| __ movq(rax, rbp); |
| __ Store(js_entry_sp, rax); |
| Label cont; |
| __ jmp(&cont); |
| __ bind(¬_outermost_js); |
| __ Push(Immediate(StackFrame::INNER_JSENTRY_FRAME)); |
| __ bind(&cont); |
| |
| // Jump to a faked try block that does the invoke, with a faked catch |
| // block that sets the pending exception. |
| __ jmp(&invoke); |
| __ bind(&handler_entry); |
| |
| // Store the current pc as the handler offset. It's used later to create the |
| // handler table. |
| masm->isolate()->builtins()->SetJSEntryHandlerOffset(handler_entry.pos()); |
| |
| // Caught exception: Store result (exception) in the pending exception |
| // field in the JSEnv and return a failure sentinel. |
| ExternalReference pending_exception = ExternalReference::Create( |
| IsolateAddressId::kPendingExceptionAddress, masm->isolate()); |
| __ Store(pending_exception, rax); |
| __ LoadRoot(rax, RootIndex::kException); |
| __ jmp(&exit); |
| |
| // Invoke: Link this frame into the handler chain. |
| __ bind(&invoke); |
| __ PushStackHandler(); |
| |
| // Invoke the function by calling through JS entry trampoline builtin and |
| // pop the faked function when we return. |
| Handle<Code> trampoline_code = |
| masm->isolate()->builtins()->builtin_handle(entry_trampoline); |
| __ Call(trampoline_code, RelocInfo::CODE_TARGET); |
| |
| // Unlink this frame from the handler chain. |
| __ PopStackHandler(); |
| |
| __ bind(&exit); |
| // Check if the current stack frame is marked as the outermost JS frame. |
| __ Pop(rbx); |
| __ cmpq(rbx, Immediate(StackFrame::OUTERMOST_JSENTRY_FRAME)); |
| __ j(not_equal, ¬_outermost_js_2); |
| __ Move(kScratchRegister, js_entry_sp); |
| __ movq(Operand(kScratchRegister, 0), Immediate(0)); |
| __ bind(¬_outermost_js_2); |
| |
| // Restore the top frame descriptor from the stack. |
| { |
| Operand c_entry_fp_operand = masm->ExternalReferenceAsOperand(c_entry_fp); |
| __ Pop(c_entry_fp_operand); |
| } |
| |
| // Restore callee-saved registers (X64 conventions). |
| #ifdef V8_TARGET_OS_WIN |
| // On Win64 XMM6-XMM15 are callee-save |
| __ movdqu(xmm6, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 0)); |
| __ movdqu(xmm7, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 1)); |
| __ movdqu(xmm8, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 2)); |
| __ movdqu(xmm9, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 3)); |
| __ movdqu(xmm10, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 4)); |
| __ movdqu(xmm11, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 5)); |
| __ movdqu(xmm12, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 6)); |
| __ movdqu(xmm13, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 7)); |
| __ movdqu(xmm14, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 8)); |
| __ movdqu(xmm15, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 9)); |
| __ addq(rsp, Immediate(EntryFrameConstants::kXMMRegistersBlockSize)); |
| #endif |
| |
| __ popq(rbx); |
| #ifdef V8_TARGET_OS_WIN |
| // Callee save on in Win64 ABI, arguments/volatile in AMD64 ABI. |
| __ popq(rsi); |
| __ popq(rdi); |
| #endif |
| __ popq(r15); |
| __ popq(r14); |
| __ popq(r13); |
| __ popq(r12); |
| __ addq(rsp, Immediate(2 * kSystemPointerSize)); // remove markers |
| |
| // Restore frame pointer and return. |
| __ popq(rbp); |
| __ ret(0); |
| } |
| |
| } // namespace |
| |
| void Builtins::Generate_JSEntry(MacroAssembler* masm) { |
| Generate_JSEntryVariant(masm, StackFrame::ENTRY, |
| Builtins::kJSEntryTrampoline); |
| } |
| |
| void Builtins::Generate_JSConstructEntry(MacroAssembler* masm) { |
| Generate_JSEntryVariant(masm, StackFrame::CONSTRUCT_ENTRY, |
| Builtins::kJSConstructEntryTrampoline); |
| } |
| |
| void Builtins::Generate_JSRunMicrotasksEntry(MacroAssembler* masm) { |
| Generate_JSEntryVariant(masm, StackFrame::ENTRY, |
| Builtins::kRunMicrotasksTrampoline); |
| } |
| |
| static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm, |
| bool is_construct) { |
| // Expects six C++ function parameters. |
| // - Address root_register_value |
| // - Address new_target (tagged Object pointer) |
| // - Address function (tagged JSFunction pointer) |
| // - Address receiver (tagged Object pointer) |
| // - intptr_t argc |
| // - Address** argv (pointer to array of tagged Object pointers) |
| // (see Handle::Invoke in execution.cc). |
| |
| // Open a C++ scope for the FrameScope. |
| { |
| // Platform specific argument handling. After this, the stack contains |
| // an internal frame and the pushed function and receiver, and |
| // register rax and rbx holds the argument count and argument array, |
| // while rdi holds the function pointer, rsi the context, and rdx the |
| // new.target. |
| |
| // MSVC parameters in: |
| // rcx : root_register_value |
| // rdx : new_target |
| // r8 : function |
| // r9 : receiver |
| // [rsp+0x20] : argc |
| // [rsp+0x28] : argv |
| // |
| // GCC parameters in: |
| // rdi : root_register_value |
| // rsi : new_target |
| // rdx : function |
| // rcx : receiver |
| // r8 : argc |
| // r9 : argv |
| |
| __ movq(rdi, arg_reg_3); |
| __ Move(rdx, arg_reg_2); |
| // rdi : function |
| // rdx : new_target |
| |
| // Clear the context before we push it when entering the internal frame. |
| __ Set(rsi, 0); |
| |
| // Enter an internal frame. |
| FrameScope scope(masm, StackFrame::INTERNAL); |
| |
| // Setup the context (we need to use the caller context from the isolate). |
| ExternalReference context_address = ExternalReference::Create( |
| IsolateAddressId::kContextAddress, masm->isolate()); |
| __ movq(rsi, masm->ExternalReferenceAsOperand(context_address)); |
| |
| // Push the function and the receiver onto the stack. |
| __ Push(rdi); |
| __ Push(arg_reg_4); |
| |
| #ifdef V8_TARGET_OS_WIN |
| // Load the previous frame pointer to access C arguments on stack |
| __ movq(kScratchRegister, Operand(rbp, 0)); |
| // Load the number of arguments and setup pointer to the arguments. |
| __ movq(rax, Operand(kScratchRegister, EntryFrameConstants::kArgcOffset)); |
| __ movq(rbx, Operand(kScratchRegister, EntryFrameConstants::kArgvOffset)); |
| #else // V8_TARGET_OS_WIN |
| // Load the number of arguments and setup pointer to the arguments. |
| __ movq(rax, r8); |
| __ movq(rbx, r9); |
| #endif // V8_TARGET_OS_WIN |
| |
| // Current stack contents: |
| // [rsp + 2 * kSystemPointerSize ... ] : Internal frame |
| // [rsp + kSystemPointerSize] : function |
| // [rsp] : receiver |
| // Current register contents: |
| // rax : argc |
| // rbx : argv |
| // rsi : context |
| // rdi : function |
| // rdx : new.target |
| |
| // Check if we have enough stack space to push all arguments. |
| // Argument count in rax. Clobbers rcx. |
| Label enough_stack_space, stack_overflow; |
| Generate_StackOverflowCheck(masm, rax, rcx, &stack_overflow, Label::kNear); |
| __ jmp(&enough_stack_space, Label::kNear); |
| |
| __ bind(&stack_overflow); |
| __ CallRuntime(Runtime::kThrowStackOverflow); |
| // This should be unreachable. |
| __ int3(); |
| |
| __ bind(&enough_stack_space); |
| |
| // Copy arguments to the stack in a loop. |
| // Register rbx points to array of pointers to handle locations. |
| // Push the values of these handles. |
| Label loop, entry; |
| __ Set(rcx, 0); // Set loop variable to 0. |
| __ jmp(&entry, Label::kNear); |
| __ bind(&loop); |
| __ movq(kScratchRegister, Operand(rbx, rcx, times_system_pointer_size, 0)); |
| __ Push(Operand(kScratchRegister, 0)); // dereference handle |
| __ addq(rcx, Immediate(1)); |
| __ bind(&entry); |
| __ cmpq(rcx, rax); |
| __ j(not_equal, &loop, Label::kNear); |
| |
| // Invoke the builtin code. |
| Handle<Code> builtin = is_construct |
| ? BUILTIN_CODE(masm->isolate(), Construct) |
| : masm->isolate()->builtins()->Call(); |
| __ Call(builtin, RelocInfo::CODE_TARGET); |
| |
| // Exit the internal frame. Notice that this also removes the empty |
| // context and the function left on the stack by the code |
| // invocation. |
| } |
| |
| __ ret(0); |
| } |
| |
| void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) { |
| Generate_JSEntryTrampolineHelper(masm, false); |
| } |
| |
| void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) { |
| Generate_JSEntryTrampolineHelper(masm, true); |
| } |
| |
| void Builtins::Generate_RunMicrotasksTrampoline(MacroAssembler* masm) { |
| // arg_reg_2: microtask_queue |
| __ movq(RunMicrotasksDescriptor::MicrotaskQueueRegister(), arg_reg_2); |
| __ Jump(BUILTIN_CODE(masm->isolate(), RunMicrotasks), RelocInfo::CODE_TARGET); |
| } |
| |
| static void GetSharedFunctionInfoBytecode(MacroAssembler* masm, |
| Register sfi_data, |
| Register scratch1) { |
| Label done; |
| |
| __ CmpObjectType(sfi_data, INTERPRETER_DATA_TYPE, scratch1); |
| __ j(not_equal, &done, Label::kNear); |
| |
| __ LoadTaggedPointerField( |
| sfi_data, FieldOperand(sfi_data, InterpreterData::kBytecodeArrayOffset)); |
| |
| __ bind(&done); |
| } |
| |
| // static |
| void Builtins::Generate_ResumeGeneratorTrampoline(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- rax : the value to pass to the generator |
| // -- rdx : the JSGeneratorObject to resume |
| // -- rsp[0] : return address |
| // ----------------------------------- |
| __ AssertGeneratorObject(rdx); |
| |
| // Store input value into generator object. |
| __ StoreTaggedField( |
| FieldOperand(rdx, JSGeneratorObject::kInputOrDebugPosOffset), rax); |
| __ RecordWriteField(rdx, JSGeneratorObject::kInputOrDebugPosOffset, rax, rcx, |
| kDontSaveFPRegs); |
| |
| Register decompr_scratch1 = COMPRESS_POINTERS_BOOL ? r11 : no_reg; |
| Register decompr_scratch2 = COMPRESS_POINTERS_BOOL ? r12 : no_reg; |
| |
| // Load suspended function and context. |
| __ LoadTaggedPointerField( |
| rdi, FieldOperand(rdx, JSGeneratorObject::kFunctionOffset)); |
| __ LoadTaggedPointerField(rsi, FieldOperand(rdi, JSFunction::kContextOffset)); |
| |
| // Flood function if we are stepping. |
| Label prepare_step_in_if_stepping, prepare_step_in_suspended_generator; |
| Label stepping_prepared; |
| ExternalReference debug_hook = |
| ExternalReference::debug_hook_on_function_call_address(masm->isolate()); |
| Operand debug_hook_operand = masm->ExternalReferenceAsOperand(debug_hook); |
| __ cmpb(debug_hook_operand, Immediate(0)); |
| __ j(not_equal, &prepare_step_in_if_stepping); |
| |
| // Flood function if we need to continue stepping in the suspended generator. |
| ExternalReference debug_suspended_generator = |
| ExternalReference::debug_suspended_generator_address(masm->isolate()); |
| Operand debug_suspended_generator_operand = |
| masm->ExternalReferenceAsOperand(debug_suspended_generator); |
| __ cmpq(rdx, debug_suspended_generator_operand); |
| __ j(equal, &prepare_step_in_suspended_generator); |
| __ bind(&stepping_prepared); |
| |
| // Check the stack for overflow. We are not trying to catch interruptions |
| // (i.e. debug break and preemption) here, so check the "real stack limit". |
| Label stack_overflow; |
| __ CompareRoot(rsp, RootIndex::kRealStackLimit); |
| __ j(below, &stack_overflow); |
| |
| // Pop return address. |
| __ PopReturnAddressTo(rax); |
| |
| // Push receiver. |
| __ PushTaggedPointerField( |
| FieldOperand(rdx, JSGeneratorObject::kReceiverOffset), decompr_scratch1); |
| |
| // ----------- S t a t e ------------- |
| // -- rax : return address |
| // -- rdx : the JSGeneratorObject to resume |
| // -- rdi : generator function |
| // -- rsi : generator context |
| // -- rsp[0] : generator receiver |
| // ----------------------------------- |
| |
| // Copy the function arguments from the generator object's register file. |
| __ LoadTaggedPointerField( |
| rcx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset)); |
| __ movzxwq( |
| rcx, FieldOperand(rcx, SharedFunctionInfo::kFormalParameterCountOffset)); |
| |
| __ LoadTaggedPointerField( |
| rbx, FieldOperand(rdx, JSGeneratorObject::kParametersAndRegistersOffset)); |
| |
| { |
| Label done_loop, loop; |
| __ Set(r9, 0); |
| |
| __ bind(&loop); |
| __ cmpl(r9, rcx); |
| __ j(greater_equal, &done_loop, Label::kNear); |
| __ PushTaggedAnyField( |
| FieldOperand(rbx, r9, times_tagged_size, FixedArray::kHeaderSize), |
| decompr_scratch1, decompr_scratch2); |
| __ addl(r9, Immediate(1)); |
| __ jmp(&loop); |
| |
| __ bind(&done_loop); |
| } |
| |
| // Underlying function needs to have bytecode available. |
| if (FLAG_debug_code) { |
| __ LoadTaggedPointerField( |
| rcx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset)); |
| __ LoadTaggedPointerField( |
| rcx, FieldOperand(rcx, SharedFunctionInfo::kFunctionDataOffset)); |
| GetSharedFunctionInfoBytecode(masm, rcx, kScratchRegister); |
| __ CmpObjectType(rcx, BYTECODE_ARRAY_TYPE, rcx); |
| __ Assert(equal, AbortReason::kMissingBytecodeArray); |
| } |
| |
| // Resume (Ignition/TurboFan) generator object. |
| { |
| __ PushReturnAddressFrom(rax); |
| __ LoadTaggedPointerField( |
| rax, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset)); |
| __ movzxwq(rax, FieldOperand( |
| rax, SharedFunctionInfo::kFormalParameterCountOffset)); |
| // We abuse new.target both to indicate that this is a resume call and to |
| // pass in the generator object. In ordinary calls, new.target is always |
| // undefined because generator functions are non-constructable. |
| static_assert(kJavaScriptCallCodeStartRegister == rcx, "ABI mismatch"); |
| __ LoadTaggedPointerField(rcx, FieldOperand(rdi, JSFunction::kCodeOffset)); |
| __ JumpCodeObject(rcx); |
| } |
| |
| __ bind(&prepare_step_in_if_stepping); |
| { |
| FrameScope scope(masm, StackFrame::INTERNAL); |
| __ Push(rdx); |
| __ Push(rdi); |
| // Push hole as receiver since we do not use it for stepping. |
| __ PushRoot(RootIndex::kTheHoleValue); |
| __ CallRuntime(Runtime::kDebugOnFunctionCall); |
| __ Pop(rdx); |
| __ LoadTaggedPointerField( |
| rdi, FieldOperand(rdx, JSGeneratorObject::kFunctionOffset)); |
| } |
| __ jmp(&stepping_prepared); |
| |
| __ bind(&prepare_step_in_suspended_generator); |
| { |
| FrameScope scope(masm, StackFrame::INTERNAL); |
| __ Push(rdx); |
| __ CallRuntime(Runtime::kDebugPrepareStepInSuspendedGenerator); |
| __ Pop(rdx); |
| __ LoadTaggedPointerField( |
| rdi, FieldOperand(rdx, JSGeneratorObject::kFunctionOffset)); |
| } |
| __ jmp(&stepping_prepared); |
| |
| __ bind(&stack_overflow); |
| { |
| FrameScope scope(masm, StackFrame::INTERNAL); |
| __ CallRuntime(Runtime::kThrowStackOverflow); |
| __ int3(); // This should be unreachable. |
| } |
| } |
| |
| // TODO(juliana): if we remove the code below then we don't need all |
| // the parameters. |
| static void ReplaceClosureCodeWithOptimizedCode( |
| MacroAssembler* masm, Register optimized_code, Register closure, |
| Register scratch1, Register scratch2, Register scratch3) { |
| |
| // Store the optimized code in the closure. |
| __ StoreTaggedField(FieldOperand(closure, JSFunction::kCodeOffset), |
| optimized_code); |
| __ movq(scratch1, optimized_code); // Write barrier clobbers scratch1 below. |
| __ RecordWriteField(closure, JSFunction::kCodeOffset, scratch1, scratch2, |
| kDontSaveFPRegs, OMIT_REMEMBERED_SET, OMIT_SMI_CHECK); |
| } |
| |
| static void LeaveInterpreterFrame(MacroAssembler* masm, Register scratch1, |
| Register scratch2) { |
| Register args_count = scratch1; |
| Register return_pc = scratch2; |
| |
| // Get the arguments + receiver count. |
| __ movq(args_count, |
| Operand(rbp, InterpreterFrameConstants::kBytecodeArrayFromFp)); |
| __ movl(args_count, |
| FieldOperand(args_count, BytecodeArray::kParameterSizeOffset)); |
| |
| // Leave the frame (also dropping the register file). |
| __ leave(); |
| |
| // Drop receiver + arguments. |
| __ PopReturnAddressTo(return_pc); |
| __ addq(rsp, args_count); |
| __ PushReturnAddressFrom(return_pc); |
| } |
| |
| // Tail-call |function_id| if |smi_entry| == |marker| |
| static void TailCallRuntimeIfMarkerEquals(MacroAssembler* masm, |
| Register smi_entry, |
| OptimizationMarker marker, |
| Runtime::FunctionId function_id) { |
| Label no_match; |
| __ SmiCompare(smi_entry, Smi::FromEnum(marker)); |
| __ j(not_equal, &no_match); |
| GenerateTailCallToReturnedCode(masm, function_id); |
| __ bind(&no_match); |
| } |
| |
| static void MaybeTailCallOptimizedCodeSlot(MacroAssembler* masm, |
| Register feedback_vector, |
| Register scratch1, Register scratch2, |
| Register scratch3) { |
| // ----------- S t a t e ------------- |
| // -- rdx : new target (preserved for callee if needed, and caller) |
| // -- rdi : target function (preserved for callee if needed, and caller) |
| // -- feedback vector (preserved for caller if needed) |
| // ----------------------------------- |
| DCHECK(!AreAliased(feedback_vector, rdx, rdi, scratch1, scratch2, scratch3)); |
| |
| Label optimized_code_slot_is_weak_ref, fallthrough; |
| |
| Register closure = rdi; |
| Register optimized_code_entry = scratch1; |
| Register decompr_scratch = COMPRESS_POINTERS_BOOL ? scratch2 : no_reg; |
| |
| __ LoadAnyTaggedField( |
| optimized_code_entry, |
| FieldOperand(feedback_vector, |
| FeedbackVector::kOptimizedCodeWeakOrSmiOffset), |
| decompr_scratch); |
| |
| // Check if the code entry is a Smi. If yes, we interpret it as an |
| // optimisation marker. Otherwise, interpret it as a weak reference to a code |
| // object. |
| __ JumpIfNotSmi(optimized_code_entry, &optimized_code_slot_is_weak_ref); |
| |
| { |
| // Optimized code slot is a Smi optimization marker. |
| |
| // Fall through if no optimization trigger. |
| __ SmiCompare(optimized_code_entry, |
| Smi::FromEnum(OptimizationMarker::kNone)); |
| __ j(equal, &fallthrough); |
| |
| // TODO(v8:8394): The logging of first execution will break if |
| // feedback vectors are not allocated. We need to find a different way of |
| // logging these events if required. |
| TailCallRuntimeIfMarkerEquals(masm, optimized_code_entry, |
| OptimizationMarker::kLogFirstExecution, |
| Runtime::kFunctionFirstExecution); |
| TailCallRuntimeIfMarkerEquals(masm, optimized_code_entry, |
| OptimizationMarker::kCompileOptimized, |
| Runtime::kCompileOptimized_NotConcurrent); |
| TailCallRuntimeIfMarkerEquals( |
| masm, optimized_code_entry, |
| OptimizationMarker::kCompileOptimizedConcurrent, |
| Runtime::kCompileOptimized_Concurrent); |
| |
| { |
| // Otherwise, the marker is InOptimizationQueue, so fall through hoping |
| // that an interrupt will eventually update the slot with optimized code. |
| if (FLAG_debug_code) { |
| __ SmiCompare(optimized_code_entry, |
| Smi::FromEnum(OptimizationMarker::kInOptimizationQueue)); |
| __ Assert(equal, AbortReason::kExpectedOptimizationSentinel); |
| } |
| __ jmp(&fallthrough); |
| } |
| } |
| |
| { |
| // Optimized code slot is a weak reference. |
| __ bind(&optimized_code_slot_is_weak_ref); |
| |
| __ LoadWeakValue(optimized_code_entry, &fallthrough); |
| |
| // Check if the optimized code is marked for deopt. If it is, call the |
| // runtime to clear it. |
| Label found_deoptimized_code; |
| __ LoadTaggedPointerField( |
| scratch2, |
| FieldOperand(optimized_code_entry, Code::kCodeDataContainerOffset)); |
| __ testl( |
| FieldOperand(scratch2, CodeDataContainer::kKindSpecificFlagsOffset), |
| Immediate(1 << Code::kMarkedForDeoptimizationBit)); |
| __ j(not_zero, &found_deoptimized_code); |
| |
| // Optimized code is good, get it into the closure and link the closure into |
| // the optimized functions list, then tail call the optimized code. |
| // The feedback vector is no longer used, so re-use it as a scratch |
| // register. |
| ReplaceClosureCodeWithOptimizedCode(masm, optimized_code_entry, closure, |
| scratch2, scratch3, feedback_vector); |
| static_assert(kJavaScriptCallCodeStartRegister == rcx, "ABI mismatch"); |
| __ Move(rcx, optimized_code_entry); |
| __ JumpCodeObject(rcx); |
| |
| // Optimized code slot contains deoptimized code, evict it and re-enter the |
| // closure's code. |
| __ bind(&found_deoptimized_code); |
| GenerateTailCallToReturnedCode(masm, Runtime::kEvictOptimizedCodeSlot); |
| } |
| |
| // Fall-through if the optimized code cell is clear and there is no |
| // optimization marker. |
| __ bind(&fallthrough); |
| } |
| |
| // Advance the current bytecode offset. This simulates what all bytecode |
| // handlers do upon completion of the underlying operation. Will bail out to a |
| // label if the bytecode (without prefix) is a return bytecode. |
| static void AdvanceBytecodeOffsetOrReturn(MacroAssembler* masm, |
| Register bytecode_array, |
| Register bytecode_offset, |
| Register bytecode, Register scratch1, |
| Label* if_return) { |
| Register bytecode_size_table = scratch1; |
| DCHECK(!AreAliased(bytecode_array, bytecode_offset, bytecode_size_table, |
| bytecode)); |
| |
| __ Move(bytecode_size_table, |
| ExternalReference::bytecode_size_table_address()); |
| |
| // Check if the bytecode is a Wide or ExtraWide prefix bytecode. |
| Label process_bytecode, extra_wide; |
| STATIC_ASSERT(0 == static_cast<int>(interpreter::Bytecode::kWide)); |
| STATIC_ASSERT(1 == static_cast<int>(interpreter::Bytecode::kExtraWide)); |
| STATIC_ASSERT(2 == static_cast<int>(interpreter::Bytecode::kDebugBreakWide)); |
| STATIC_ASSERT(3 == |
| static_cast<int>(interpreter::Bytecode::kDebugBreakExtraWide)); |
| __ cmpb(bytecode, Immediate(0x3)); |
| __ j(above, &process_bytecode, Label::kNear); |
| __ testb(bytecode, Immediate(0x1)); |
| __ j(not_equal, &extra_wide, Label::kNear); |
| |
| // Load the next bytecode and update table to the wide scaled table. |
| __ incl(bytecode_offset); |
| __ movzxbq(bytecode, Operand(bytecode_array, bytecode_offset, times_1, 0)); |
| __ addq(bytecode_size_table, |
| Immediate(kIntSize * interpreter::Bytecodes::kBytecodeCount)); |
| __ jmp(&process_bytecode, Label::kNear); |
| |
| __ bind(&extra_wide); |
| // Load the next bytecode and update table to the extra wide scaled table. |
| __ incl(bytecode_offset); |
| __ movzxbq(bytecode, Operand(bytecode_array, bytecode_offset, times_1, 0)); |
| __ addq(bytecode_size_table, |
| Immediate(2 * kIntSize * interpreter::Bytecodes::kBytecodeCount)); |
| |
| __ bind(&process_bytecode); |
| |
| // Bailout to the return label if this is a return bytecode. |
| #define JUMP_IF_EQUAL(NAME) \ |
| __ cmpb(bytecode, \ |
| Immediate(static_cast<int>(interpreter::Bytecode::k##NAME))); \ |
| __ j(equal, if_return, Label::kFar); |
| RETURN_BYTECODE_LIST(JUMP_IF_EQUAL) |
| #undef JUMP_IF_EQUAL |
| |
| // Otherwise, load the size of the current bytecode and advance the offset. |
| __ addl(bytecode_offset, |
| Operand(bytecode_size_table, bytecode, times_int_size, 0)); |
| } |
| |
| // Generate code for entering a JS function with the interpreter. |
| // On entry to the function the receiver and arguments have been pushed on the |
| // stack left to right. The actual argument count matches the formal parameter |
| // count expected by the function. |
| // |
| // The live registers are: |
| // o rdi: the JS function object being called |
| // o rdx: the incoming new target or generator object |
| // o rsi: our context |
| // o rbp: the caller's frame pointer |
| // o rsp: stack pointer (pointing to return address) |
| // |
| // The function builds an interpreter frame. See InterpreterFrameConstants in |
| // frames.h for its layout. |
| void Builtins::Generate_InterpreterEntryTrampoline(MacroAssembler* masm) { |
| Register closure = rdi; |
| Register feedback_vector = rbx; |
| |
| // Get the bytecode array from the function object and load it into |
| // kInterpreterBytecodeArrayRegister. |
| __ LoadTaggedPointerField( |
| rax, FieldOperand(closure, JSFunction::kSharedFunctionInfoOffset)); |
| __ LoadTaggedPointerField( |
| kInterpreterBytecodeArrayRegister, |
| FieldOperand(rax, SharedFunctionInfo::kFunctionDataOffset)); |
| GetSharedFunctionInfoBytecode(masm, kInterpreterBytecodeArrayRegister, |
| kScratchRegister); |
| |
| // The bytecode array could have been flushed from the shared function info, |
| // if so, call into CompileLazy. |
| Label compile_lazy; |
| __ CmpObjectType(kInterpreterBytecodeArrayRegister, BYTECODE_ARRAY_TYPE, rax); |
| __ j(not_equal, &compile_lazy); |
| |
| // Load the feedback vector from the closure. |
| __ LoadTaggedPointerField( |
| feedback_vector, FieldOperand(closure, JSFunction::kFeedbackCellOffset)); |
| __ LoadTaggedPointerField(feedback_vector, |
| FieldOperand(feedback_vector, Cell::kValueOffset)); |
| |
| Label push_stack_frame; |
| // Check if feedback vector is valid. If valid, check for optimized code |
| // and update invocation count. Otherwise, setup the stack frame. |
| __ LoadTaggedPointerField( |
| rcx, FieldOperand(feedback_vector, HeapObject::kMapOffset)); |
| __ CmpInstanceType(rcx, FEEDBACK_VECTOR_TYPE); |
| __ j(not_equal, &push_stack_frame); |
| |
| // Read off the optimized code slot in the feedback vector, and if there |
| // is optimized code or an optimization marker, call that instead. |
| MaybeTailCallOptimizedCodeSlot(masm, feedback_vector, rcx, r11, r15); |
| |
| // Increment invocation count for the function. |
| __ incl( |
| FieldOperand(feedback_vector, FeedbackVector::kInvocationCountOffset)); |
| |
| // Open a frame scope to indicate that there is a frame on the stack. The |
| // MANUAL indicates that the scope shouldn't actually generate code to set up |
| // the frame (that is done below). |
| __ bind(&push_stack_frame); |
| FrameScope frame_scope(masm, StackFrame::MANUAL); |
| __ pushq(rbp); // Caller's frame pointer. |
| __ movq(rbp, rsp); |
| __ Push(rsi); // Callee's context. |
| __ Push(rdi); // Callee's JS function. |
| |
| // Reset code age and the OSR arming. The OSR field and BytecodeAgeOffset are |
| // 8-bit fields next to each other, so we could just optimize by writing a |
| // 16-bit. These static asserts guard our assumption is valid. |
| STATIC_ASSERT(BytecodeArray::kBytecodeAgeOffset == |
| BytecodeArray::kOsrNestingLevelOffset + kCharSize); |
| STATIC_ASSERT(BytecodeArray::kNoAgeBytecodeAge == 0); |
| __ movw(FieldOperand(kInterpreterBytecodeArrayRegister, |
| BytecodeArray::kOsrNestingLevelOffset), |
| Immediate(0)); |
| |
| // Load initial bytecode offset. |
| __ movq(kInterpreterBytecodeOffsetRegister, |
| Immediate(BytecodeArray::kHeaderSize - kHeapObjectTag)); |
| |
| // Push bytecode array and Smi tagged bytecode offset. |
| __ Push(kInterpreterBytecodeArrayRegister); |
| __ SmiTag(rcx, kInterpreterBytecodeOffsetRegister); |
| __ Push(rcx); |
| |
| // Allocate the local and temporary register file on the stack. |
| { |
| // Load frame size from the BytecodeArray object. |
| __ movl(rcx, FieldOperand(kInterpreterBytecodeArrayRegister, |
| BytecodeArray::kFrameSizeOffset)); |
| |
| // Do a stack check to ensure we don't go over the limit. |
| Label ok; |
| __ movq(rax, rsp); |
| __ subq(rax, rcx); |
| __ CompareRoot(rax, RootIndex::kRealStackLimit); |
| __ j(above_equal, &ok, Label::kNear); |
| __ CallRuntime(Runtime::kThrowStackOverflow); |
| __ bind(&ok); |
| |
| // If ok, push undefined as the initial value for all register file entries. |
| Label loop_header; |
| Label loop_check; |
| __ LoadRoot(rax, RootIndex::kUndefinedValue); |
| __ j(always, &loop_check, Label::kNear); |
| __ bind(&loop_header); |
| // TODO(rmcilroy): Consider doing more than one push per loop iteration. |
| __ Push(rax); |
| // Continue loop if not done. |
| __ bind(&loop_check); |
| __ subq(rcx, Immediate(kSystemPointerSize)); |
| __ j(greater_equal, &loop_header, Label::kNear); |
| } |
| |
| // If the bytecode array has a valid incoming new target or generator object |
| // register, initialize it with incoming value which was passed in rdx. |
| Label no_incoming_new_target_or_generator_register; |
| __ movsxlq( |
| rax, |
| FieldOperand(kInterpreterBytecodeArrayRegister, |
| BytecodeArray::kIncomingNewTargetOrGeneratorRegisterOffset)); |
| __ testl(rax, rax); |
| __ j(zero, &no_incoming_new_target_or_generator_register, Label::kNear); |
| __ movq(Operand(rbp, rax, times_system_pointer_size, 0), rdx); |
| __ bind(&no_incoming_new_target_or_generator_register); |
| |
| // Load accumulator with undefined. |
| __ LoadRoot(kInterpreterAccumulatorRegister, RootIndex::kUndefinedValue); |
| |
| // Load the dispatch table into a register and dispatch to the bytecode |
| // handler at the current bytecode offset. |
| Label do_dispatch; |
| __ bind(&do_dispatch); |
| __ Move( |
| kInterpreterDispatchTableRegister, |
| ExternalReference::interpreter_dispatch_table_address(masm->isolate())); |
| __ movzxbq(r11, Operand(kInterpreterBytecodeArrayRegister, |
| kInterpreterBytecodeOffsetRegister, times_1, 0)); |
| __ movq(kJavaScriptCallCodeStartRegister, |
| Operand(kInterpreterDispatchTableRegister, r11, |
| times_system_pointer_size, 0)); |
| __ call(kJavaScriptCallCodeStartRegister); |
| masm->isolate()->heap()->SetInterpreterEntryReturnPCOffset(masm->pc_offset()); |
| |
| // Any returns to the entry trampoline are either due to the return bytecode |
| // or the interpreter tail calling a builtin and then a dispatch. |
| |
| // Get bytecode array and bytecode offset from the stack frame. |
| __ movq(kInterpreterBytecodeArrayRegister, |
| Operand(rbp, InterpreterFrameConstants::kBytecodeArrayFromFp)); |
| __ movq(kInterpreterBytecodeOffsetRegister, |
| Operand(rbp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); |
| __ SmiUntag(kInterpreterBytecodeOffsetRegister, |
| kInterpreterBytecodeOffsetRegister); |
| |
| // Either return, or advance to the next bytecode and dispatch. |
| Label do_return; |
| __ movzxbq(rbx, Operand(kInterpreterBytecodeArrayRegister, |
| kInterpreterBytecodeOffsetRegister, times_1, 0)); |
| AdvanceBytecodeOffsetOrReturn(masm, kInterpreterBytecodeArrayRegister, |
| kInterpreterBytecodeOffsetRegister, rbx, rcx, |
| &do_return); |
| __ jmp(&do_dispatch); |
| |
| __ bind(&do_return); |
| // The return value is in rax. |
| LeaveInterpreterFrame(masm, rbx, rcx); |
| __ ret(0); |
| |
| __ bind(&compile_lazy); |
| GenerateTailCallToReturnedCode(masm, Runtime::kCompileLazy); |
| __ int3(); // Should not return. |
| } |
| |
| static void Generate_InterpreterPushArgs(MacroAssembler* masm, |
| Register num_args, |
| Register start_address, |
| Register scratch) { |
| // Find the address of the last argument. |
| __ Move(scratch, num_args); |
| __ shlq(scratch, Immediate(kSystemPointerSizeLog2)); |
| __ negq(scratch); |
| __ addq(scratch, start_address); |
| |
| // Push the arguments. |
| Label loop_header, loop_check; |
| __ j(always, &loop_check, Label::kNear); |
| __ bind(&loop_header); |
| __ Push(Operand(start_address, 0)); |
| __ subq(start_address, Immediate(kSystemPointerSize)); |
| __ bind(&loop_check); |
| __ cmpq(start_address, scratch); |
| __ j(greater, &loop_header, Label::kNear); |
| } |
| |
| // static |
| void Builtins::Generate_InterpreterPushArgsThenCallImpl( |
| MacroAssembler* masm, ConvertReceiverMode receiver_mode, |
| InterpreterPushArgsMode mode) { |
| DCHECK(mode != InterpreterPushArgsMode::kArrayFunction); |
| // ----------- S t a t e ------------- |
| // -- rax : the number of arguments (not including the receiver) |
| // -- rbx : the address of the first argument to be pushed. Subsequent |
| // arguments should be consecutive above this, in the same order as |
| // they are to be pushed onto the stack. |
| // -- rdi : the target to call (can be any Object). |
| // ----------------------------------- |
| Label stack_overflow; |
| |
| // Number of values to be pushed. |
| __ leal(rcx, Operand(rax, 1)); // Add one for receiver. |
| |
| // Add a stack check before pushing arguments. |
| Generate_StackOverflowCheck(masm, rcx, rdx, &stack_overflow); |
| |
| // Pop return address to allow tail-call after pushing arguments. |
| __ PopReturnAddressTo(kScratchRegister); |
| |
| // Push "undefined" as the receiver arg if we need to. |
| if (receiver_mode == ConvertReceiverMode::kNullOrUndefined) { |
| __ PushRoot(RootIndex::kUndefinedValue); |
| __ decl(rcx); // Subtract one for receiver. |
| } |
| |
| // rbx and rdx will be modified. |
| Generate_InterpreterPushArgs(masm, rcx, rbx, rdx); |
| |
| if (mode == InterpreterPushArgsMode::kWithFinalSpread) { |
| __ Pop(rbx); // Pass the spread in a register |
| __ decl(rax); // Subtract one for spread |
| } |
| |
| // Call the target. |
| __ PushReturnAddressFrom(kScratchRegister); // Re-push return address. |
| |
| if (mode == InterpreterPushArgsMode::kWithFinalSpread) { |
| __ Jump(BUILTIN_CODE(masm->isolate(), CallWithSpread), |
| RelocInfo::CODE_TARGET); |
| } else { |
| __ Jump(masm->isolate()->builtins()->Call(receiver_mode), |
| RelocInfo::CODE_TARGET); |
| } |
| |
| // Throw stack overflow exception. |
| __ bind(&stack_overflow); |
| { |
| __ TailCallRuntime(Runtime::kThrowStackOverflow); |
| // This should be unreachable. |
| __ int3(); |
| } |
| } |
| |
| // static |
| void Builtins::Generate_InterpreterPushArgsThenConstructImpl( |
| MacroAssembler* masm, InterpreterPushArgsMode mode) { |
| // ----------- S t a t e ------------- |
| // -- rax : the number of arguments (not including the receiver) |
| // -- rdx : the new target (either the same as the constructor or |
| // the JSFunction on which new was invoked initially) |
| // -- rdi : the constructor to call (can be any Object) |
| // -- rbx : the allocation site feedback if available, undefined otherwise |
| // -- rcx : the address of the first argument to be pushed. Subsequent |
| // arguments should be consecutive above this, in the same order as |
| // they are to be pushed onto the stack. |
| // ----------------------------------- |
| Label stack_overflow; |
| |
| // Add a stack check before pushing arguments. |
| Generate_StackOverflowCheck(masm, rax, r8, &stack_overflow); |
| |
| // Pop return address to allow tail-call after pushing arguments. |
| __ PopReturnAddressTo(kScratchRegister); |
| |
| // Push slot for the receiver to be constructed. |
| __ Push(Immediate(0)); |
| |
| // rcx and r8 will be modified. |
| Generate_InterpreterPushArgs(masm, rax, rcx, r8); |
| |
| if (mode == InterpreterPushArgsMode::kWithFinalSpread) { |
| __ Pop(rbx); // Pass the spread in a register |
| __ decl(rax); // Subtract one for spread |
| |
| // Push return address in preparation for the tail-call. |
| __ PushReturnAddressFrom(kScratchRegister); |
| } else { |
| __ PushReturnAddressFrom(kScratchRegister); |
| __ AssertUndefinedOrAllocationSite(rbx); |
| } |
| |
| if (mode == InterpreterPushArgsMode::kArrayFunction) { |
| // Tail call to the array construct stub (still in the caller |
| // context at this point). |
| __ AssertFunction(rdi); |
| // Jump to the constructor function (rax, rbx, rdx passed on). |
| Handle<Code> code = BUILTIN_CODE(masm->isolate(), ArrayConstructorImpl); |
| __ Jump(code, RelocInfo::CODE_TARGET); |
| } else if (mode == InterpreterPushArgsMode::kWithFinalSpread) { |
| // Call the constructor (rax, rdx, rdi passed on). |
| __ Jump(BUILTIN_CODE(masm->isolate(), ConstructWithSpread), |
| RelocInfo::CODE_TARGET); |
| } else { |
| DCHECK_EQ(InterpreterPushArgsMode::kOther, mode); |
| // Call the constructor (rax, rdx, rdi passed on). |
| __ Jump(BUILTIN_CODE(masm->isolate(), Construct), RelocInfo::CODE_TARGET); |
| } |
| |
| // Throw stack overflow exception. |
| __ bind(&stack_overflow); |
| { |
| __ TailCallRuntime(Runtime::kThrowStackOverflow); |
| // This should be unreachable. |
| __ int3(); |
| } |
| } |
| |
| static void Generate_InterpreterEnterBytecode(MacroAssembler* masm) { |
| // Set the return address to the correct point in the interpreter entry |
| // trampoline. |
| Label builtin_trampoline, trampoline_loaded; |
| Smi interpreter_entry_return_pc_offset( |
| masm->isolate()->heap()->interpreter_entry_return_pc_offset()); |
| DCHECK_NE(interpreter_entry_return_pc_offset, Smi::kZero); |
| |
| // If the SFI function_data is an InterpreterData, the function will have a |
| // custom copy of the interpreter entry trampoline for profiling. If so, |
| // get the custom trampoline, otherwise grab the entry address of the global |
| // trampoline. |
| __ movq(rbx, Operand(rbp, StandardFrameConstants::kFunctionOffset)); |
| __ LoadTaggedPointerField( |
| rbx, FieldOperand(rbx, JSFunction::kSharedFunctionInfoOffset)); |
| __ LoadTaggedPointerField( |
| rbx, FieldOperand(rbx, SharedFunctionInfo::kFunctionDataOffset)); |
| __ CmpObjectType(rbx, INTERPRETER_DATA_TYPE, kScratchRegister); |
| __ j(not_equal, &builtin_trampoline, Label::kNear); |
| |
| __ movq(rbx, |
| FieldOperand(rbx, InterpreterData::kInterpreterTrampolineOffset)); |
| __ addq(rbx, Immediate(Code::kHeaderSize - kHeapObjectTag)); |
| __ jmp(&trampoline_loaded, Label::kNear); |
| |
| __ bind(&builtin_trampoline); |
| // TODO(jgruber): Replace this by a lookup in the builtin entry table. |
| __ movq(rbx, |
| __ ExternalReferenceAsOperand( |
| ExternalReference:: |
| address_of_interpreter_entry_trampoline_instruction_start( |
| masm->isolate()), |
| kScratchRegister)); |
| |
| __ bind(&trampoline_loaded); |
| __ addq(rbx, Immediate(interpreter_entry_return_pc_offset.value())); |
| __ Push(rbx); |
| |
| // Initialize dispatch table register. |
| __ Move( |
| kInterpreterDispatchTableRegister, |
| ExternalReference::interpreter_dispatch_table_address(masm->isolate())); |
| |
| // Get the bytecode array pointer from the frame. |
| __ movq(kInterpreterBytecodeArrayRegister, |
| Operand(rbp, InterpreterFrameConstants::kBytecodeArrayFromFp)); |
| |
| if (FLAG_debug_code) { |
| // Check function data field is actually a BytecodeArray object. |
| __ AssertNotSmi(kInterpreterBytecodeArrayRegister); |
| __ CmpObjectType(kInterpreterBytecodeArrayRegister, BYTECODE_ARRAY_TYPE, |
| rbx); |
| __ Assert( |
| equal, |
| AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry); |
| } |
| |
| // Get the target bytecode offset from the frame. |
| __ movq(kInterpreterBytecodeOffsetRegister, |
| Operand(rbp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); |
| __ SmiUntag(kInterpreterBytecodeOffsetRegister, |
| kInterpreterBytecodeOffsetRegister); |
| |
| // Dispatch to the target bytecode. |
| __ movzxbq(r11, Operand(kInterpreterBytecodeArrayRegister, |
| kInterpreterBytecodeOffsetRegister, times_1, 0)); |
| __ movq(kJavaScriptCallCodeStartRegister, |
| Operand(kInterpreterDispatchTableRegister, r11, |
| times_system_pointer_size, 0)); |
| __ jmp(kJavaScriptCallCodeStartRegister); |
| } |
| |
| void Builtins::Generate_InterpreterEnterBytecodeAdvance(MacroAssembler* masm) { |
| // Get bytecode array and bytecode offset from the stack frame. |
| __ movq(kInterpreterBytecodeArrayRegister, |
| Operand(rbp, InterpreterFrameConstants::kBytecodeArrayFromFp)); |
| __ movq(kInterpreterBytecodeOffsetRegister, |
| Operand(rbp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); |
| __ SmiUntag(kInterpreterBytecodeOffsetRegister, |
| kInterpreterBytecodeOffsetRegister); |
| |
| // Load the current bytecode. |
| __ movzxbq(rbx, Operand(kInterpreterBytecodeArrayRegister, |
| kInterpreterBytecodeOffsetRegister, times_1, 0)); |
| |
| // Advance to the next bytecode. |
| Label if_return; |
| AdvanceBytecodeOffsetOrReturn(masm, kInterpreterBytecodeArrayRegister, |
| kInterpreterBytecodeOffsetRegister, rbx, rcx, |
| &if_return); |
| |
| // Convert new bytecode offset to a Smi and save in the stackframe. |
| __ SmiTag(rbx, kInterpreterBytecodeOffsetRegister); |
| __ movq(Operand(rbp, InterpreterFrameConstants::kBytecodeOffsetFromFp), rbx); |
| |
| Generate_InterpreterEnterBytecode(masm); |
| |
| // We should never take the if_return path. |
| __ bind(&if_return); |
| __ Abort(AbortReason::kInvalidBytecodeAdvance); |
| } |
| |
| void Builtins::Generate_InterpreterEnterBytecodeDispatch(MacroAssembler* masm) { |
| Generate_InterpreterEnterBytecode(masm); |
| } |
| |
| void Builtins::Generate_InstantiateAsmJs(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- rax : argument count (preserved for callee) |
| // -- rdx : new target (preserved for callee) |
| // -- rdi : target function (preserved for callee) |
| // ----------------------------------- |
| Label failed; |
| { |
| FrameScope scope(masm, StackFrame::INTERNAL); |
| // Preserve argument count for later compare. |
| __ movq(rcx, rax); |
| // Push the number of arguments to the callee. |
| __ SmiTag(rax, rax); |
| __ Push(rax); |
| // Push a copy of the target function and the new target. |
| __ Push(rdi); |
| __ Push(rdx); |
| |
| // The function. |
| __ Push(rdi); |
| // Copy arguments from caller (stdlib, foreign, heap). |
| Label args_done; |
| for (int j = 0; j < 4; ++j) { |
| Label over; |
| if (j < 3) { |
| __ cmpq(rcx, Immediate(j)); |
| __ j(not_equal, &over, Label::kNear); |
| } |
| for (int i = j - 1; i >= 0; --i) { |
| __ Push(Operand(rbp, StandardFrameConstants::kCallerSPOffset + |
| i * kSystemPointerSize)); |
| } |
| for (int i = 0; i < 3 - j; ++i) { |
| __ PushRoot(RootIndex::kUndefinedValue); |
| } |
| if (j < 3) { |
| __ jmp(&args_done, Label::kNear); |
| __ bind(&over); |
| } |
| } |
| __ bind(&args_done); |
| |
| // Call runtime, on success unwind frame, and parent frame. |
| __ CallRuntime(Runtime::kInstantiateAsmJs, 4); |
| // A smi 0 is returned on failure, an object on success. |
| __ JumpIfSmi(rax, &failed, Label::kNear); |
| |
| __ Drop(2); |
| __ Pop(rcx); |
| __ SmiUntag(rcx, rcx); |
| scope.GenerateLeaveFrame(); |
| |
| __ PopReturnAddressTo(rbx); |
| __ incq(rcx); |
| __ leaq(rsp, Operand(rsp, rcx, times_system_pointer_size, 0)); |
| __ PushReturnAddressFrom(rbx); |
| __ ret(0); |
| |
| __ bind(&failed); |
| // Restore target function and new target. |
| __ Pop(rdx); |
| __ Pop(rdi); |
| __ Pop(rax); |
| __ SmiUntag(rax, rax); |
| } |
| // On failure, tail call back to regular js by re-calling the function |
| // which has be reset to the compile lazy builtin. |
| __ LoadTaggedPointerField(rcx, FieldOperand(rdi, JSFunction::kCodeOffset)); |
| __ JumpCodeObject(rcx); |
| } |
| |
| namespace { |
| void Generate_ContinueToBuiltinHelper(MacroAssembler* masm, |
| bool java_script_builtin, |
| bool with_result) { |
| const RegisterConfiguration* config(RegisterConfiguration::Default()); |
| int allocatable_register_count = config->num_allocatable_general_registers(); |
| if (with_result) { |
| // Overwrite the hole inserted by the deoptimizer with the return value from |
| // the LAZY deopt point. |
| __ movq( |
| Operand(rsp, config->num_allocatable_general_registers() * |
| kSystemPointerSize + |
| BuiltinContinuationFrameConstants::kFixedFrameSize), |
| rax); |
| } |
| for (int i = allocatable_register_count - 1; i >= 0; --i) { |
| int code = config->GetAllocatableGeneralCode(i); |
| __ popq(Register::from_code(code)); |
| if (java_script_builtin && code == kJavaScriptCallArgCountRegister.code()) { |
| __ SmiUntag(Register::from_code(code), Register::from_code(code)); |
| } |
| } |
| __ movq( |
| rbp, |
| Operand(rsp, BuiltinContinuationFrameConstants::kFixedFrameSizeFromFp)); |
| const int offsetToPC = |
| BuiltinContinuationFrameConstants::kFixedFrameSizeFromFp - |
| kSystemPointerSize; |
| __ popq(Operand(rsp, offsetToPC)); |
| __ Drop(offsetToPC / kSystemPointerSize); |
| |
| // Replace the builtin index Smi on the stack with the instruction start |
| // address of the builtin from the builtins table, and then Ret to this |
| // address |
| __ movq(kScratchRegister, Operand(rsp, 0)); |
| __ movq(kScratchRegister, |
| __ EntryFromBuiltinIndexAsOperand(kScratchRegister)); |
| __ movq(Operand(rsp, 0), kScratchRegister); |
| |
| __ Ret(); |
| } |
| } // namespace |
| |
| void Builtins::Generate_ContinueToCodeStubBuiltin(MacroAssembler* masm) { |
| Generate_ContinueToBuiltinHelper(masm, false, false); |
| } |
| |
| void Builtins::Generate_ContinueToCodeStubBuiltinWithResult( |
| MacroAssembler* masm) { |
| Generate_ContinueToBuiltinHelper(masm, false, true); |
| } |
| |
| void Builtins::Generate_ContinueToJavaScriptBuiltin(MacroAssembler* masm) { |
| Generate_ContinueToBuiltinHelper(masm, true, false); |
| } |
| |
| void Builtins::Generate_ContinueToJavaScriptBuiltinWithResult( |
| MacroAssembler* masm) { |
| Generate_ContinueToBuiltinHelper(masm, true, true); |
| } |
| |
| void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) { |
| // Enter an internal frame. |
| { |
| FrameScope scope(masm, StackFrame::INTERNAL); |
| __ CallRuntime(Runtime::kNotifyDeoptimized); |
| // Tear down internal frame. |
| } |
| |
| DCHECK_EQ(kInterpreterAccumulatorRegister.code(), rax.code()); |
| __ movq(rax, Operand(rsp, kPCOnStackSize)); |
| __ ret(1 * kSystemPointerSize); // Remove rax. |
| } |
| |
| // static |
| void Builtins::Generate_FunctionPrototypeApply(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- rax : argc |
| // -- rsp[0] : return address |
| // -- rsp[8] : argArray |
| // -- rsp[16] : thisArg |
| // -- rsp[24] : receiver |
| // ----------------------------------- |
| |
| // 1. Load receiver into rdi, argArray into rbx (if present), remove all |
| // arguments from the stack (including the receiver), and push thisArg (if |
| // present) instead. |
| { |
| Label no_arg_array, no_this_arg; |
| StackArgumentsAccessor args(rsp, rax); |
| __ LoadRoot(rdx, RootIndex::kUndefinedValue); |
| __ movq(rbx, rdx); |
| __ movq(rdi, args.GetReceiverOperand()); |
| __ testq(rax, rax); |
| __ j(zero, &no_this_arg, Label::kNear); |
| { |
| __ movq(rdx, args.GetArgumentOperand(1)); |
| __ cmpq(rax, Immediate(1)); |
| __ j(equal, &no_arg_array, Label::kNear); |
| __ movq(rbx, args.GetArgumentOperand(2)); |
| __ bind(&no_arg_array); |
| } |
| __ bind(&no_this_arg); |
| __ PopReturnAddressTo(rcx); |
| __ leaq(rsp, |
| Operand(rsp, rax, times_system_pointer_size, kSystemPointerSize)); |
| __ Push(rdx); |
| __ PushReturnAddressFrom(rcx); |
| } |
| |
| // ----------- S t a t e ------------- |
| // -- rbx : argArray |
| // -- rdi : receiver |
| // -- rsp[0] : return address |
| // -- rsp[8] : thisArg |
| // ----------------------------------- |
| |
| // 2. We don't need to check explicitly for callable receiver here, |
| // since that's the first thing the Call/CallWithArrayLike builtins |
| // will do. |
| |
| // 3. Tail call with no arguments if argArray is null or undefined. |
| Label no_arguments; |
| __ JumpIfRoot(rbx, RootIndex::kNullValue, &no_arguments, Label::kNear); |
| __ JumpIfRoot(rbx, RootIndex::kUndefinedValue, &no_arguments, Label::kNear); |
| |
| // 4a. Apply the receiver to the given argArray. |
| __ Jump(BUILTIN_CODE(masm->isolate(), CallWithArrayLike), |
| RelocInfo::CODE_TARGET); |
| |
| // 4b. The argArray is either null or undefined, so we tail call without any |
| // arguments to the receiver. Since we did not create a frame for |
| // Function.prototype.apply() yet, we use a normal Call builtin here. |
| __ bind(&no_arguments); |
| { |
| __ Set(rax, 0); |
| __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET); |
| } |
| } |
| |
| // static |
| void Builtins::Generate_FunctionPrototypeCall(MacroAssembler* masm) { |
| // Stack Layout: |
| // rsp[0] : Return address |
| // rsp[8] : Argument n |
| // rsp[16] : Argument n-1 |
| // ... |
| // rsp[8 * n] : Argument 1 |
| // rsp[8 * (n + 1)] : Receiver (callable to call) |
| // |
| // rax contains the number of arguments, n, not counting the receiver. |
| // |
| // 1. Make sure we have at least one argument. |
| { |
| Label done; |
| __ testq(rax, rax); |
| __ j(not_zero, &done, Label::kNear); |
| __ PopReturnAddressTo(rbx); |
| __ PushRoot(RootIndex::kUndefinedValue); |
| __ PushReturnAddressFrom(rbx); |
| __ incq(rax); |
| __ bind(&done); |
| } |
| |
| // 2. Get the callable to call (passed as receiver) from the stack. |
| { |
| StackArgumentsAccessor args(rsp, rax); |
| __ movq(rdi, args.GetReceiverOperand()); |
| } |
| |
| // 3. Shift arguments and return address one slot down on the stack |
| // (overwriting the original receiver). Adjust argument count to make |
| // the original first argument the new receiver. |
| { |
| Label loop; |
| __ movq(rcx, rax); |
| StackArgumentsAccessor args(rsp, rcx); |
| __ bind(&loop); |
| __ movq(rbx, args.GetArgumentOperand(1)); |
| __ movq(args.GetArgumentOperand(0), rbx); |
| __ decq(rcx); |
| __ j(not_zero, &loop); // While non-zero. |
| __ DropUnderReturnAddress(1, rbx); // Drop one slot under return address. |
| __ decq(rax); // One fewer argument (first argument is new receiver). |
| } |
| |
| // 4. Call the callable. |
| // Since we did not create a frame for Function.prototype.call() yet, |
| // we use a normal Call builtin here. |
| __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET); |
| } |
| |
| void Builtins::Generate_ReflectApply(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- rax : argc |
| // -- rsp[0] : return address |
| // -- rsp[8] : argumentsList |
| // -- rsp[16] : thisArgument |
| // -- rsp[24] : target |
| // -- rsp[32] : receiver |
| // ----------------------------------- |
| |
| // 1. Load target into rdi (if present), argumentsList into rbx (if present), |
| // remove all arguments from the stack (including the receiver), and push |
| // thisArgument (if present) instead. |
| { |
| Label done; |
| StackArgumentsAccessor args(rsp, rax); |
| __ LoadRoot(rdi, RootIndex::kUndefinedValue); |
| __ movq(rdx, rdi); |
| __ movq(rbx, rdi); |
| __ cmpq(rax, Immediate(1)); |
| __ j(below, &done, Label::kNear); |
| __ movq(rdi, args.GetArgumentOperand(1)); // target |
| __ j(equal, &done, Label::kNear); |
| __ movq(rdx, args.GetArgumentOperand(2)); // thisArgument |
| __ cmpq(rax, Immediate(3)); |
| __ j(below, &done, Label::kNear); |
| __ movq(rbx, args.GetArgumentOperand(3)); // argumentsList |
| __ bind(&done); |
| __ PopReturnAddressTo(rcx); |
| __ leaq(rsp, |
| Operand(rsp, rax, times_system_pointer_size, kSystemPointerSize)); |
| __ Push(rdx); |
| __ PushReturnAddressFrom(rcx); |
| } |
| |
| // ----------- S t a t e ------------- |
| // -- rbx : argumentsList |
| // -- rdi : target |
| // -- rsp[0] : return address |
| // -- rsp[8] : thisArgument |
| // ----------------------------------- |
| |
| // 2. We don't need to check explicitly for callable target here, |
| // since that's the first thing the Call/CallWithArrayLike builtins |
| // will do. |
| |
| // 3. Apply the target to the given argumentsList. |
| __ Jump(BUILTIN_CODE(masm->isolate(), CallWithArrayLike), |
| RelocInfo::CODE_TARGET); |
| } |
| |
| void Builtins::Generate_ReflectConstruct(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- rax : argc |
| // -- rsp[0] : return address |
| // -- rsp[8] : new.target (optional) |
| // -- rsp[16] : argumentsList |
| // -- rsp[24] : target |
| // -- rsp[32] : receiver |
| // ----------------------------------- |
| |
| // 1. Load target into rdi (if present), argumentsList into rbx (if present), |
| // new.target into rdx (if present, otherwise use target), remove all |
| // arguments from the stack (including the receiver), and push thisArgument |
| // (if present) instead. |
| { |
| Label done; |
| StackArgumentsAccessor args(rsp, rax); |
| __ LoadRoot(rdi, RootIndex::kUndefinedValue); |
| __ movq(rdx, rdi); |
| __ movq(rbx, rdi); |
| __ cmpq(rax, Immediate(1)); |
| __ j(below, &done, Label::kNear); |
| __ movq(rdi, args.GetArgumentOperand(1)); // target |
| __ movq(rdx, rdi); // new.target defaults to target |
| __ j(equal, &done, Label::kNear); |
| __ movq(rbx, args.GetArgumentOperand(2)); // argumentsList |
| __ cmpq(rax, Immediate(3)); |
| __ j(below, &done, Label::kNear); |
| __ movq(rdx, args.GetArgumentOperand(3)); // new.target |
| __ bind(&done); |
| __ PopReturnAddressTo(rcx); |
| __ leaq(rsp, |
| Operand(rsp, rax, times_system_pointer_size, kSystemPointerSize)); |
| __ PushRoot(RootIndex::kUndefinedValue); |
| __ PushReturnAddressFrom(rcx); |
| } |
| |
| // ----------- S t a t e ------------- |
| // -- rbx : argumentsList |
| // -- rdx : new.target |
| // -- rdi : target |
| // -- rsp[0] : return address |
| // -- rsp[8] : receiver (undefined) |
| // ----------------------------------- |
| |
| // 2. We don't need to check explicitly for constructor target here, |
| // since that's the first thing the Construct/ConstructWithArrayLike |
| // builtins will do. |
| |
| // 3. We don't need to check explicitly for constructor new.target here, |
| // since that's the second thing the Construct/ConstructWithArrayLike |
| // builtins will do. |
| |
| // 4. Construct the target with the given new.target and argumentsList. |
| __ Jump(BUILTIN_CODE(masm->isolate(), ConstructWithArrayLike), |
| RelocInfo::CODE_TARGET); |
| } |
| |
| void Builtins::Generate_InternalArrayConstructor(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- rax : argc |
| // -- rsp[0] : return address |
| // -- rsp[8] : last argument |
| // ----------------------------------- |
| |
| if (FLAG_debug_code) { |
| // Initial map for the builtin InternalArray functions should be maps. |
| __ LoadTaggedPointerField( |
| rbx, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset)); |
| // Will both indicate a nullptr and a Smi. |
| STATIC_ASSERT(kSmiTag == 0); |
| Condition not_smi = NegateCondition(masm->CheckSmi(rbx)); |
| __ Check(not_smi, |
| AbortReason::kUnexpectedInitialMapForInternalArrayFunction); |
| __ CmpObjectType(rbx, MAP_TYPE, rcx); |
| __ Check(equal, AbortReason::kUnexpectedInitialMapForInternalArrayFunction); |
| } |
| |
| // Run the native code for the InternalArray function called as a normal |
| // function. |
| __ Jump(BUILTIN_CODE(masm->isolate(), InternalArrayConstructorImpl), |
| RelocInfo::CODE_TARGET); |
| } |
| |
| static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) { |
| __ pushq(rbp); |
| __ movq(rbp, rsp); |
| |
| // Store the arguments adaptor context sentinel. |
| __ Push(Immediate(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR))); |
| |
| // Push the function on the stack. |
| __ Push(rdi); |
| |
| // Preserve the number of arguments on the stack. Must preserve rax, |
| // rbx and rcx because these registers are used when copying the |
| // arguments and the receiver. |
| __ SmiTag(r8, rax); |
| __ Push(r8); |
| |
| __ Push(Immediate(0)); // Padding. |
| } |
| |
| static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) { |
| // Retrieve the number of arguments from the stack. Number is a Smi. |
| __ movq(rbx, Operand(rbp, ArgumentsAdaptorFrameConstants::kLengthOffset)); |
| |
| // Leave the frame. |
| __ movq(rsp, rbp); |
| __ popq(rbp); |
| |
| // Remove caller arguments from the stack. |
| __ PopReturnAddressTo(rcx); |
| SmiIndex index = masm->SmiToIndex(rbx, rbx, kSystemPointerSizeLog2); |
| __ leaq(rsp, Operand(rsp, index.reg, index.scale, 1 * kSystemPointerSize)); |
| __ PushReturnAddressFrom(rcx); |
| } |
| |
| void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- rax : actual number of arguments |
| // -- rbx : expected number of arguments |
| // -- rdx : new target (passed through to callee) |
| // -- rdi : function (passed through to callee) |
| // ----------------------------------- |
| |
| Label dont_adapt_arguments, stack_overflow, skip_adapt_arguments; |
| __ cmpq(rbx, Immediate(SharedFunctionInfo::kDontAdaptArgumentsSentinel)); |
| __ j(equal, &dont_adapt_arguments); |
| __ LoadTaggedPointerField( |
| rcx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset)); |
| __ testl( |
| FieldOperand(rcx, SharedFunctionInfo::kFlagsOffset), |
| Immediate(SharedFunctionInfo::IsSafeToSkipArgumentsAdaptorBit::kMask)); |
| __ j(not_zero, &skip_adapt_arguments); |
| |
| // ------------------------------------------- |
| // Adapt arguments. |
| // ------------------------------------------- |
| { |
| EnterArgumentsAdaptorFrame(masm); |
| Generate_StackOverflowCheck(masm, rbx, rcx, &stack_overflow); |
| |
| Label under_application, over_application, invoke; |
| __ cmpq(rax, rbx); |
| __ j(less, &under_application, Label::kNear); |
| |
| // Enough parameters: Actual >= expected. |
| __ bind(&over_application); |
| { |
| // Copy receiver and all expected arguments. |
| const int offset = StandardFrameConstants::kCallerSPOffset; |
| __ leaq(r8, Operand(rbp, rax, times_system_pointer_size, offset)); |
| __ Set(rax, -1); // account for receiver |
| |
| Label copy; |
| __ bind(©); |
| __ incq(rax); |
| __ Push(Operand(r8, 0)); |
| __ subq(r8, Immediate(kSystemPointerSize)); |
| __ cmpq(rax, rbx); |
| __ j(less, ©); |
| __ jmp(&invoke, Label::kNear); |
| } |
| |
| // Too few parameters: Actual < expected. |
| __ bind(&under_application); |
| { |
| // Copy receiver and all actual arguments. |
| const int offset = StandardFrameConstants::kCallerSPOffset; |
| __ leaq(r9, Operand(rbp, rax, times_system_pointer_size, offset)); |
| __ Set(r8, -1); // account for receiver |
| |
| Label copy; |
| __ bind(©); |
| __ incq(r8); |
| __ Push(Operand(r9, 0)); |
| __ subq(r9, Immediate(kSystemPointerSize)); |
| __ cmpq(r8, rax); |
| __ j(less, ©); |
| |
| // Fill remaining expected arguments with undefined values. |
| Label fill; |
| __ LoadRoot(kScratchRegister, RootIndex::kUndefinedValue); |
| __ bind(&fill); |
| __ incq(rax); |
| __ Push(kScratchRegister); |
| __ cmpq(rax, rbx); |
| __ j(less, &fill); |
| } |
| |
| // Call the entry point. |
| __ bind(&invoke); |
| // rax : expected number of arguments |
| // rdx : new target (passed through to callee) |
| // rdi : function (passed through to callee) |
| static_assert(kJavaScriptCallCodeStartRegister == rcx, "ABI mismatch"); |
| __ LoadTaggedPointerField(rcx, FieldOperand(rdi, JSFunction::kCodeOffset)); |
| __ CallCodeObject(rcx); |
| |
| // Store offset of return address for deoptimizer. |
| masm->isolate()->heap()->SetArgumentsAdaptorDeoptPCOffset( |
| masm->pc_offset()); |
| |
| // Leave frame and return. |
| LeaveArgumentsAdaptorFrame(masm); |
| __ ret(0); |
| } |
| |
| // ------------------------------------------- |
| // Skip adapt arguments. |
| // ------------------------------------------- |
| __ bind(&skip_adapt_arguments); |
| { |
| // The callee cannot observe the actual arguments, so it's safe to just |
| // pass the expected arguments by massaging the stack appropriately. See |
| // http://bit.ly/v8-faster-calls-with-arguments-mismatch for details. |
| Label under_application, over_application, invoke; |
| __ PopReturnAddressTo(rcx); |
| __ cmpq(rax, rbx); |
| __ j(less, &under_application, Label::kNear); |
| |
| __ bind(&over_application); |
| { |
| // Remove superfluous parameters from the stack. |
| __ xchgq(rax, rbx); |
| __ subq(rbx, rax); |
| __ leaq(rsp, Operand(rsp, rbx, times_system_pointer_size, 0)); |
| __ jmp(&invoke, Label::kNear); |
| } |
| |
| __ bind(&under_application); |
| { |
| // Fill remaining expected arguments with undefined values. |
| Label fill; |
| __ LoadRoot(kScratchRegister, RootIndex::kUndefinedValue); |
| __ bind(&fill); |
| __ incq(rax); |
| __ Push(kScratchRegister); |
| __ cmpq(rax, rbx); |
| __ j(less, &fill); |
| } |
| |
| __ bind(&invoke); |
| __ PushReturnAddressFrom(rcx); |
| } |
| |
| // ------------------------------------------- |
| // Don't adapt arguments. |
| // ------------------------------------------- |
| __ bind(&dont_adapt_arguments); |
| static_assert(kJavaScriptCallCodeStartRegister == rcx, "ABI mismatch"); |
| __ LoadTaggedPointerField(rcx, FieldOperand(rdi, JSFunction::kCodeOffset)); |
| __ JumpCodeObject(rcx); |
| |
| __ bind(&stack_overflow); |
| { |
| FrameScope frame(masm, StackFrame::MANUAL); |
| __ CallRuntime(Runtime::kThrowStackOverflow); |
| __ int3(); |
| } |
| } |
| |
| // static |
| void Builtins::Generate_CallOrConstructVarargs(MacroAssembler* masm, |
| Handle<Code> code) { |
| // ----------- S t a t e ------------- |
| // -- rdi : target |
| // -- rax : number of parameters on the stack (not including the receiver) |
| // -- rbx : arguments list (a FixedArray) |
| // -- rcx : len (number of elements to push from args) |
| // -- rdx : new.target (for [[Construct]]) |
| // -- rsp[0] : return address |
| // ----------------------------------- |
| Register scratch = r11; |
| Register decompr_scratch = COMPRESS_POINTERS_BOOL ? r12 : no_reg; |
| |
| if (masm->emit_debug_code()) { |
| // Allow rbx to be a FixedArray, or a FixedDoubleArray if rcx == 0. |
| Label ok, fail; |
| __ AssertNotSmi(rbx); |
| Register map = r9; |
| __ LoadTaggedPointerField(map, FieldOperand(rbx, HeapObject::kMapOffset)); |
| __ CmpInstanceType(map, FIXED_ARRAY_TYPE); |
| __ j(equal, &ok); |
| __ CmpInstanceType(map, FIXED_DOUBLE_ARRAY_TYPE); |
| __ j(not_equal, &fail); |
| __ cmpl(rcx, Immediate(0)); |
| __ j(equal, &ok); |
| // Fall through. |
| __ bind(&fail); |
| __ Abort(AbortReason::kOperandIsNotAFixedArray); |
| |
| __ bind(&ok); |
| } |
| |
| Label stack_overflow; |
| Generate_StackOverflowCheck(masm, rcx, r8, &stack_overflow, Label::kNear); |
| |
| // Push additional arguments onto the stack. |
| { |
| Register value = scratch; |
| __ PopReturnAddressTo(r8); |
| __ Set(r9, 0); |
| Label done, push, loop; |
| __ bind(&loop); |
| __ cmpl(r9, rcx); |
| __ j(equal, &done, Label::kNear); |
| // Turn the hole into undefined as we go. |
| __ LoadAnyTaggedField( |
| value, |
| FieldOperand(rbx, r9, times_tagged_size, FixedArray::kHeaderSize), |
| decompr_scratch); |
| __ CompareRoot(value, RootIndex::kTheHoleValue); |
| __ j(not_equal, &push, Label::kNear); |
| __ LoadRoot(value, RootIndex::kUndefinedValue); |
| __ bind(&push); |
| __ Push(value); |
| __ incl(r9); |
| __ jmp(&loop); |
| __ bind(&done); |
| __ PushReturnAddressFrom(r8); |
| __ addq(rax, r9); |
| } |
| |
| // Tail-call to the actual Call or Construct builtin. |
| __ Jump(code, RelocInfo::CODE_TARGET); |
| |
| __ bind(&stack_overflow); |
| __ TailCallRuntime(Runtime::kThrowStackOverflow); |
| } |
| |
| // static |
| void Builtins::Generate_CallOrConstructForwardVarargs(MacroAssembler* masm, |
| CallOrConstructMode mode, |
| Handle<Code> code) { |
| // ----------- S t a t e ------------- |
| // -- rax : the number of arguments (not including the receiver) |
| // -- rdx : the new target (for [[Construct]] calls) |
| // -- rdi : the target to call (can be any Object) |
| // -- rcx : start index (to support rest parameters) |
| // ----------------------------------- |
| |
| // Check if new.target has a [[Construct]] internal method. |
| if (mode == CallOrConstructMode::kConstruct) { |
| Label new_target_constructor, new_target_not_constructor; |
| __ JumpIfSmi(rdx, &new_target_not_constructor, Label::kNear); |
| __ LoadTaggedPointerField(rbx, FieldOperand(rdx, HeapObject::kMapOffset)); |
| __ testb(FieldOperand(rbx, Map::kBitFieldOffset), |
| Immediate(Map::IsConstructorBit::kMask)); |
| __ j(not_zero, &new_target_constructor, Label::kNear); |
| __ bind(&new_target_not_constructor); |
| { |
| FrameScope scope(masm, StackFrame::MANUAL); |
| __ EnterFrame(StackFrame::INTERNAL); |
| __ Push(rdx); |
| __ CallRuntime(Runtime::kThrowNotConstructor); |
| } |
| __ bind(&new_target_constructor); |
| } |
| |
| // Check if we have an arguments adaptor frame below the function frame. |
| Label arguments_adaptor, arguments_done; |
| __ movq(rbx, Operand(rbp, StandardFrameConstants::kCallerFPOffset)); |
| __ cmpq(Operand(rbx, CommonFrameConstants::kContextOrFrameTypeOffset), |
| Immediate(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR))); |
| __ j(equal, &arguments_adaptor, Label::kNear); |
| { |
| __ movq(r8, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset)); |
| __ LoadTaggedPointerField( |
| r8, FieldOperand(r8, JSFunction::kSharedFunctionInfoOffset)); |
| __ movzxwq( |
| r8, FieldOperand(r8, SharedFunctionInfo::kFormalParameterCountOffset)); |
| __ movq(rbx, rbp); |
| } |
| __ jmp(&arguments_done, Label::kNear); |
| __ bind(&arguments_adaptor); |
| { |
| __ SmiUntag(r8, |
| Operand(rbx, ArgumentsAdaptorFrameConstants::kLengthOffset)); |
| } |
| __ bind(&arguments_done); |
| |
| Label stack_done, stack_overflow; |
| __ subl(r8, rcx); |
| __ j(less_equal, &stack_done); |
| { |
| // Check for stack overflow. |
| Generate_StackOverflowCheck(masm, r8, rcx, &stack_overflow, Label::kNear); |
| |
| // Forward the arguments from the caller frame. |
| { |
| Label loop; |
| __ addl(rax, r8); |
| __ PopReturnAddressTo(rcx); |
| __ bind(&loop); |
| { |
| StackArgumentsAccessor args(rbx, r8, ARGUMENTS_DONT_CONTAIN_RECEIVER); |
| __ Push(args.GetArgumentOperand(0)); |
| __ decl(r8); |
| __ j(not_zero, &loop); |
| } |
| __ PushReturnAddressFrom(rcx); |
| } |
| } |
| __ jmp(&stack_done, Label::kNear); |
| __ bind(&stack_overflow); |
| __ TailCallRuntime(Runtime::kThrowStackOverflow); |
| __ bind(&stack_done); |
| |
| // Tail-call to the {code} handler. |
| __ Jump(code, RelocInfo::CODE_TARGET); |
| } |
| |
| // static |
| void Builtins::Generate_CallFunction(MacroAssembler* masm, |
| ConvertReceiverMode mode) { |
| // ----------- S t a t e ------------- |
| // -- rax : the number of arguments (not including the receiver) |
| // -- rdi : the function to call (checked to be a JSFunction) |
| // ----------------------------------- |
| |
| StackArgumentsAccessor args(rsp, rax); |
| __ AssertFunction(rdi); |
| |
| // ES6 section 9.2.1 [[Call]] ( thisArgument, argumentsList) |
| // Check that the function is not a "classConstructor". |
| Label class_constructor; |
| __ LoadTaggedPointerField( |
| rdx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset)); |
| __ testl(FieldOperand(rdx, SharedFunctionInfo::kFlagsOffset), |
| Immediate(SharedFunctionInfo::IsClassConstructorBit::kMask)); |
| __ j(not_zero, &class_constructor); |
| |
| // ----------- S t a t e ------------- |
| // -- rax : the number of arguments (not including the receiver) |
| // -- rdx : the shared function info. |
| // -- rdi : the function to call (checked to be a JSFunction) |
| // ----------------------------------- |
| |
| // Enter the context of the function; ToObject has to run in the function |
| // context, and we also need to take the global proxy from the function |
| // context in case of conversion. |
| __ LoadTaggedPointerField(rsi, FieldOperand(rdi, JSFunction::kContextOffset)); |
| // We need to convert the receiver for non-native sloppy mode functions. |
| Label done_convert; |
| __ testl(FieldOperand(rdx, SharedFunctionInfo::kFlagsOffset), |
| Immediate(SharedFunctionInfo::IsNativeBit::kMask | |
| SharedFunctionInfo::IsStrictBit::kMask)); |
| __ j(not_zero, &done_convert); |
| { |
| // ----------- S t a t e ------------- |
| // -- rax : the number of arguments (not including the receiver) |
| // -- rdx : the shared function info. |
| // -- rdi : the function to call (checked to be a JSFunction) |
| // -- rsi : the function context. |
| // ----------------------------------- |
| |
| if (mode == ConvertReceiverMode::kNullOrUndefined) { |
| // Patch receiver to global proxy. |
| __ LoadGlobalProxy(rcx); |
| } else { |
| Label convert_to_object, convert_receiver; |
| __ movq(rcx, args.GetReceiverOperand()); |
| __ JumpIfSmi(rcx, &convert_to_object, Label::kNear); |
| STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE); |
| __ CmpObjectType(rcx, FIRST_JS_RECEIVER_TYPE, rbx); |
| __ j(above_equal, &done_convert); |
| if (mode != ConvertReceiverMode::kNotNullOrUndefined) { |
| Label convert_global_proxy; |
| __ JumpIfRoot(rcx, RootIndex::kUndefinedValue, &convert_global_proxy, |
| Label::kNear); |
| __ JumpIfNotRoot(rcx, RootIndex::kNullValue, &convert_to_object, |
| Label::kNear); |
| __ bind(&convert_global_proxy); |
| { |
| // Patch receiver to global proxy. |
| __ LoadGlobalProxy(rcx); |
| } |
| __ jmp(&convert_receiver); |
| } |
| __ bind(&convert_to_object); |
| { |
| // Convert receiver using ToObject. |
| // TODO(bmeurer): Inline the allocation here to avoid building the frame |
| // in the fast case? (fall back to AllocateInNewSpace?) |
| FrameScope scope(masm, StackFrame::INTERNAL); |
| __ SmiTag(rax, rax); |
| __ Push(rax); |
| __ Push(rdi); |
| __ movq(rax, rcx); |
| __ Push(rsi); |
| __ Call(BUILTIN_CODE(masm->isolate(), ToObject), |
| RelocInfo::CODE_TARGET); |
| __ Pop(rsi); |
| __ movq(rcx, rax); |
| __ Pop(rdi); |
| __ Pop(rax); |
| __ SmiUntag(rax, rax); |
| } |
| __ LoadTaggedPointerField( |
| rdx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset)); |
| __ bind(&convert_receiver); |
| } |
| __ movq(args.GetReceiverOperand(), rcx); |
| } |
| __ bind(&done_convert); |
| |
| // ----------- S t a t e ------------- |
| // -- rax : the number of arguments (not including the receiver) |
| // -- rdx : the shared function info. |
| // -- rdi : the function to call (checked to be a JSFunction) |
| // -- rsi : the function context. |
| // ----------------------------------- |
| |
| __ movzxwq( |
| rbx, FieldOperand(rdx, SharedFunctionInfo::kFormalParameterCountOffset)); |
| ParameterCount actual(rax); |
| ParameterCount expected(rbx); |
| |
| __ InvokeFunctionCode(rdi, no_reg, expected, actual, JUMP_FUNCTION); |
| |
| // The function is a "classConstructor", need to raise an exception. |
| __ bind(&class_constructor); |
| { |
| FrameScope frame(masm, StackFrame::INTERNAL); |
| __ Push(rdi); |
| __ CallRuntime(Runtime::kThrowConstructorNonCallableError); |
| } |
| } |
| |
| namespace { |
| |
| void Generate_PushBoundArguments(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- rax : the number of arguments (not including the receiver) |
| // -- rdx : new.target (only in case of [[Construct]]) |
| // -- rdi : target (checked to be a JSBoundFunction) |
| // ----------------------------------- |
| |
| Register decompr_scratch = COMPRESS_POINTERS_BOOL ? r11 : no_reg; |
| |
| // Load [[BoundArguments]] into rcx and length of that into rbx. |
| Label no_bound_arguments; |
| __ LoadTaggedPointerField( |
| rcx, FieldOperand(rdi, JSBoundFunction::kBoundArgumentsOffset)); |
| __ SmiUntagField(rbx, FieldOperand(rcx, FixedArray::kLengthOffset)); |
| __ testl(rbx, rbx); |
| __ j(zero, &no_bound_arguments); |
| { |
| // ----------- S t a t e ------------- |
| // -- rax : the number of arguments (not including the receiver) |
| // -- rdx : new.target (only in case of [[Construct]]) |
| // -- rdi : target (checked to be a JSBoundFunction) |
| // -- rcx : the [[BoundArguments]] (implemented as FixedArray) |
| // -- rbx : the number of [[BoundArguments]] (checked to be non-zero) |
| // ----------------------------------- |
| |
| // Check the stack for overflow. |
| { |
| Label done; |
| __ shlq(rbx, Immediate(kSystemPointerSizeLog2)); |
| __ movq(kScratchRegister, rsp); |
| __ subq(kScratchRegister, rbx); |
| // We are not trying to catch interruptions (i.e. debug break and |
| // preemption) here, so check the "real stack limit". |
| __ CompareRoot(kScratchRegister, RootIndex::kRealStackLimit); |
| __ j(above_equal, &done, Label::kNear); |
| { |
| FrameScope scope(masm, StackFrame::MANUAL); |
| __ EnterFrame(StackFrame::INTERNAL); |
| __ CallRuntime(Runtime::kThrowStackOverflow); |
| } |
| __ bind(&done); |
| } |
| |
| // Reserve stack space for the [[BoundArguments]]. |
| __ movq(kScratchRegister, rbx); |
| __ AllocateStackSpace(kScratchRegister); |
| |
| // Adjust effective number of arguments to include return address. |
| __ incl(rax); |
| |
| // Relocate arguments and return address down the stack. |
| { |
| Label loop; |
| __ Set(rcx, 0); |
| __ addq(rbx, rsp); |
| __ bind(&loop); |
| __ movq(kScratchRegister, |
| Operand(rbx, rcx, times_system_pointer_size, 0)); |
| __ movq(Operand(rsp, rcx, times_system_pointer_size, 0), |
| kScratchRegister); |
| __ incl(rcx); |
| __ cmpl(rcx, rax); |
| __ j(less, &loop); |
| } |
| |
| // Copy [[BoundArguments]] to the stack (below the arguments). |
| { |
| Label loop; |
| __ LoadTaggedPointerField( |
| rcx, FieldOperand(rdi, JSBoundFunction::kBoundArgumentsOffset)); |
| __ SmiUntagField(rbx, FieldOperand(rcx, FixedArray::kLengthOffset)); |
| __ bind(&loop); |
| // Instead of doing decl(rbx) here subtract kTaggedSize from the header |
| // offset in order to move be able to move decl(rbx) right before the loop |
| // condition. This is necessary in order to avoid flags corruption by |
| // pointer decompression code. |
| __ LoadAnyTaggedField(r12, |
| FieldOperand(rcx, rbx, times_tagged_size, |
| FixedArray::kHeaderSize - kTaggedSize), |
| decompr_scratch); |
| __ movq(Operand(rsp, rax, times_system_pointer_size, 0), r12); |
| __ leal(rax, Operand(rax, 1)); |
| __ decl(rbx); |
| __ j(greater, &loop); |
| } |
| |
| // Adjust effective number of arguments (rax contains the number of |
| // arguments from the call plus return address plus the number of |
| // [[BoundArguments]]), so we need to subtract one for the return address. |
| __ decl(rax); |
| } |
| __ bind(&no_bound_arguments); |
| } |
| |
| } // namespace |
| |
| // static |
| void Builtins::Generate_CallBoundFunctionImpl(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- rax : the number of arguments (not including the receiver) |
| // -- rdi : the function to call (checked to be a JSBoundFunction) |
| // ----------------------------------- |
| __ AssertBoundFunction(rdi); |
| |
| Register decompr_scratch = COMPRESS_POINTERS_BOOL ? r11 : no_reg; |
| |
| // Patch the receiver to [[BoundThis]]. |
| StackArgumentsAccessor args(rsp, rax); |
| __ LoadAnyTaggedField(rbx, |
| FieldOperand(rdi, JSBoundFunction::kBoundThisOffset), |
| decompr_scratch); |
| __ movq(args.GetReceiverOperand(), rbx); |
| |
| // Push the [[BoundArguments]] onto the stack. |
| Generate_PushBoundArguments(masm); |
| |
| // Call the [[BoundTargetFunction]] via the Call builtin. |
| __ LoadTaggedPointerField( |
| rdi, FieldOperand(rdi, JSBoundFunction::kBoundTargetFunctionOffset)); |
| __ Jump(BUILTIN_CODE(masm->isolate(), Call_ReceiverIsAny), |
| RelocInfo::CODE_TARGET); |
| } |
| |
| // static |
| void Builtins::Generate_Call(MacroAssembler* masm, ConvertReceiverMode mode) { |
| // ----------- S t a t e ------------- |
| // -- rax : the number of arguments (not including the receiver) |
| // -- rdi : the target to call (can be any Object) |
| // ----------------------------------- |
| StackArgumentsAccessor args(rsp, rax); |
| |
| Label non_callable; |
| __ JumpIfSmi(rdi, &non_callable); |
| __ CmpObjectType(rdi, JS_FUNCTION_TYPE, rcx); |
| __ Jump(masm->isolate()->builtins()->CallFunction(mode), |
| RelocInfo::CODE_TARGET, equal); |
| |
| __ CmpInstanceType(rcx, JS_BOUND_FUNCTION_TYPE); |
| __ Jump(BUILTIN_CODE(masm->isolate(), CallBoundFunction), |
| RelocInfo::CODE_TARGET, equal); |
| |
| // Check if target has a [[Call]] internal method. |
| __ testb(FieldOperand(rcx, Map::kBitFieldOffset), |
| Immediate(Map::IsCallableBit::kMask)); |
| __ j(zero, &non_callable, Label::kNear); |
| |
| // Check if target is a proxy and call CallProxy external builtin |
| __ CmpInstanceType(rcx, JS_PROXY_TYPE); |
| __ Jump(BUILTIN_CODE(masm->isolate(), CallProxy), RelocInfo::CODE_TARGET, |
| equal); |
| |
| // 2. Call to something else, which might have a [[Call]] internal method (if |
| // not we raise an exception). |
| |
| // Overwrite the original receiver with the (original) target. |
| __ movq(args.GetReceiverOperand(), rdi); |
| // Let the "call_as_function_delegate" take care of the rest. |
| __ LoadNativeContextSlot(Context::CALL_AS_FUNCTION_DELEGATE_INDEX, rdi); |
| __ Jump(masm->isolate()->builtins()->CallFunction( |
| ConvertReceiverMode::kNotNullOrUndefined), |
| RelocInfo::CODE_TARGET); |
| |
| // 3. Call to something that is not callable. |
| __ bind(&non_callable); |
| { |
| FrameScope scope(masm, StackFrame::INTERNAL); |
| __ Push(rdi); |
| __ CallRuntime(Runtime::kThrowCalledNonCallable); |
| } |
| } |
| |
| // static |
| void Builtins::Generate_ConstructFunction(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- rax : the number of arguments (not including the receiver) |
| // -- rdx : the new target (checked to be a constructor) |
| // -- rdi : the constructor to call (checked to be a JSFunction) |
| // ----------------------------------- |
| __ AssertConstructor(rdi); |
| __ AssertFunction(rdi); |
| |
| // Calling convention for function specific ConstructStubs require |
| // rbx to contain either an AllocationSite or undefined. |
| __ LoadRoot(rbx, RootIndex::kUndefinedValue); |
| |
| // Jump to JSBuiltinsConstructStub or JSConstructStubGeneric. |
| __ LoadTaggedPointerField( |
| rcx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset)); |
| __ testl(FieldOperand(rcx, SharedFunctionInfo::kFlagsOffset), |
| Immediate(SharedFunctionInfo::ConstructAsBuiltinBit::kMask)); |
| __ Jump(BUILTIN_CODE(masm->isolate(), JSBuiltinsConstructStub), |
| RelocInfo::CODE_TARGET, not_zero); |
| |
| __ Jump(BUILTIN_CODE(masm->isolate(), JSConstructStubGeneric), |
| RelocInfo::CODE_TARGET); |
| } |
| |
| // static |
| void Builtins::Generate_ConstructBoundFunction(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- rax : the number of arguments (not including the receiver) |
| // -- rdx : the new target (checked to be a constructor) |
| // -- rdi : the constructor to call (checked to be a JSBoundFunction) |
| // ----------------------------------- |
| __ AssertConstructor(rdi); |
| __ AssertBoundFunction(rdi); |
| |
| // Push the [[BoundArguments]] onto the stack. |
| Generate_PushBoundArguments(masm); |
| |
| // Patch new.target to [[BoundTargetFunction]] if new.target equals target. |
| { |
| Label done; |
| __ cmpq(rdi, rdx); |
| __ j(not_equal, &done, Label::kNear); |
| __ LoadTaggedPointerField( |
| rdx, FieldOperand(rdi, JSBoundFunction::kBoundTargetFunctionOffset)); |
| __ bind(&done); |
| } |
| |
| // Construct the [[BoundTargetFunction]] via the Construct builtin. |
| __ LoadTaggedPointerField( |
| rdi, FieldOperand(rdi, JSBoundFunction::kBoundTargetFunctionOffset)); |
| __ Jump(BUILTIN_CODE(masm->isolate(), Construct), RelocInfo::CODE_TARGET); |
| } |
| |
| // static |
| void Builtins::Generate_Construct(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- rax : the number of arguments (not including the receiver) |
| // -- rdx : the new target (either the same as the constructor or |
| // the JSFunction on which new was invoked initially) |
| // -- rdi : the constructor to call (can be any Object) |
| // ----------------------------------- |
| StackArgumentsAccessor args(rsp, rax); |
| |
| // Check if target is a Smi. |
| Label non_constructor; |
| __ JumpIfSmi(rdi, &non_constructor); |
| |
| // Check if target has a [[Construct]] internal method. |
| __ LoadTaggedPointerField(rcx, FieldOperand(rdi, HeapObject::kMapOffset)); |
| __ testb(FieldOperand(rcx, Map::kBitFieldOffset), |
| Immediate(Map::IsConstructorBit::kMask)); |
| __ j(zero, &non_constructor); |
| |
| // Dispatch based on instance type. |
| __ CmpInstanceType(rcx, JS_FUNCTION_TYPE); |
| __ Jump(BUILTIN_CODE(masm->isolate(), ConstructFunction), |
| RelocInfo::CODE_TARGET, equal); |
| |
| // Only dispatch to bound functions after checking whether they are |
| // constructors. |
| __ CmpInstanceType(rcx, JS_BOUND_FUNCTION_TYPE); |
| __ Jump(BUILTIN_CODE(masm->isolate(), ConstructBoundFunction), |
| RelocInfo::CODE_TARGET, equal); |
| |
| // Only dispatch to proxies after checking whether they are constructors. |
| __ CmpInstanceType(rcx, JS_PROXY_TYPE); |
| __ Jump(BUILTIN_CODE(masm->isolate(), ConstructProxy), RelocInfo::CODE_TARGET, |
| equal); |
| |
| // Called Construct on an exotic Object with a [[Construct]] internal method. |
| { |
| // Overwrite the original receiver with the (original) target. |
| __ movq(args.GetReceiverOperand(), rdi); |
| // Let the "call_as_constructor_delegate" take care of the rest. |
| __ LoadNativeContextSlot(Context::CALL_AS_CONSTRUCTOR_DELEGATE_INDEX, rdi); |
| __ Jump(masm->isolate()->builtins()->CallFunction(), |
| RelocInfo::CODE_TARGET); |
| } |
| |
| // Called Construct on an Object that doesn't have a [[Construct]] internal |
| // method. |
| __ bind(&non_constructor); |
| __ Jump(BUILTIN_CODE(masm->isolate(), ConstructedNonConstructable), |
| RelocInfo::CODE_TARGET); |
| } |
| |
| void Builtins::Generate_InterpreterOnStackReplacement(MacroAssembler* masm) { |
| // Lookup the function in the JavaScript frame. |
| __ movq(rax, Operand(rbp, StandardFrameConstants::kCallerFPOffset)); |
| __ movq(rax, Operand(rax, JavaScriptFrameConstants::kFunctionOffset)); |
| |
| { |
| FrameScope scope(masm, StackFrame::INTERNAL); |
| // Pass function as argument. |
| __ Push(rax); |
| __ CallRuntime(Runtime::kCompileForOnStackReplacement); |
| } |
| |
| Label skip; |
| // If the code object is null, just return to the caller. |
| __ testq(rax, rax); |
| __ j(not_equal, &skip, Label::kNear); |
| __ ret(0); |
| |
| __ bind(&skip); |
| |
| // Drop the handler frame that is be sitting on top of the actual |
| // JavaScript frame. This is the case then OSR is triggered from bytecode. |
| __ leave(); |
| |
| // Load deoptimization data from the code object. |
| __ LoadTaggedPointerField(rbx, |
| FieldOperand(rax, Code::kDeoptimizationDataOffset)); |
| |
| // Load the OSR entrypoint offset from the deoptimization data. |
| __ SmiUntagField( |
| rbx, FieldOperand(rbx, FixedArray::OffsetOfElementAt( |
| DeoptimizationData::kOsrPcOffsetIndex))); |
| |
| // Compute the target address = code_obj + header_size + osr_offset |
| __ leaq(rax, FieldOperand(rax, rbx, times_1, Code::kHeaderSize)); |
| |
| // Overwrite the return address on the stack. |
| __ movq(StackOperandForReturnAddress(0), rax); |
| |
| // And "return" to the OSR entry point of the function. |
| __ ret(0); |
| } |
| |
| void Builtins::Generate_WasmCompileLazy(MacroAssembler* masm) { |
| // The function index was pushed to the stack by the caller as int32. |
| __ Pop(r11); |
| // Convert to Smi for the runtime call. |
| __ SmiTag(r11, r11); |
| { |
| HardAbortScope hard_abort(masm); // Avoid calls to Abort. |
| FrameScope scope(masm, StackFrame::WASM_COMPILE_LAZY); |
| |
| // Save all parameter registers (see wasm-linkage.cc). They might be |
| // overwritten in the runtime call below. We don't have any callee-saved |
| // registers in wasm, so no need to store anything else. |
| static_assert(WasmCompileLazyFrameConstants::kNumberOfSavedGpParamRegs == |
| arraysize(wasm::kGpParamRegisters), |
| "frame size mismatch"); |
| for (Register reg : wasm::kGpParamRegisters) { |
| __ Push(reg); |
| } |
| static_assert(WasmCompileLazyFrameConstants::kNumberOfSavedFpParamRegs == |
| arraysize(wasm::kFpParamRegisters), |
| "frame size mismatch"); |
| __ AllocateStackSpace(kSimd128Size * arraysize(wasm::kFpParamRegisters)); |
| int offset = 0; |
| for (DoubleRegister reg : wasm::kFpParamRegisters) { |
| __ movdqu(Operand(rsp, offset), reg); |
| offset += kSimd128Size; |
| } |
| |
| // Push the WASM instance as an explicit argument to WasmCompileLazy. |
| __ Push(kWasmInstanceRegister); |
| // Push the function index as second argument. |
| __ Push(r11); |
| // Load the correct CEntry builtin from the instance object. |
| __ LoadTaggedPointerField( |
| rcx, FieldOperand(kWasmInstanceRegister, |
| WasmInstanceObject::kCEntryStubOffset)); |
| // Initialize the JavaScript context with 0. CEntry will use it to |
| // set the current context on the isolate. |
| __ Move(kContextRegister, Smi::zero()); |
| __ CallRuntimeWithCEntry(Runtime::kWasmCompileLazy, rcx); |
| // The entrypoint address is the return value. |
| __ movq(r11, kReturnRegister0); |
| |
| // Restore registers. |
| for (DoubleRegister reg : base::Reversed(wasm::kFpParamRegisters)) { |
| offset -= kSimd128Size; |
| __ movdqu(reg, Operand(rsp, offset)); |
| } |
| DCHECK_EQ(0, offset); |
| __ addq(rsp, Immediate(kSimd128Size * arraysize(wasm::kFpParamRegisters))); |
| for (Register reg : base::Reversed(wasm::kGpParamRegisters)) { |
| __ Pop(reg); |
| } |
| } |
| // Finally, jump to the entrypoint. |
| __ jmp(r11); |
| } |
| |
| void Builtins::Generate_CEntry(MacroAssembler* masm, int result_size, |
| SaveFPRegsMode save_doubles, ArgvMode argv_mode, |
| bool builtin_exit_frame) { |
| // rax: number of arguments including receiver |
| // rbx: pointer to C function (C callee-saved) |
| // rbp: frame pointer of calling JS frame (restored after C call) |
| // rsp: stack pointer (restored after C call) |
| // rsi: current context (restored) |
| // |
| // If argv_mode == kArgvInRegister: |
| // r15: pointer to the first argument |
| |
| #ifdef V8_TARGET_OS_WIN |
| // Windows 64-bit ABI passes arguments in rcx, rdx, r8, r9. It requires the |
| // stack to be aligned to 16 bytes. It only allows a single-word to be |
| // returned in register rax. Larger return sizes must be written to an address |
| // passed as a hidden first argument. |
| const Register kCCallArg0 = rcx; |
| const Register kCCallArg1 = rdx; |
| const Register kCCallArg2 = r8; |
| const Register kCCallArg3 = r9; |
| const int kArgExtraStackSpace = 2; |
| const int kMaxRegisterResultSize = 1; |
| #else |
| // GCC / Clang passes arguments in rdi, rsi, rdx, rcx, r8, r9. Simple results |
| // are returned in rax, and a struct of two pointers are returned in rax+rdx. |
| // Larger return sizes must be written to an address passed as a hidden first |
| // argument. |
| const Register kCCallArg0 = rdi; |
| const Register kCCallArg1 = rsi; |
| const Register kCCallArg2 = rdx; |
| const Register kCCallArg3 = rcx; |
| const int kArgExtraStackSpace = 0; |
| const int kMaxRegisterResultSize = 2; |
| #endif // V8_TARGET_OS_WIN |
| |
| // Enter the exit frame that transitions from JavaScript to C++. |
| int arg_stack_space = |
| kArgExtraStackSpace + |
| (result_size <= kMaxRegisterResultSize ? 0 : result_size); |
| if (argv_mode == kArgvInRegister) { |
| DCHECK(save_doubles == kDontSaveFPRegs); |
| DCHECK(!builtin_exit_frame); |
| __ EnterApiExitFrame(arg_stack_space); |
| // Move argc into r14 (argv is already in r15). |
| __ movq(r14, rax); |
| } else { |
| __ EnterExitFrame( |
| arg_stack_space, save_doubles == kSaveFPRegs, |
| builtin_exit_frame ? StackFrame::BUILTIN_EXIT : StackFrame::EXIT); |
| } |
| |
| // rbx: pointer to builtin function (C callee-saved). |
| // rbp: frame pointer of exit frame (restored after C call). |
| // rsp: stack pointer (restored after C call). |
| // r14: number of arguments including receiver (C callee-saved). |
| // r15: argv pointer (C callee-saved). |
| |
| // Check stack alignment. |
| if (FLAG_debug_code) { |
| __ CheckStackAlignment(); |
| } |
| |
| // Call C function. The arguments object will be created by stubs declared by |
| // DECLARE_RUNTIME_FUNCTION(). |
| if (result_size <= kMaxRegisterResultSize) { |
| // Pass a pointer to the Arguments object as the first argument. |
| // Return result in single register (rax), or a register pair (rax, rdx). |
| __ movq(kCCallArg0, r14); // argc. |
| __ movq(kCCallArg1, r15); // argv. |
| __ Move(kCCallArg2, ExternalReference::isolate_address(masm->isolate())); |
| } else { |
| DCHECK_LE(result_size, 2); |
| // Pass a pointer to the result location as the first argument. |
| __ leaq(kCCallArg0, StackSpaceOperand(kArgExtraStackSpace)); |
| // Pass a pointer to the Arguments object as the second argument. |
| __ movq(kCCallArg1, r14); // argc. |
| __ movq(kCCallArg2, r15); // argv. |
| __ Move(kCCallArg3, ExternalReference::isolate_address(masm->isolate())); |
| } |
| __ call(rbx); |
| |
| if (result_size > kMaxRegisterResultSize) { |
| // Read result values stored on stack. Result is stored |
| // above the the two Arguments object slots on Win64. |
| DCHECK_LE(result_size, 2); |
| __ movq(kReturnRegister0, StackSpaceOperand(kArgExtraStackSpace + 0)); |
| __ movq(kReturnRegister1, StackSpaceOperand(kArgExtraStackSpace + 1)); |
| } |
| // Result is in rax or rdx:rax - do not destroy these registers! |
| |
| // Check result for exception sentinel. |
| Label exception_returned; |
| __ CompareRoot(rax, RootIndex::kException); |
| __ j(equal, &exception_returned); |
| |
| // Check that there is no pending exception, otherwise we |
| // should have returned the exception sentinel. |
| if (FLAG_debug_code) { |
| Label okay; |
| __ LoadRoot(r14, RootIndex::kTheHoleValue); |
| ExternalReference pending_exception_address = ExternalReference::Create( |
| IsolateAddressId::kPendingExceptionAddress, masm->isolate()); |
| Operand pending_exception_operand = |
| masm->ExternalReferenceAsOperand(pending_exception_address); |
| __ cmpq(r14, pending_exception_operand); |
| __ j(equal, &okay, Label::kNear); |
| __ int3(); |
| __ bind(&okay); |
| } |
| |
| // Exit the JavaScript to C++ exit frame. |
| __ LeaveExitFrame(save_doubles == kSaveFPRegs, argv_mode == kArgvOnStack); |
| __ ret(0); |
| |
| // Handling of exception. |
| __ bind(&exception_returned); |
| |
| ExternalReference pending_handler_context_address = ExternalReference::Create( |
| IsolateAddressId::kPendingHandlerContextAddress, masm->isolate()); |
| ExternalReference pending_handler_entrypoint_address = |
| ExternalReference::Create( |
| IsolateAddressId::kPendingHandlerEntrypointAddress, masm->isolate()); |
| ExternalReference pending_handler_fp_address = ExternalReference::Create( |
| IsolateAddressId::kPendingHandlerFPAddress, masm->isolate()); |
| ExternalReference pending_handler_sp_address = ExternalReference::Create( |
| IsolateAddressId::kPendingHandlerSPAddress, masm->isolate()); |
| |
| // Ask the runtime for help to determine the handler. This will set rax to |
| // contain the current pending exception, don't clobber it. |
| ExternalReference find_handler = |
| ExternalReference::Create(Runtime::kUnwindAndFindExceptionHandler); |
| { |
| FrameScope scope(masm, StackFrame::MANUAL); |
| __ movq(arg_reg_1, Immediate(0)); // argc. |
| __ movq(arg_reg_2, Immediate(0)); // argv. |
| __ Move(arg_reg_3, ExternalReference::isolate_address(masm->isolate())); |
| __ PrepareCallCFunction(3); |
| __ CallCFunction(find_handler, 3); |
| } |
| // Retrieve the handler context, SP and FP. |
| __ movq(rsi, |
| masm->ExternalReferenceAsOperand(pending_handler_context_address)); |
| __ movq(rsp, masm->ExternalReferenceAsOperand(pending_handler_sp_address)); |
| __ movq(rbp, masm->ExternalReferenceAsOperand(pending_handler_fp_address)); |
| |
| // If the handler is a JS frame, restore the context to the frame. Note that |
| // the context will be set to (rsi == 0) for non-JS frames. |
| Label skip; |
| __ testq(rsi, rsi); |
| __ j(zero, &skip, Label::kNear); |
| __ movq(Operand(rbp, StandardFrameConstants::kContextOffset), rsi); |
| __ bind(&skip); |
| |
| // Reset the masking register. This is done independent of the underlying |
| // feature flag {FLAG_untrusted_code_mitigations} to make the snapshot work |
| // with both configurations. It is safe to always do this, because the |
| // underlying register is caller-saved and can be arbitrarily clobbered. |
| __ ResetSpeculationPoisonRegister(); |
| |
| // Compute the handler entry address and jump to it. |
| __ movq(rdi, |
| masm->ExternalReferenceAsOperand(pending_handler_entrypoint_address)); |
| __ jmp(rdi); |
| } |
| |
| void Builtins::Generate_DoubleToI(MacroAssembler* masm) { |
| Label check_negative, process_64_bits, done; |
| |
| // Account for return address and saved regs. |
| const int kArgumentOffset = 4 * kSystemPointerSize; |
| |
| MemOperand mantissa_operand(MemOperand(rsp, kArgumentOffset)); |
| MemOperand exponent_operand( |
| MemOperand(rsp, kArgumentOffset + kDoubleSize / 2)); |
| |
| // The result is returned on the stack. |
| MemOperand return_operand = mantissa_operand; |
| |
| Register scratch1 = rbx; |
| |
| // Since we must use rcx for shifts below, use some other register (rax) |
| // to calculate the result if ecx is the requested return register. |
| Register result_reg = rax; |
| // Save ecx if it isn't the return register and therefore volatile, or if it |
| // is the return register, then save the temp register we use in its stead |
| // for the result. |
| Register save_reg = rax; |
| __ pushq(rcx); |
| __ pushq(scratch1); |
| __ pushq(save_reg); |
| |
| __ movl(scratch1, mantissa_operand); |
| __ Movsd(kScratchDoubleReg, mantissa_operand); |
| __ movl(rcx, exponent_operand); |
| |
| __ andl(rcx, Immediate(HeapNumber::kExponentMask)); |
| __ shrl(rcx, Immediate(HeapNumber::kExponentShift)); |
| __ leal(result_reg, MemOperand(rcx, -HeapNumber::kExponentBias)); |
| __ cmpl(result_reg, Immediate(HeapNumber::kMantissaBits)); |
| __ j(below, &process_64_bits, Label::kNear); |
| |
| // Result is entirely in lower 32-bits of mantissa |
| int delta = HeapNumber::kExponentBias + Double::kPhysicalSignificandSize; |
| __ subl(rcx, Immediate(delta)); |
| __ xorl(result_reg, result_reg); |
| __ cmpl(rcx, Immediate(31)); |
| __ j(above, &done, Label::kNear); |
| __ shll_cl(scratch1); |
| __ jmp(&check_negative, Label::kNear); |
| |
| __ bind(&process_64_bits); |
| __ Cvttsd2siq(result_reg, kScratchDoubleReg); |
| __ jmp(&done, Label::kNear); |
| |
| // If the double was negative, negate the integer result. |
| __ bind(&check_negative); |
| __ movl(result_reg, scratch1); |
| __ negl(result_reg); |
| __ cmpl(exponent_operand, Immediate(0)); |
| __ cmovl(greater, result_reg, scratch1); |
| |
| // Restore registers |
| __ bind(&done); |
| __ movl(return_operand, result_reg); |
| __ popq(save_reg); |
| __ popq(scratch1); |
| __ popq(rcx); |
| __ ret(0); |
| } |
| |
| void Builtins::Generate_InternalArrayConstructorImpl(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- rax : argc |
| // -- rdi : constructor |
| // -- rsp[0] : return address |
| // -- rsp[8] : last argument |
| // ----------------------------------- |
| |
| if (FLAG_debug_code) { |
| // The array construct code is only set for the global and natives |
| // builtin Array functions which always have maps. |
| |
| // Initial map for the builtin Array function should be a map. |
| __ LoadTaggedPointerField( |
| rcx, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset)); |
| // Will both indicate a nullptr and a Smi. |
| STATIC_ASSERT(kSmiTag == 0); |
| Condition not_smi = NegateCondition(masm->CheckSmi(rcx)); |
| __ Check(not_smi, AbortReason::kUnexpectedInitialMapForArrayFunction); |
| __ CmpObjectType(rcx, MAP_TYPE, rcx); |
| __ Check(equal, AbortReason::kUnexpectedInitialMapForArrayFunction); |
| |
| // Figure out the right elements kind |
| __ LoadTaggedPointerField( |
| rcx, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset)); |
| |
| // Load the map's "bit field 2" into |result|. We only need the first byte, |
| // but the following masking takes care of that anyway. |
| __ movzxbq(rcx, FieldOperand(rcx, Map::kBitField2Offset)); |
| // Retrieve elements_kind from bit field 2. |
| __ DecodeField<Map::ElementsKindBits>(rcx); |
| |
| // Initial elements kind should be packed elements. |
| __ cmpl(rcx, Immediate(PACKED_ELEMENTS)); |
| __ Assert(equal, AbortReason::kInvalidElementsKindForInternalPackedArray); |
| |
| // No arguments should be passed. |
| __ testq(rax, rax); |
| __ Assert(zero, AbortReason::kWrongNumberOfArgumentsForInternalPackedArray); |
| } |
| |
| __ Jump( |
| BUILTIN_CODE(masm->isolate(), InternalArrayNoArgumentConstructor_Packed), |
| RelocInfo::CODE_TARGET); |
| } |
| |
| namespace { |
| |
| int Offset(ExternalReference ref0, ExternalReference ref1) { |
| int64_t offset = (ref0.address() - ref1.address()); |
| // Check that fits into int. |
| DCHECK(static_cast<int>(offset) == offset); |
| return static_cast<int>(offset); |
| } |
| |
| // Calls an API function. Allocates HandleScope, extracts returned value |
| // from handle and propagates exceptions. Clobbers r14, r15, rbx and |
| // caller-save registers. Restores context. On return removes |
| // stack_space * kSystemPointerSize (GCed). |
| void CallApiFunctionAndReturn(MacroAssembler* masm, Register function_address, |
| ExternalReference thunk_ref, |
| Register thunk_last_arg, int stack_space, |
| Operand* stack_space_operand, |
| Operand return_value_operand) { |
| Label prologue; |
| Label promote_scheduled_exception; |
| Label delete_allocated_handles; |
| Label leave_exit_frame; |
| |
| Isolate* isolate = masm->isolate(); |
| Factory* factory = isolate->factory(); |
| ExternalReference next_address = |
| ExternalReference::handle_scope_next_address(isolate); |
| const int kNextOffset = 0; |
| const int kLimitOffset = Offset( |
| ExternalReference::handle_scope_limit_address(isolate), next_address); |
| const int kLevelOffset = Offset( |
| ExternalReference::handle_scope_level_address(isolate), next_address); |
| ExternalReference scheduled_exception_address = |
| ExternalReference::scheduled_exception_address(isolate); |
| |
| DCHECK(rdx == function_address || r8 == function_address); |
| // Allocate HandleScope in callee-save registers. |
| Register prev_next_address_reg = r14; |
| Register prev_limit_reg = rbx; |
| Register base_reg = r15; |
| __ Move(base_reg, next_address); |
| __ movq(prev_next_address_reg, Operand(base_reg, kNextOffset)); |
| __ movq(prev_limit_reg, Operand(base_reg, kLimitOffset)); |
| __ addl(Operand(base_reg, kLevelOffset), Immediate(1)); |
| |
| Label profiler_enabled, end_profiler_check; |
| __ Move(rax, ExternalReference::is_profiling_address(isolate)); |
| __ cmpb(Operand(rax, 0), Immediate(0)); |
| __ j(not_zero, &profiler_enabled); |
| __ Move(rax, ExternalReference::address_of_runtime_stats_flag()); |
| __ cmpl(Operand(rax, 0), Immediate(0)); |
| __ j(not_zero, &profiler_enabled); |
| { |
| // Call the api function directly. |
| __ Move(rax, function_address); |
| __ jmp(&end_profiler_check); |
| } |
| __ bind(&profiler_enabled); |
| { |
| // Third parameter is the address of the actual getter function. |
| __ Move(thunk_last_arg, function_address); |
| __ Move(rax, thunk_ref); |
| } |
| __ bind(&end_profiler_check); |
| |
| // Call the api function! |
| __ call(rax); |
| |
| // Load the value from ReturnValue |
| __ movq(rax, return_value_operand); |
| __ bind(&prologue); |
| |
| // No more valid handles (the result handle was the last one). Restore |
| // previous handle scope. |
| __ subl(Operand(base_reg, kLevelOffset), Immediate(1)); |
| __ movq(Operand(base_reg, kNextOffset), prev_next_address_reg); |
| __ cmpq(prev_limit_reg, Operand(base_reg, kLimitOffset)); |
|