| // Copyright 2011 the V8 project authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #ifndef V8_CODEGEN_ARM_CONSTANTS_ARM_H_ |
| #define V8_CODEGEN_ARM_CONSTANTS_ARM_H_ |
| |
| #include <stdint.h> |
| |
| #include "src/base/logging.h" |
| #include "src/base/macros.h" |
| #include "src/common/globals.h" |
| #include "src/utils/boxed-float.h" |
| #include "src/utils/utils.h" |
| |
| // ARM EABI is required. |
| #if defined(__arm__) && !defined(__ARM_EABI__) |
| #error ARM EABI support is required. |
| #endif |
| |
| namespace v8 { |
| namespace internal { |
| |
| // Constant pool marker. |
| // Use UDF, the permanently undefined instruction. |
| const int kConstantPoolMarkerMask = 0xfff000f0; |
| const int kConstantPoolMarker = 0xe7f000f0; |
| const int kConstantPoolLengthMaxMask = 0xffff; |
| inline int EncodeConstantPoolLength(int length) { |
| DCHECK((length & kConstantPoolLengthMaxMask) == length); |
| return ((length & 0xfff0) << 4) | (length & 0xf); |
| } |
| inline int DecodeConstantPoolLength(int instr) { |
| DCHECK_EQ(instr & kConstantPoolMarkerMask, kConstantPoolMarker); |
| return ((instr >> 4) & 0xfff0) | (instr & 0xf); |
| } |
| |
| // Number of registers in normal ARM mode. |
| constexpr int kNumRegisters = 16; |
| constexpr int kRegSizeInBitsLog2 = 5; |
| |
| // VFP support. |
| constexpr int kNumVFPSingleRegisters = 32; |
| constexpr int kNumVFPDoubleRegisters = 32; |
| constexpr int kNumVFPRegisters = |
| kNumVFPSingleRegisters + kNumVFPDoubleRegisters; |
| |
| // PC is register 15. |
| constexpr int kPCRegister = 15; |
| constexpr int kNoRegister = -1; |
| |
| // Used in embedded constant pool builder - max reach in bits for |
| // various load instructions (unsigned) |
| constexpr int kLdrMaxReachBits = 12; |
| constexpr int kVldrMaxReachBits = 10; |
| |
| // Actual value of root register is offset from the root array's start |
| // to take advantage of negative displacement values. Loads allow a uint12 |
| // value with a separate sign bit (range [-4095, +4095]), so the first root |
| // is still addressable with a single load instruction. |
| constexpr int kRootRegisterBias = 4095; |
| |
| // ----------------------------------------------------------------------------- |
| // Conditions. |
| |
| // Defines constants and accessor classes to assemble, disassemble and |
| // simulate ARM instructions. |
| // |
| // Section references in the code refer to the "ARM Architecture Reference |
| // Manual" from July 2005 (available at http://www.arm.com/miscPDFs/14128.pdf) |
| // |
| // Constants for specific fields are defined in their respective named enums. |
| // General constants are in an anonymous enum in class Instr. |
| |
| // Values for the condition field as defined in section A3.2 |
| enum Condition { |
| kNoCondition = -1, |
| |
| eq = 0 << 28, // Z set Equal. |
| ne = 1 << 28, // Z clear Not equal. |
| cs = 2 << 28, // C set Unsigned higher or same. |
| cc = 3 << 28, // C clear Unsigned lower. |
| mi = 4 << 28, // N set Negative. |
| pl = 5 << 28, // N clear Positive or zero. |
| vs = 6 << 28, // V set Overflow. |
| vc = 7 << 28, // V clear No overflow. |
| hi = 8 << 28, // C set, Z clear Unsigned higher. |
| ls = 9 << 28, // C clear or Z set Unsigned lower or same. |
| ge = 10 << 28, // N == V Greater or equal. |
| lt = 11 << 28, // N != V Less than. |
| gt = 12 << 28, // Z clear, N == V Greater than. |
| le = 13 << 28, // Z set or N != V Less then or equal |
| al = 14 << 28, // Always. |
| |
| kSpecialCondition = 15 << 28, // Special condition (refer to section A3.2.1). |
| kNumberOfConditions = 16, |
| |
| // Aliases. |
| hs = cs, // C set Unsigned higher or same. |
| lo = cc // C clear Unsigned lower. |
| }; |
| |
| inline Condition NegateCondition(Condition cond) { |
| DCHECK(cond != al); |
| return static_cast<Condition>(cond ^ ne); |
| } |
| |
| // ----------------------------------------------------------------------------- |
| // Instructions encoding. |
| |
| // Instr is merely used by the Assembler to distinguish 32bit integers |
| // representing instructions from usual 32 bit values. |
| // Instruction objects are pointers to 32bit values, and provide methods to |
| // access the various ISA fields. |
| using Instr = int32_t; |
| |
| // Opcodes for Data-processing instructions (instructions with a type 0 and 1) |
| // as defined in section A3.4 |
| enum Opcode { |
| AND = 0 << 21, // Logical AND. |
| EOR = 1 << 21, // Logical Exclusive OR. |
| SUB = 2 << 21, // Subtract. |
| RSB = 3 << 21, // Reverse Subtract. |
| ADD = 4 << 21, // Add. |
| ADC = 5 << 21, // Add with Carry. |
| SBC = 6 << 21, // Subtract with Carry. |
| RSC = 7 << 21, // Reverse Subtract with Carry. |
| TST = 8 << 21, // Test. |
| TEQ = 9 << 21, // Test Equivalence. |
| CMP = 10 << 21, // Compare. |
| CMN = 11 << 21, // Compare Negated. |
| ORR = 12 << 21, // Logical (inclusive) OR. |
| MOV = 13 << 21, // Move. |
| BIC = 14 << 21, // Bit Clear. |
| MVN = 15 << 21 // Move Not. |
| }; |
| |
| // The bits for bit 7-4 for some type 0 miscellaneous instructions. |
| enum MiscInstructionsBits74 { |
| // With bits 22-21 01. |
| BX = 1 << 4, |
| BXJ = 2 << 4, |
| BLX = 3 << 4, |
| BKPT = 7 << 4, |
| |
| // With bits 22-21 11. |
| CLZ = 1 << 4 |
| }; |
| |
| // Instruction encoding bits and masks. |
| enum { |
| H = 1 << 5, // Halfword (or byte). |
| S6 = 1 << 6, // Signed (or unsigned). |
| L = 1 << 20, // Load (or store). |
| S = 1 << 20, // Set condition code (or leave unchanged). |
| W = 1 << 21, // Writeback base register (or leave unchanged). |
| A = 1 << 21, // Accumulate in multiply instruction (or not). |
| B = 1 << 22, // Unsigned byte (or word). |
| N = 1 << 22, // Long (or short). |
| U = 1 << 23, // Positive (or negative) offset/index. |
| P = 1 << 24, // Offset/pre-indexed addressing (or post-indexed addressing). |
| I = 1 << 25, // Immediate shifter operand (or not). |
| B0 = 1 << 0, |
| B4 = 1 << 4, |
| B5 = 1 << 5, |
| B6 = 1 << 6, |
| B7 = 1 << 7, |
| B8 = 1 << 8, |
| B9 = 1 << 9, |
| B10 = 1 << 10, |
| B12 = 1 << 12, |
| B16 = 1 << 16, |
| B17 = 1 << 17, |
| B18 = 1 << 18, |
| B19 = 1 << 19, |
| B20 = 1 << 20, |
| B21 = 1 << 21, |
| B22 = 1 << 22, |
| B23 = 1 << 23, |
| B24 = 1 << 24, |
| B25 = 1 << 25, |
| B26 = 1 << 26, |
| B27 = 1 << 27, |
| B28 = 1 << 28, |
| |
| // Instruction bit masks. |
| kCondMask = 15 << 28, |
| kALUMask = 0x6f << 21, |
| kRdMask = 15 << 12, // In str instruction. |
| kCoprocessorMask = 15 << 8, |
| kOpCodeMask = 15 << 21, // In data-processing instructions. |
| kImm24Mask = (1 << 24) - 1, |
| kImm16Mask = (1 << 16) - 1, |
| kImm8Mask = (1 << 8) - 1, |
| kOff12Mask = (1 << 12) - 1, |
| kOff8Mask = (1 << 8) - 1 |
| }; |
| |
| enum BarrierOption { |
| OSHLD = 0x1, |
| OSHST = 0x2, |
| OSH = 0x3, |
| NSHLD = 0x5, |
| NSHST = 0x6, |
| NSH = 0x7, |
| ISHLD = 0x9, |
| ISHST = 0xa, |
| ISH = 0xb, |
| LD = 0xd, |
| ST = 0xe, |
| SY = 0xf, |
| }; |
| |
| // ----------------------------------------------------------------------------- |
| // Addressing modes and instruction variants. |
| |
| // Condition code updating mode. |
| enum SBit { |
| SetCC = 1 << 20, // Set condition code. |
| LeaveCC = 0 << 20 // Leave condition code unchanged. |
| }; |
| |
| // Status register selection. |
| enum SRegister { CPSR = 0 << 22, SPSR = 1 << 22 }; |
| |
| // Shifter types for Data-processing operands as defined in section A5.1.2. |
| enum ShiftOp { |
| LSL = 0 << 5, // Logical shift left. |
| LSR = 1 << 5, // Logical shift right. |
| ASR = 2 << 5, // Arithmetic shift right. |
| ROR = 3 << 5, // Rotate right. |
| |
| // RRX is encoded as ROR with shift_imm == 0. |
| // Use a special code to make the distinction. The RRX ShiftOp is only used |
| // as an argument, and will never actually be encoded. The Assembler will |
| // detect it and emit the correct ROR shift operand with shift_imm == 0. |
| RRX = -1, |
| kNumberOfShifts = 4 |
| }; |
| |
| // Status register fields. |
| enum SRegisterField { |
| CPSR_c = CPSR | 1 << 16, |
| CPSR_x = CPSR | 1 << 17, |
| CPSR_s = CPSR | 1 << 18, |
| CPSR_f = CPSR | 1 << 19, |
| SPSR_c = SPSR | 1 << 16, |
| SPSR_x = SPSR | 1 << 17, |
| SPSR_s = SPSR | 1 << 18, |
| SPSR_f = SPSR | 1 << 19 |
| }; |
| |
| // Status register field mask (or'ed SRegisterField enum values). |
| using SRegisterFieldMask = uint32_t; |
| |
| // Memory operand addressing mode. |
| enum AddrMode { |
| // Bit encoding P U W. |
| Offset = (8 | 4 | 0) << 21, // Offset (without writeback to base). |
| PreIndex = (8 | 4 | 1) << 21, // Pre-indexed addressing with writeback. |
| PostIndex = (0 | 4 | 0) << 21, // Post-indexed addressing with writeback. |
| NegOffset = |
| (8 | 0 | 0) << 21, // Negative offset (without writeback to base). |
| NegPreIndex = (8 | 0 | 1) << 21, // Negative pre-indexed with writeback. |
| NegPostIndex = (0 | 0 | 0) << 21 // Negative post-indexed with writeback. |
| }; |
| |
| // Load/store multiple addressing mode. |
| enum BlockAddrMode { |
| // Bit encoding P U W . |
| da = (0 | 0 | 0) << 21, // Decrement after. |
| ia = (0 | 4 | 0) << 21, // Increment after. |
| db = (8 | 0 | 0) << 21, // Decrement before. |
| ib = (8 | 4 | 0) << 21, // Increment before. |
| da_w = (0 | 0 | 1) << 21, // Decrement after with writeback to base. |
| ia_w = (0 | 4 | 1) << 21, // Increment after with writeback to base. |
| db_w = (8 | 0 | 1) << 21, // Decrement before with writeback to base. |
| ib_w = (8 | 4 | 1) << 21, // Increment before with writeback to base. |
| |
| // Alias modes for comparison when writeback does not matter. |
| da_x = (0 | 0 | 0) << 21, // Decrement after. |
| ia_x = (0 | 4 | 0) << 21, // Increment after. |
| db_x = (8 | 0 | 0) << 21, // Decrement before. |
| ib_x = (8 | 4 | 0) << 21, // Increment before. |
| |
| kBlockAddrModeMask = (8 | 4 | 1) << 21 |
| }; |
| |
| // Coprocessor load/store operand size. |
| enum LFlag { |
| Long = 1 << 22, // Long load/store coprocessor. |
| Short = 0 << 22 // Short load/store coprocessor. |
| }; |
| |
| // Neon sizes. |
| enum NeonSize { Neon8 = 0x0, Neon16 = 0x1, Neon32 = 0x2, Neon64 = 0x3 }; |
| |
| // NEON data type |
| enum NeonDataType { |
| NeonS8 = 0, |
| NeonS16 = 1, |
| NeonS32 = 2, |
| // Gap to make it easier to extract U and size. |
| NeonU8 = 4, |
| NeonU16 = 5, |
| NeonU32 = 6 |
| }; |
| |
| inline int NeonU(NeonDataType dt) { return static_cast<int>(dt) >> 2; } |
| inline int NeonSz(NeonDataType dt) { return static_cast<int>(dt) & 0x3; } |
| |
| // Convert sizes to data types (U bit is clear). |
| inline NeonDataType NeonSizeToDataType(NeonSize size) { |
| DCHECK_NE(Neon64, size); |
| return static_cast<NeonDataType>(size); |
| } |
| |
| inline NeonSize NeonDataTypeToSize(NeonDataType dt) { |
| return static_cast<NeonSize>(NeonSz(dt)); |
| } |
| |
| enum NeonListType { nlt_1 = 0x7, nlt_2 = 0xA, nlt_3 = 0x6, nlt_4 = 0x2 }; |
| |
| // ----------------------------------------------------------------------------- |
| // Supervisor Call (svc) specific support. |
| |
| // Special Software Interrupt codes when used in the presence of the ARM |
| // simulator. |
| // svc (formerly swi) provides a 24bit immediate value. Use bits 22:0 for |
| // standard SoftwareInterrupCode. Bit 23 is reserved for the stop feature. |
| enum SoftwareInterruptCodes { |
| // transition to C code |
| kCallRtRedirected = 0x10, |
| // break point |
| kBreakpoint = 0x20, |
| // stop |
| kStopCode = 1 << 23 |
| }; |
| const uint32_t kStopCodeMask = kStopCode - 1; |
| const uint32_t kMaxStopCode = kStopCode - 1; |
| const int32_t kDefaultStopCode = -1; |
| |
| // Type of VFP register. Determines register encoding. |
| enum VFPRegPrecision { |
| kSinglePrecision = 0, |
| kDoublePrecision = 1, |
| kSimd128Precision = 2 |
| }; |
| |
| // VFP FPSCR constants. |
| enum VFPConversionMode { kFPSCRRounding = 0, kDefaultRoundToZero = 1 }; |
| |
| // This mask does not include the "inexact" or "input denormal" cumulative |
| // exceptions flags, because we usually don't want to check for it. |
| const uint32_t kVFPExceptionMask = 0xf; |
| const uint32_t kVFPInvalidOpExceptionBit = 1 << 0; |
| const uint32_t kVFPOverflowExceptionBit = 1 << 2; |
| const uint32_t kVFPUnderflowExceptionBit = 1 << 3; |
| const uint32_t kVFPInexactExceptionBit = 1 << 4; |
| const uint32_t kVFPFlushToZeroMask = 1 << 24; |
| const uint32_t kVFPDefaultNaNModeControlBit = 1 << 25; |
| |
| const uint32_t kVFPNConditionFlagBit = 1 << 31; |
| const uint32_t kVFPZConditionFlagBit = 1 << 30; |
| const uint32_t kVFPCConditionFlagBit = 1 << 29; |
| const uint32_t kVFPVConditionFlagBit = 1 << 28; |
| |
| // VFP rounding modes. See ARM DDI 0406B Page A2-29. |
| enum VFPRoundingMode { |
| RN = 0 << 22, // Round to Nearest. |
| RP = 1 << 22, // Round towards Plus Infinity. |
| RM = 2 << 22, // Round towards Minus Infinity. |
| RZ = 3 << 22, // Round towards zero. |
| |
| // Aliases. |
| kRoundToNearest = RN, |
| kRoundToPlusInf = RP, |
| kRoundToMinusInf = RM, |
| kRoundToZero = RZ |
| }; |
| |
| const uint32_t kVFPRoundingModeMask = 3 << 22; |
| |
| enum CheckForInexactConversion { |
| kCheckForInexactConversion, |
| kDontCheckForInexactConversion |
| }; |
| |
| // ----------------------------------------------------------------------------- |
| // Hints. |
| |
| // Branch hints are not used on the ARM. They are defined so that they can |
| // appear in shared function signatures, but will be ignored in ARM |
| // implementations. |
| enum Hint { no_hint }; |
| |
| // Hints are not used on the arm. Negating is trivial. |
| inline Hint NegateHint(Hint ignored) { return no_hint; } |
| |
| // ----------------------------------------------------------------------------- |
| // Instruction abstraction. |
| |
| // The class Instruction enables access to individual fields defined in the ARM |
| // architecture instruction set encoding as described in figure A3-1. |
| // Note that the Assembler uses typedef int32_t Instr. |
| // |
| // Example: Test whether the instruction at ptr does set the condition code |
| // bits. |
| // |
| // bool InstructionSetsConditionCodes(byte* ptr) { |
| // Instruction* instr = Instruction::At(ptr); |
| // int type = instr->TypeValue(); |
| // return ((type == 0) || (type == 1)) && instr->HasS(); |
| // } |
| // |
| |
| constexpr uint8_t kInstrSize = 4; |
| constexpr uint8_t kInstrSizeLog2 = 2; |
| |
| class Instruction { |
| public: |
| // Difference between address of current opcode and value read from pc |
| // register. |
| static constexpr int kPcLoadDelta = 8; |
| |
| // Helper macro to define static accessors. |
| // We use the cast to char* trick to bypass the strict anti-aliasing rules. |
| #define DECLARE_STATIC_TYPED_ACCESSOR(return_type, Name) \ |
| static inline return_type Name(Instr instr) { \ |
| char* temp = reinterpret_cast<char*>(&instr); \ |
| return reinterpret_cast<Instruction*>(temp)->Name(); \ |
| } |
| |
| #define DECLARE_STATIC_ACCESSOR(Name) DECLARE_STATIC_TYPED_ACCESSOR(int, Name) |
| |
| // Get the raw instruction bits. |
| inline Instr InstructionBits() const { |
| return *reinterpret_cast<const Instr*>(this); |
| } |
| |
| // Set the raw instruction bits to value. |
| inline void SetInstructionBits(Instr value) { |
| *reinterpret_cast<Instr*>(this) = value; |
| } |
| |
| // Extract a single bit from the instruction bits and return it as bit 0 in |
| // the result. |
| inline int Bit(int nr) const { return (InstructionBits() >> nr) & 1; } |
| |
| // Extract a bit field <hi:lo> from the instruction bits and return it in the |
| // least-significant bits of the result. |
| inline int Bits(int hi, int lo) const { |
| return (InstructionBits() >> lo) & ((2 << (hi - lo)) - 1); |
| } |
| |
| // Read a bit field <hi:lo>, leaving its position unchanged in the result. |
| inline int BitField(int hi, int lo) const { |
| return InstructionBits() & (((2 << (hi - lo)) - 1) << lo); |
| } |
| |
| // Static support. |
| |
| // Extract a single bit from the instruction bits and return it as bit 0 in |
| // the result. |
| static inline int Bit(Instr instr, int nr) { return (instr >> nr) & 1; } |
| |
| // Extract a bit field <hi:lo> from the instruction bits and return it in the |
| // least-significant bits of the result. |
| static inline int Bits(Instr instr, int hi, int lo) { |
| return (instr >> lo) & ((2 << (hi - lo)) - 1); |
| } |
| |
| // Read a bit field <hi:lo>, leaving its position unchanged in the result. |
| static inline int BitField(Instr instr, int hi, int lo) { |
| return instr & (((2 << (hi - lo)) - 1) << lo); |
| } |
| |
| // Accessors for the different named fields used in the ARM encoding. |
| // The naming of these accessor corresponds to figure A3-1. |
| // |
| // Two kind of accessors are declared: |
| // - <Name>Field() will return the raw field, i.e. the field's bits at their |
| // original place in the instruction encoding. |
| // e.g. if instr is the 'addgt r0, r1, r2' instruction, encoded as |
| // 0xC0810002 ConditionField(instr) will return 0xC0000000. |
| // - <Name>Value() will return the field value, shifted back to bit 0. |
| // e.g. if instr is the 'addgt r0, r1, r2' instruction, encoded as |
| // 0xC0810002 ConditionField(instr) will return 0xC. |
| |
| // Generally applicable fields |
| inline int ConditionValue() const { return Bits(31, 28); } |
| inline Condition ConditionField() const { |
| return static_cast<Condition>(BitField(31, 28)); |
| } |
| DECLARE_STATIC_TYPED_ACCESSOR(int, ConditionValue) |
| DECLARE_STATIC_TYPED_ACCESSOR(Condition, ConditionField) |
| |
| inline int TypeValue() const { return Bits(27, 25); } |
| inline int SpecialValue() const { return Bits(27, 23); } |
| |
| inline int RnValue() const { return Bits(19, 16); } |
| DECLARE_STATIC_ACCESSOR(RnValue) |
| inline int RdValue() const { return Bits(15, 12); } |
| DECLARE_STATIC_ACCESSOR(RdValue) |
| |
| inline int CoprocessorValue() const { return Bits(11, 8); } |
| // Support for VFP. |
| // Vn(19-16) | Vd(15-12) | Vm(3-0) |
| inline int VnValue() const { return Bits(19, 16); } |
| inline int VmValue() const { return Bits(3, 0); } |
| inline int VdValue() const { return Bits(15, 12); } |
| inline int NValue() const { return Bit(7); } |
| inline int MValue() const { return Bit(5); } |
| inline int DValue() const { return Bit(22); } |
| inline int RtValue() const { return Bits(15, 12); } |
| inline int PValue() const { return Bit(24); } |
| inline int UValue() const { return Bit(23); } |
| inline int Opc1Value() const { return (Bit(23) << 2) | Bits(21, 20); } |
| inline int Opc2Value() const { return Bits(19, 16); } |
| inline int Opc3Value() const { return Bits(7, 6); } |
| inline int SzValue() const { return Bit(8); } |
| inline int VLValue() const { return Bit(20); } |
| inline int VCValue() const { return Bit(8); } |
| inline int VAValue() const { return Bits(23, 21); } |
| inline int VBValue() const { return Bits(6, 5); } |
| inline int VFPNRegValue(VFPRegPrecision pre) { |
| return VFPGlueRegValue(pre, 16, 7); |
| } |
| inline int VFPMRegValue(VFPRegPrecision pre) { |
| return VFPGlueRegValue(pre, 0, 5); |
| } |
| inline int VFPDRegValue(VFPRegPrecision pre) { |
| return VFPGlueRegValue(pre, 12, 22); |
| } |
| |
| // Fields used in Data processing instructions |
| inline int OpcodeValue() const { return static_cast<Opcode>(Bits(24, 21)); } |
| inline Opcode OpcodeField() const { |
| return static_cast<Opcode>(BitField(24, 21)); |
| } |
| inline int SValue() const { return Bit(20); } |
| // with register |
| inline int RmValue() const { return Bits(3, 0); } |
| DECLARE_STATIC_ACCESSOR(RmValue) |
| inline int ShiftValue() const { return static_cast<ShiftOp>(Bits(6, 5)); } |
| inline ShiftOp ShiftField() const { |
| return static_cast<ShiftOp>(BitField(6, 5)); |
| } |
| inline int RegShiftValue() const { return Bit(4); } |
| inline int RsValue() const { return Bits(11, 8); } |
| inline int ShiftAmountValue() const { return Bits(11, 7); } |
| // with immediate |
| inline int RotateValue() const { return Bits(11, 8); } |
| DECLARE_STATIC_ACCESSOR(RotateValue) |
| inline int Immed8Value() const { return Bits(7, 0); } |
| DECLARE_STATIC_ACCESSOR(Immed8Value) |
| inline int Immed4Value() const { return Bits(19, 16); } |
| inline int ImmedMovwMovtValue() const { |
| return Immed4Value() << 12 | Offset12Value(); |
| } |
| DECLARE_STATIC_ACCESSOR(ImmedMovwMovtValue) |
| |
| // Fields used in Load/Store instructions |
| inline int PUValue() const { return Bits(24, 23); } |
| inline int PUField() const { return BitField(24, 23); } |
| inline int BValue() const { return Bit(22); } |
| inline int WValue() const { return Bit(21); } |
| inline int LValue() const { return Bit(20); } |
| // with register uses same fields as Data processing instructions above |
| // with immediate |
| inline int Offset12Value() const { return Bits(11, 0); } |
| // multiple |
| inline int RlistValue() const { return Bits(15, 0); } |
| // extra loads and stores |
| inline int SignValue() const { return Bit(6); } |
| inline int HValue() const { return Bit(5); } |
| inline int ImmedHValue() const { return Bits(11, 8); } |
| inline int ImmedLValue() const { return Bits(3, 0); } |
| |
| // Fields used in Branch instructions |
| inline int LinkValue() const { return Bit(24); } |
| inline int SImmed24Value() const { |
| return signed_bitextract_32(23, 0, InstructionBits()); |
| } |
| |
| bool IsBranch() { return Bit(27) == 1 && Bit(25) == 1; } |
| |
| int GetBranchOffset() { |
| DCHECK(IsBranch()); |
| return SImmed24Value() * kInstrSize; |
| } |
| |
| void SetBranchOffset(int32_t branch_offset) { |
| DCHECK(IsBranch()); |
| DCHECK_EQ(branch_offset % kInstrSize, 0); |
| int32_t new_imm24 = branch_offset / kInstrSize; |
| CHECK(is_int24(new_imm24)); |
| SetInstructionBits((InstructionBits() & ~(kImm24Mask)) | |
| (new_imm24 & kImm24Mask)); |
| } |
| |
| // Fields used in Software interrupt instructions |
| inline SoftwareInterruptCodes SvcValue() const { |
| return static_cast<SoftwareInterruptCodes>(Bits(23, 0)); |
| } |
| |
| // Test for special encodings of type 0 instructions (extra loads and stores, |
| // as well as multiplications). |
| inline bool IsSpecialType0() const { return (Bit(7) == 1) && (Bit(4) == 1); } |
| |
| // Test for miscellaneous instructions encodings of type 0 instructions. |
| inline bool IsMiscType0() const { |
| return (Bit(24) == 1) && (Bit(23) == 0) && (Bit(20) == 0) && |
| ((Bit(7) == 0)); |
| } |
| |
| // Test for nop-like instructions which fall under type 1. |
| inline bool IsNopLikeType1() const { return Bits(24, 8) == 0x120F0; } |
| |
| // Test for a stop instruction. |
| inline bool IsStop() const { |
| return (TypeValue() == 7) && (Bit(24) == 1) && (SvcValue() >= kStopCode); |
| } |
| |
| // Special accessors that test for existence of a value. |
| inline bool HasS() const { return SValue() == 1; } |
| inline bool HasB() const { return BValue() == 1; } |
| inline bool HasW() const { return WValue() == 1; } |
| inline bool HasL() const { return LValue() == 1; } |
| inline bool HasU() const { return UValue() == 1; } |
| inline bool HasSign() const { return SignValue() == 1; } |
| inline bool HasH() const { return HValue() == 1; } |
| inline bool HasLink() const { return LinkValue() == 1; } |
| |
| // Decode the double immediate from a vmov instruction. |
| Float64 DoubleImmedVmov() const; |
| |
| // Instructions are read of out a code stream. The only way to get a |
| // reference to an instruction is to convert a pointer. There is no way |
| // to allocate or create instances of class Instruction. |
| // Use the At(pc) function to create references to Instruction. |
| static Instruction* At(Address pc) { |
| return reinterpret_cast<Instruction*>(pc); |
| } |
| |
| private: |
| // Join split register codes, depending on register precision. |
| // four_bit is the position of the least-significant bit of the four |
| // bit specifier. one_bit is the position of the additional single bit |
| // specifier. |
| inline int VFPGlueRegValue(VFPRegPrecision pre, int four_bit, int one_bit) { |
| if (pre == kSinglePrecision) { |
| return (Bits(four_bit + 3, four_bit) << 1) | Bit(one_bit); |
| } else { |
| int reg_num = (Bit(one_bit) << 4) | Bits(four_bit + 3, four_bit); |
| if (pre == kDoublePrecision) { |
| return reg_num; |
| } |
| DCHECK_EQ(kSimd128Precision, pre); |
| DCHECK_EQ(reg_num & 1, 0); |
| return reg_num / 2; |
| } |
| } |
| |
| // We need to prevent the creation of instances of class Instruction. |
| DISALLOW_IMPLICIT_CONSTRUCTORS(Instruction); |
| }; |
| |
| // Helper functions for converting between register numbers and names. |
| class Registers { |
| public: |
| // Return the name of the register. |
| static const char* Name(int reg); |
| |
| // Lookup the register number for the name provided. |
| static int Number(const char* name); |
| |
| struct RegisterAlias { |
| int reg; |
| const char* name; |
| }; |
| |
| private: |
| static const char* names_[kNumRegisters]; |
| static const RegisterAlias aliases_[]; |
| }; |
| |
| // Helper functions for converting between VFP register numbers and names. |
| class VFPRegisters { |
| public: |
| // Return the name of the register. |
| static const char* Name(int reg, bool is_double); |
| |
| // Lookup the register number for the name provided. |
| // Set flag pointed by is_double to true if register |
| // is double-precision. |
| static int Number(const char* name, bool* is_double); |
| |
| private: |
| static const char* names_[kNumVFPRegisters]; |
| }; |
| |
| // Relative jumps on ARM can address ±32 MB. |
| constexpr size_t kMaxPCRelativeCodeRangeInMB = 32; |
| |
| } // namespace internal |
| } // namespace v8 |
| |
| #endif // V8_CODEGEN_ARM_CONSTANTS_ARM_H_ |