| // Copyright 2016 the V8 project authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #ifndef V8_CODEGEN_CODE_STUB_ASSEMBLER_H_ |
| #define V8_CODEGEN_CODE_STUB_ASSEMBLER_H_ |
| |
| #include <functional> |
| |
| #include "src/base/macros.h" |
| #include "src/codegen/bailout-reason.h" |
| #include "src/common/globals.h" |
| #include "src/common/message-template.h" |
| #include "src/compiler/code-assembler.h" |
| #include "src/objects/arguments.h" |
| #include "src/objects/bigint.h" |
| #include "src/objects/objects.h" |
| #include "src/objects/shared-function-info.h" |
| #include "src/objects/smi.h" |
| #include "src/roots/roots.h" |
| |
| #include "torque-generated/exported-macros-assembler-tq.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| class CallInterfaceDescriptor; |
| class CodeStubArguments; |
| class CodeStubAssembler; |
| class StatsCounter; |
| class StubCache; |
| |
| enum class PrimitiveType { kBoolean, kNumber, kString, kSymbol }; |
| |
| #define HEAP_MUTABLE_IMMOVABLE_OBJECT_LIST(V) \ |
| V(ArraySpeciesProtector, array_species_protector, ArraySpeciesProtector) \ |
| V(PromiseSpeciesProtector, promise_species_protector, \ |
| PromiseSpeciesProtector) \ |
| V(TypedArraySpeciesProtector, typed_array_species_protector, \ |
| TypedArraySpeciesProtector) \ |
| |
| #define HEAP_IMMUTABLE_IMMOVABLE_OBJECT_LIST(V) \ |
| V(AccessorInfoMap, accessor_info_map, AccessorInfoMap) \ |
| V(AccessorPairMap, accessor_pair_map, AccessorPairMap) \ |
| V(AllocationSiteWithWeakNextMap, allocation_site_map, AllocationSiteMap) \ |
| V(AllocationSiteWithoutWeakNextMap, allocation_site_without_weaknext_map, \ |
| AllocationSiteWithoutWeakNextMap) \ |
| V(BooleanMap, boolean_map, BooleanMap) \ |
| V(CodeMap, code_map, CodeMap) \ |
| V(EmptyFixedArray, empty_fixed_array, EmptyFixedArray) \ |
| V(EmptyPropertyDictionary, empty_property_dictionary, \ |
| EmptyPropertyDictionary) \ |
| V(EmptySlowElementDictionary, empty_slow_element_dictionary, \ |
| EmptySlowElementDictionary) \ |
| V(empty_string, empty_string, EmptyString) \ |
| V(FalseValue, false_value, False) \ |
| V(FeedbackVectorMap, feedback_vector_map, FeedbackVectorMap) \ |
| V(FixedArrayMap, fixed_array_map, FixedArrayMap) \ |
| V(FixedCOWArrayMap, fixed_cow_array_map, FixedCOWArrayMap) \ |
| V(FixedDoubleArrayMap, fixed_double_array_map, FixedDoubleArrayMap) \ |
| V(FunctionTemplateInfoMap, function_template_info_map, \ |
| FunctionTemplateInfoMap) \ |
| V(GlobalPropertyCellMap, global_property_cell_map, PropertyCellMap) \ |
| V(has_instance_symbol, has_instance_symbol, HasInstanceSymbol) \ |
| V(HeapNumberMap, heap_number_map, HeapNumberMap) \ |
| V(iterator_symbol, iterator_symbol, IteratorSymbol) \ |
| V(length_string, length_string, LengthString) \ |
| V(ManyClosuresCellMap, many_closures_cell_map, ManyClosuresCellMap) \ |
| V(MetaMap, meta_map, MetaMap) \ |
| V(MinusZeroValue, minus_zero_value, MinusZero) \ |
| V(MutableHeapNumberMap, mutable_heap_number_map, MutableHeapNumberMap) \ |
| V(NanValue, nan_value, Nan) \ |
| V(NoClosuresCellMap, no_closures_cell_map, NoClosuresCellMap) \ |
| V(NullValue, null_value, Null) \ |
| V(OneClosureCellMap, one_closure_cell_map, OneClosureCellMap) \ |
| V(PreparseDataMap, preparse_data_map, PreparseDataMap) \ |
| V(prototype_string, prototype_string, PrototypeString) \ |
| V(SharedFunctionInfoMap, shared_function_info_map, SharedFunctionInfoMap) \ |
| V(StoreHandler0Map, store_handler0_map, StoreHandler0Map) \ |
| V(SymbolMap, symbol_map, SymbolMap) \ |
| V(TheHoleValue, the_hole_value, TheHole) \ |
| V(TransitionArrayMap, transition_array_map, TransitionArrayMap) \ |
| V(TrueValue, true_value, True) \ |
| V(Tuple2Map, tuple2_map, Tuple2Map) \ |
| V(Tuple3Map, tuple3_map, Tuple3Map) \ |
| V(ArrayBoilerplateDescriptionMap, array_boilerplate_description_map, \ |
| ArrayBoilerplateDescriptionMap) \ |
| V(UncompiledDataWithoutPreparseDataMap, \ |
| uncompiled_data_without_preparse_data_map, \ |
| UncompiledDataWithoutPreparseDataMap) \ |
| V(UncompiledDataWithPreparseDataMap, uncompiled_data_with_preparse_data_map, \ |
| UncompiledDataWithPreparseDataMap) \ |
| V(UndefinedValue, undefined_value, Undefined) \ |
| V(WeakFixedArrayMap, weak_fixed_array_map, WeakFixedArrayMap) |
| |
| #define HEAP_IMMOVABLE_OBJECT_LIST(V) \ |
| HEAP_MUTABLE_IMMOVABLE_OBJECT_LIST(V) \ |
| HEAP_IMMUTABLE_IMMOVABLE_OBJECT_LIST(V) |
| |
| #ifdef DEBUG |
| #define CSA_CHECK(csa, x) \ |
| (csa)->Check( \ |
| [&]() -> compiler::Node* { \ |
| return implicit_cast<compiler::SloppyTNode<Word32T>>(x); \ |
| }, \ |
| #x, __FILE__, __LINE__) |
| #else |
| #define CSA_CHECK(csa, x) (csa)->FastCheck(x) |
| #endif |
| |
| #ifdef DEBUG |
| // CSA_ASSERT_ARGS generates an |
| // std::initializer_list<CodeStubAssembler::ExtraNode> from __VA_ARGS__. It |
| // currently supports between 0 and 2 arguments. |
| |
| // clang-format off |
| #define CSA_ASSERT_0_ARGS(...) {} |
| #define CSA_ASSERT_1_ARG(a, ...) {{a, #a}} |
| #define CSA_ASSERT_2_ARGS(a, b, ...) {{a, #a}, {b, #b}} |
| // clang-format on |
| #define SWITCH_CSA_ASSERT_ARGS(dummy, a, b, FUNC, ...) FUNC(a, b) |
| #define CSA_ASSERT_ARGS(...) \ |
| SWITCH_CSA_ASSERT_ARGS(dummy, ##__VA_ARGS__, CSA_ASSERT_2_ARGS, \ |
| CSA_ASSERT_1_ARG, CSA_ASSERT_0_ARGS) |
| |
| // CSA_ASSERT(csa, <condition>, <extra values to print...>) |
| |
| #define CSA_ASSERT(csa, condition_node, ...) \ |
| (csa)->Assert( \ |
| [&]() -> compiler::Node* { \ |
| return implicit_cast<compiler::SloppyTNode<Word32T>>(condition_node); \ |
| }, \ |
| #condition_node, __FILE__, __LINE__, CSA_ASSERT_ARGS(__VA_ARGS__)) |
| |
| // CSA_ASSERT_BRANCH(csa, [](Label* ok, Label* not_ok) {...}, |
| // <extra values to print...>) |
| |
| #define CSA_ASSERT_BRANCH(csa, gen, ...) \ |
| (csa)->Assert(gen, #gen, __FILE__, __LINE__, CSA_ASSERT_ARGS(__VA_ARGS__)) |
| |
| #define CSA_ASSERT_JS_ARGC_OP(csa, Op, op, expected) \ |
| (csa)->Assert( \ |
| [&]() -> compiler::Node* { \ |
| compiler::Node* const argc = \ |
| (csa)->Parameter(Descriptor::kJSActualArgumentsCount); \ |
| return (csa)->Op(argc, (csa)->Int32Constant(expected)); \ |
| }, \ |
| "argc " #op " " #expected, __FILE__, __LINE__, \ |
| {{SmiFromInt32((csa)->Parameter(Descriptor::kJSActualArgumentsCount)), \ |
| "argc"}}) |
| |
| #define CSA_ASSERT_JS_ARGC_EQ(csa, expected) \ |
| CSA_ASSERT_JS_ARGC_OP(csa, Word32Equal, ==, expected) |
| |
| #define CSA_DEBUG_INFO(name) \ |
| { #name, __FILE__, __LINE__ } |
| #define BIND(label) Bind(label, CSA_DEBUG_INFO(label)) |
| #define VARIABLE(name, ...) \ |
| Variable name(this, CSA_DEBUG_INFO(name), __VA_ARGS__) |
| #define VARIABLE_CONSTRUCTOR(name, ...) \ |
| name(this, CSA_DEBUG_INFO(name), __VA_ARGS__) |
| #define TYPED_VARIABLE_DEF(type, name, ...) \ |
| TVariable<type> name(CSA_DEBUG_INFO(name), __VA_ARGS__) |
| #else // DEBUG |
| #define CSA_ASSERT(csa, ...) ((void)0) |
| #define CSA_ASSERT_BRANCH(csa, ...) ((void)0) |
| #define CSA_ASSERT_JS_ARGC_EQ(csa, expected) ((void)0) |
| #define BIND(label) Bind(label) |
| #define VARIABLE(name, ...) Variable name(this, __VA_ARGS__) |
| #define VARIABLE_CONSTRUCTOR(name, ...) name(this, __VA_ARGS__) |
| #define TYPED_VARIABLE_DEF(type, name, ...) TVariable<type> name(__VA_ARGS__) |
| #endif // DEBUG |
| |
| #define TVARIABLE(...) EXPAND(TYPED_VARIABLE_DEF(__VA_ARGS__, this)) |
| |
| #ifdef ENABLE_SLOW_DCHECKS |
| #define CSA_SLOW_ASSERT(csa, ...) \ |
| if (FLAG_enable_slow_asserts) { \ |
| CSA_ASSERT(csa, __VA_ARGS__); \ |
| } |
| #else |
| #define CSA_SLOW_ASSERT(csa, ...) ((void)0) |
| #endif |
| |
| // Provides JavaScript-specific "macro-assembler" functionality on top of the |
| // CodeAssembler. By factoring the JavaScript-isms out of the CodeAssembler, |
| // it's possible to add JavaScript-specific useful CodeAssembler "macros" |
| // without modifying files in the compiler directory (and requiring a review |
| // from a compiler directory OWNER). |
| class V8_EXPORT_PRIVATE CodeStubAssembler |
| : public compiler::CodeAssembler, |
| public TorqueGeneratedExportedMacrosAssembler { |
| public: |
| using Node = compiler::Node; |
| template <class T> |
| using TNode = compiler::TNode<T>; |
| template <class T> |
| using SloppyTNode = compiler::SloppyTNode<T>; |
| |
| template <typename T> |
| using LazyNode = std::function<TNode<T>()>; |
| |
| explicit CodeStubAssembler(compiler::CodeAssemblerState* state); |
| |
| enum AllocationFlag : uint8_t { |
| kNone = 0, |
| kDoubleAlignment = 1, |
| kPretenured = 1 << 1, |
| kAllowLargeObjectAllocation = 1 << 2, |
| }; |
| |
| enum SlackTrackingMode { kWithSlackTracking, kNoSlackTracking }; |
| |
| using AllocationFlags = base::Flags<AllocationFlag>; |
| |
| enum ParameterMode { SMI_PARAMETERS, INTPTR_PARAMETERS }; |
| |
| // On 32-bit platforms, there is a slight performance advantage to doing all |
| // of the array offset/index arithmetic with SMIs, since it's possible |
| // to save a few tag/untag operations without paying an extra expense when |
| // calculating array offset (the smi math can be folded away) and there are |
| // fewer live ranges. Thus only convert indices to untagged value on 64-bit |
| // platforms. |
| ParameterMode OptimalParameterMode() const { |
| return Is64() ? INTPTR_PARAMETERS : SMI_PARAMETERS; |
| } |
| |
| MachineRepresentation ParameterRepresentation(ParameterMode mode) const { |
| return mode == INTPTR_PARAMETERS ? MachineType::PointerRepresentation() |
| : MachineRepresentation::kTaggedSigned; |
| } |
| |
| MachineRepresentation OptimalParameterRepresentation() const { |
| return ParameterRepresentation(OptimalParameterMode()); |
| } |
| |
| TNode<IntPtrT> ParameterToIntPtr(Node* value, ParameterMode mode) { |
| if (mode == SMI_PARAMETERS) value = SmiUntag(value); |
| return UncheckedCast<IntPtrT>(value); |
| } |
| |
| Node* IntPtrToParameter(SloppyTNode<IntPtrT> value, ParameterMode mode) { |
| if (mode == SMI_PARAMETERS) return SmiTag(value); |
| return value; |
| } |
| |
| Node* Int32ToParameter(SloppyTNode<Int32T> value, ParameterMode mode) { |
| return IntPtrToParameter(ChangeInt32ToIntPtr(value), mode); |
| } |
| |
| TNode<Smi> ParameterToTagged(Node* value, ParameterMode mode) { |
| if (mode != SMI_PARAMETERS) return SmiTag(value); |
| return UncheckedCast<Smi>(value); |
| } |
| |
| Node* TaggedToParameter(SloppyTNode<Smi> value, ParameterMode mode) { |
| if (mode != SMI_PARAMETERS) return SmiUntag(value); |
| return value; |
| } |
| |
| bool ToParameterConstant(Node* node, intptr_t* out, ParameterMode mode) { |
| if (mode == ParameterMode::SMI_PARAMETERS) { |
| Smi constant; |
| if (ToSmiConstant(node, &constant)) { |
| *out = static_cast<intptr_t>(constant.value()); |
| return true; |
| } |
| } else { |
| DCHECK_EQ(mode, ParameterMode::INTPTR_PARAMETERS); |
| intptr_t constant; |
| if (ToIntPtrConstant(node, constant)) { |
| *out = constant; |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| #if defined(V8_HOST_ARCH_32_BIT) |
| TNode<Smi> BIntToSmi(TNode<BInt> source) { return source; } |
| TNode<IntPtrT> BIntToIntPtr(TNode<BInt> source) { |
| return SmiToIntPtr(source); |
| } |
| TNode<BInt> SmiToBInt(TNode<Smi> source) { return source; } |
| TNode<BInt> IntPtrToBInt(TNode<IntPtrT> source) { |
| return SmiFromIntPtr(source); |
| } |
| #elif defined(V8_HOST_ARCH_64_BIT) |
| TNode<Smi> BIntToSmi(TNode<BInt> source) { return SmiFromIntPtr(source); } |
| TNode<IntPtrT> BIntToIntPtr(TNode<BInt> source) { return source; } |
| TNode<BInt> SmiToBInt(TNode<Smi> source) { return SmiToIntPtr(source); } |
| TNode<BInt> IntPtrToBInt(TNode<IntPtrT> source) { return source; } |
| #else |
| #error Unknown architecture. |
| #endif |
| |
| TNode<Smi> TaggedToSmi(TNode<Object> value, Label* fail) { |
| GotoIf(TaggedIsNotSmi(value), fail); |
| return UncheckedCast<Smi>(value); |
| } |
| |
| TNode<Smi> TaggedToPositiveSmi(TNode<Object> value, Label* fail) { |
| GotoIfNot(TaggedIsPositiveSmi(value), fail); |
| return UncheckedCast<Smi>(value); |
| } |
| |
| TNode<String> TaggedToDirectString(TNode<Object> value, Label* fail); |
| |
| TNode<Number> TaggedToNumber(TNode<Object> value, Label* fail) { |
| GotoIfNot(IsNumber(value), fail); |
| return UncheckedCast<Number>(value); |
| } |
| |
| TNode<HeapObject> TaggedToHeapObject(TNode<Object> value, Label* fail) { |
| GotoIf(TaggedIsSmi(value), fail); |
| return UncheckedCast<HeapObject>(value); |
| } |
| |
| TNode<JSArray> HeapObjectToJSArray(TNode<HeapObject> heap_object, |
| Label* fail) { |
| GotoIfNot(IsJSArray(heap_object), fail); |
| return UncheckedCast<JSArray>(heap_object); |
| } |
| |
| TNode<JSArrayBuffer> HeapObjectToJSArrayBuffer(TNode<HeapObject> heap_object, |
| Label* fail) { |
| GotoIfNot(IsJSArrayBuffer(heap_object), fail); |
| return UncheckedCast<JSArrayBuffer>(heap_object); |
| } |
| |
| TNode<JSArray> TaggedToFastJSArray(TNode<Context> context, |
| TNode<Object> value, Label* fail) { |
| GotoIf(TaggedIsSmi(value), fail); |
| TNode<HeapObject> heap_object = CAST(value); |
| GotoIfNot(IsFastJSArray(heap_object, context), fail); |
| return UncheckedCast<JSArray>(heap_object); |
| } |
| |
| TNode<JSDataView> HeapObjectToJSDataView(TNode<HeapObject> heap_object, |
| Label* fail) { |
| GotoIfNot(IsJSDataView(heap_object), fail); |
| return CAST(heap_object); |
| } |
| |
| TNode<JSProxy> HeapObjectToJSProxy(TNode<HeapObject> heap_object, |
| Label* fail) { |
| GotoIfNot(IsJSProxy(heap_object), fail); |
| return CAST(heap_object); |
| } |
| |
| TNode<JSStringIterator> HeapObjectToJSStringIterator( |
| TNode<HeapObject> heap_object, Label* fail) { |
| GotoIfNot(IsJSStringIterator(heap_object), fail); |
| return CAST(heap_object); |
| } |
| |
| TNode<JSReceiver> HeapObjectToCallable(TNode<HeapObject> heap_object, |
| Label* fail) { |
| GotoIfNot(IsCallable(heap_object), fail); |
| return CAST(heap_object); |
| } |
| |
| TNode<String> HeapObjectToString(TNode<HeapObject> heap_object, Label* fail) { |
| GotoIfNot(IsString(heap_object), fail); |
| return CAST(heap_object); |
| } |
| |
| TNode<JSReceiver> HeapObjectToConstructor(TNode<HeapObject> heap_object, |
| Label* fail) { |
| GotoIfNot(IsConstructor(heap_object), fail); |
| return CAST(heap_object); |
| } |
| |
| Node* MatchesParameterMode(Node* value, ParameterMode mode); |
| |
| #define PARAMETER_BINOP(OpName, IntPtrOpName, SmiOpName) \ |
| Node* OpName(Node* a, Node* b, ParameterMode mode) { \ |
| if (mode == SMI_PARAMETERS) { \ |
| return SmiOpName(CAST(a), CAST(b)); \ |
| } else { \ |
| DCHECK_EQ(INTPTR_PARAMETERS, mode); \ |
| return IntPtrOpName(a, b); \ |
| } \ |
| } |
| PARAMETER_BINOP(IntPtrOrSmiMin, IntPtrMin, SmiMin) |
| PARAMETER_BINOP(IntPtrOrSmiAdd, IntPtrAdd, SmiAdd) |
| PARAMETER_BINOP(IntPtrOrSmiSub, IntPtrSub, SmiSub) |
| PARAMETER_BINOP(IntPtrOrSmiLessThan, IntPtrLessThan, SmiLessThan) |
| PARAMETER_BINOP(IntPtrOrSmiLessThanOrEqual, IntPtrLessThanOrEqual, |
| SmiLessThanOrEqual) |
| PARAMETER_BINOP(IntPtrOrSmiGreaterThan, IntPtrGreaterThan, SmiGreaterThan) |
| PARAMETER_BINOP(IntPtrOrSmiGreaterThanOrEqual, IntPtrGreaterThanOrEqual, |
| SmiGreaterThanOrEqual) |
| PARAMETER_BINOP(UintPtrOrSmiLessThan, UintPtrLessThan, SmiBelow) |
| PARAMETER_BINOP(UintPtrOrSmiGreaterThanOrEqual, UintPtrGreaterThanOrEqual, |
| SmiAboveOrEqual) |
| #undef PARAMETER_BINOP |
| |
| uintptr_t ConstexprUintPtrShl(uintptr_t a, int32_t b) { return a << b; } |
| uintptr_t ConstexprUintPtrShr(uintptr_t a, int32_t b) { return a >> b; } |
| intptr_t ConstexprIntPtrAdd(intptr_t a, intptr_t b) { return a + b; } |
| uintptr_t ConstexprUintPtrAdd(uintptr_t a, uintptr_t b) { return a + b; } |
| intptr_t ConstexprWordNot(intptr_t a) { return ~a; } |
| uintptr_t ConstexprWordNot(uintptr_t a) { return ~a; } |
| |
| TNode<Object> NoContextConstant(); |
| |
| #define HEAP_CONSTANT_ACCESSOR(rootIndexName, rootAccessorName, name) \ |
| compiler::TNode<std::remove_pointer<std::remove_reference<decltype( \ |
| std::declval<ReadOnlyRoots>().rootAccessorName())>::type>::type> \ |
| name##Constant(); |
| HEAP_IMMUTABLE_IMMOVABLE_OBJECT_LIST(HEAP_CONSTANT_ACCESSOR) |
| #undef HEAP_CONSTANT_ACCESSOR |
| |
| #define HEAP_CONSTANT_ACCESSOR(rootIndexName, rootAccessorName, name) \ |
| compiler::TNode<std::remove_pointer<std::remove_reference<decltype( \ |
| std::declval<Heap>().rootAccessorName())>::type>::type> \ |
| name##Constant(); |
| HEAP_MUTABLE_IMMOVABLE_OBJECT_LIST(HEAP_CONSTANT_ACCESSOR) |
| #undef HEAP_CONSTANT_ACCESSOR |
| |
| #define HEAP_CONSTANT_TEST(rootIndexName, rootAccessorName, name) \ |
| TNode<BoolT> Is##name(SloppyTNode<Object> value); \ |
| TNode<BoolT> IsNot##name(SloppyTNode<Object> value); |
| HEAP_IMMOVABLE_OBJECT_LIST(HEAP_CONSTANT_TEST) |
| #undef HEAP_CONSTANT_TEST |
| |
| Node* IntPtrOrSmiConstant(int value, ParameterMode mode); |
| |
| bool IsIntPtrOrSmiConstantZero(Node* test, ParameterMode mode); |
| bool TryGetIntPtrOrSmiConstantValue(Node* maybe_constant, int* value, |
| ParameterMode mode); |
| |
| // Round the 32bits payload of the provided word up to the next power of two. |
| TNode<IntPtrT> IntPtrRoundUpToPowerOfTwo32(TNode<IntPtrT> value); |
| // Select the maximum of the two provided IntPtr values. |
| TNode<IntPtrT> IntPtrMax(SloppyTNode<IntPtrT> left, |
| SloppyTNode<IntPtrT> right); |
| // Select the minimum of the two provided IntPtr values. |
| TNode<IntPtrT> IntPtrMin(SloppyTNode<IntPtrT> left, |
| SloppyTNode<IntPtrT> right); |
| |
| // Float64 operations. |
| TNode<Float64T> Float64Ceil(SloppyTNode<Float64T> x); |
| TNode<Float64T> Float64Floor(SloppyTNode<Float64T> x); |
| TNode<Float64T> Float64Round(SloppyTNode<Float64T> x); |
| TNode<Float64T> Float64RoundToEven(SloppyTNode<Float64T> x); |
| TNode<Float64T> Float64Trunc(SloppyTNode<Float64T> x); |
| // Select the minimum of the two provided Number values. |
| TNode<Number> NumberMax(SloppyTNode<Number> left, SloppyTNode<Number> right); |
| // Select the minimum of the two provided Number values. |
| TNode<Number> NumberMin(SloppyTNode<Number> left, SloppyTNode<Number> right); |
| |
| // After converting an index to an integer, calculate a relative index: if |
| // index < 0, max(length + index, 0); else min(index, length) |
| TNode<IntPtrT> ConvertToRelativeIndex(TNode<Context> context, |
| TNode<Object> index, |
| TNode<IntPtrT> length); |
| |
| // Returns true iff the given value fits into smi range and is >= 0. |
| TNode<BoolT> IsValidPositiveSmi(TNode<IntPtrT> value); |
| |
| // Tag an IntPtr as a Smi value. |
| TNode<Smi> SmiTag(SloppyTNode<IntPtrT> value); |
| // Untag a Smi value as an IntPtr. |
| TNode<IntPtrT> SmiUntag(SloppyTNode<Smi> value); |
| |
| // Smi conversions. |
| TNode<Float64T> SmiToFloat64(SloppyTNode<Smi> value); |
| TNode<Smi> SmiFromIntPtr(SloppyTNode<IntPtrT> value) { return SmiTag(value); } |
| TNode<Smi> SmiFromInt32(SloppyTNode<Int32T> value); |
| TNode<IntPtrT> SmiToIntPtr(SloppyTNode<Smi> value) { return SmiUntag(value); } |
| TNode<Int32T> SmiToInt32(SloppyTNode<Smi> value); |
| |
| // Smi operations. |
| #define SMI_ARITHMETIC_BINOP(SmiOpName, IntPtrOpName, Int32OpName) \ |
| TNode<Smi> SmiOpName(TNode<Smi> a, TNode<Smi> b) { \ |
| if (SmiValuesAre32Bits()) { \ |
| return BitcastWordToTaggedSigned(IntPtrOpName( \ |
| BitcastTaggedSignedToWord(a), BitcastTaggedSignedToWord(b))); \ |
| } else { \ |
| DCHECK(SmiValuesAre31Bits()); \ |
| if (kSystemPointerSize == kInt64Size) { \ |
| CSA_ASSERT(this, IsValidSmi(a)); \ |
| CSA_ASSERT(this, IsValidSmi(b)); \ |
| } \ |
| return BitcastWordToTaggedSigned(ChangeInt32ToIntPtr( \ |
| Int32OpName(TruncateIntPtrToInt32(BitcastTaggedSignedToWord(a)), \ |
| TruncateIntPtrToInt32(BitcastTaggedSignedToWord(b))))); \ |
| } \ |
| } |
| SMI_ARITHMETIC_BINOP(SmiAdd, IntPtrAdd, Int32Add) |
| SMI_ARITHMETIC_BINOP(SmiSub, IntPtrSub, Int32Sub) |
| SMI_ARITHMETIC_BINOP(SmiAnd, WordAnd, Word32And) |
| SMI_ARITHMETIC_BINOP(SmiOr, WordOr, Word32Or) |
| #undef SMI_ARITHMETIC_BINOP |
| TNode<Smi> SmiInc(TNode<Smi> value) { return SmiAdd(value, SmiConstant(1)); } |
| |
| TNode<IntPtrT> TryIntPtrAdd(TNode<IntPtrT> a, TNode<IntPtrT> b, |
| Label* if_overflow); |
| TNode<IntPtrT> TryIntPtrSub(TNode<IntPtrT> a, TNode<IntPtrT> b, |
| Label* if_overflow); |
| TNode<Int32T> TryInt32Mul(TNode<Int32T> a, TNode<Int32T> b, |
| Label* if_overflow); |
| TNode<Smi> TrySmiAdd(TNode<Smi> a, TNode<Smi> b, Label* if_overflow); |
| TNode<Smi> TrySmiSub(TNode<Smi> a, TNode<Smi> b, Label* if_overflow); |
| |
| TNode<Smi> SmiShl(TNode<Smi> a, int shift) { |
| return BitcastWordToTaggedSigned( |
| WordShl(BitcastTaggedSignedToWord(a), shift)); |
| } |
| |
| TNode<Smi> SmiShr(TNode<Smi> a, int shift) { |
| return BitcastWordToTaggedSigned( |
| WordAnd(WordShr(BitcastTaggedSignedToWord(a), shift), |
| BitcastTaggedSignedToWord(SmiConstant(-1)))); |
| } |
| |
| TNode<Smi> SmiSar(TNode<Smi> a, int shift) { |
| return BitcastWordToTaggedSigned( |
| WordAnd(WordSar(BitcastTaggedSignedToWord(a), shift), |
| BitcastTaggedSignedToWord(SmiConstant(-1)))); |
| } |
| |
| Node* WordOrSmiShl(Node* a, int shift, ParameterMode mode) { |
| if (mode == SMI_PARAMETERS) { |
| return SmiShl(CAST(a), shift); |
| } else { |
| DCHECK_EQ(INTPTR_PARAMETERS, mode); |
| return WordShl(a, shift); |
| } |
| } |
| |
| Node* WordOrSmiShr(Node* a, int shift, ParameterMode mode) { |
| if (mode == SMI_PARAMETERS) { |
| return SmiShr(CAST(a), shift); |
| } else { |
| DCHECK_EQ(INTPTR_PARAMETERS, mode); |
| return WordShr(a, shift); |
| } |
| } |
| |
| #define SMI_COMPARISON_OP(SmiOpName, IntPtrOpName, Int32OpName) \ |
| TNode<BoolT> SmiOpName(TNode<Smi> a, TNode<Smi> b) { \ |
| if (SmiValuesAre32Bits()) { \ |
| return IntPtrOpName(BitcastTaggedSignedToWord(a), \ |
| BitcastTaggedSignedToWord(b)); \ |
| } else { \ |
| DCHECK(SmiValuesAre31Bits()); \ |
| if (kSystemPointerSize == kInt64Size) { \ |
| CSA_ASSERT(this, IsValidSmi(a)); \ |
| CSA_ASSERT(this, IsValidSmi(b)); \ |
| } \ |
| return Int32OpName(TruncateIntPtrToInt32(BitcastTaggedSignedToWord(a)), \ |
| TruncateIntPtrToInt32(BitcastTaggedSignedToWord(b))); \ |
| } \ |
| } |
| SMI_COMPARISON_OP(SmiEqual, WordEqual, Word32Equal) |
| SMI_COMPARISON_OP(SmiNotEqual, WordNotEqual, Word32NotEqual) |
| SMI_COMPARISON_OP(SmiAbove, UintPtrGreaterThan, Uint32GreaterThan) |
| SMI_COMPARISON_OP(SmiAboveOrEqual, UintPtrGreaterThanOrEqual, |
| Uint32GreaterThanOrEqual) |
| SMI_COMPARISON_OP(SmiBelow, UintPtrLessThan, Uint32LessThan) |
| SMI_COMPARISON_OP(SmiLessThan, IntPtrLessThan, Int32LessThan) |
| SMI_COMPARISON_OP(SmiLessThanOrEqual, IntPtrLessThanOrEqual, |
| Int32LessThanOrEqual) |
| SMI_COMPARISON_OP(SmiGreaterThan, IntPtrGreaterThan, Int32GreaterThan) |
| SMI_COMPARISON_OP(SmiGreaterThanOrEqual, IntPtrGreaterThanOrEqual, |
| Int32GreaterThanOrEqual) |
| #undef SMI_COMPARISON_OP |
| TNode<Smi> SmiMax(TNode<Smi> a, TNode<Smi> b); |
| TNode<Smi> SmiMin(TNode<Smi> a, TNode<Smi> b); |
| // Computes a % b for Smi inputs a and b; result is not necessarily a Smi. |
| TNode<Number> SmiMod(TNode<Smi> a, TNode<Smi> b); |
| // Computes a * b for Smi inputs a and b; result is not necessarily a Smi. |
| TNode<Number> SmiMul(TNode<Smi> a, TNode<Smi> b); |
| // Tries to compute dividend / divisor for Smi inputs; branching to bailout |
| // if the division needs to be performed as a floating point operation. |
| TNode<Smi> TrySmiDiv(TNode<Smi> dividend, TNode<Smi> divisor, Label* bailout); |
| |
| // Compares two Smis a and b as if they were converted to strings and then |
| // compared lexicographically. Returns: |
| // -1 iff x < y. |
| // 0 iff x == y. |
| // 1 iff x > y. |
| TNode<Smi> SmiLexicographicCompare(TNode<Smi> x, TNode<Smi> y); |
| |
| // Smi | HeapNumber operations. |
| TNode<Number> NumberInc(SloppyTNode<Number> value); |
| TNode<Number> NumberDec(SloppyTNode<Number> value); |
| TNode<Number> NumberAdd(SloppyTNode<Number> a, SloppyTNode<Number> b); |
| TNode<Number> NumberSub(SloppyTNode<Number> a, SloppyTNode<Number> b); |
| void GotoIfNotNumber(Node* value, Label* is_not_number); |
| void GotoIfNumber(Node* value, Label* is_number); |
| TNode<Number> SmiToNumber(TNode<Smi> v) { return v; } |
| |
| TNode<Number> BitwiseOp(Node* left32, Node* right32, Operation bitwise_op); |
| |
| // Allocate an object of the given size. |
| TNode<HeapObject> AllocateInNewSpace(TNode<IntPtrT> size, |
| AllocationFlags flags = kNone); |
| TNode<HeapObject> AllocateInNewSpace(int size, AllocationFlags flags = kNone); |
| TNode<HeapObject> Allocate(TNode<IntPtrT> size, |
| AllocationFlags flags = kNone); |
| TNode<HeapObject> Allocate(int size, AllocationFlags flags = kNone); |
| TNode<HeapObject> InnerAllocate(TNode<HeapObject> previous, int offset); |
| TNode<HeapObject> InnerAllocate(TNode<HeapObject> previous, |
| TNode<IntPtrT> offset); |
| |
| TNode<BoolT> IsRegularHeapObjectSize(TNode<IntPtrT> size); |
| |
| using BranchGenerator = std::function<void(Label*, Label*)>; |
| using NodeGenerator = std::function<Node*()>; |
| using ExtraNode = std::pair<Node*, const char*>; |
| |
| void Assert(const BranchGenerator& branch, const char* message, |
| const char* file, int line, |
| std::initializer_list<ExtraNode> extra_nodes = {}); |
| void Assert(const NodeGenerator& condition_body, const char* message, |
| const char* file, int line, |
| std::initializer_list<ExtraNode> extra_nodes = {}); |
| void Check(const BranchGenerator& branch, const char* message, |
| const char* file, int line, |
| std::initializer_list<ExtraNode> extra_nodes = {}); |
| void Check(const NodeGenerator& condition_body, const char* message, |
| const char* file, int line, |
| std::initializer_list<ExtraNode> extra_nodes = {}); |
| void FailAssert(const char* message, const char* file, int line, |
| std::initializer_list<ExtraNode> extra_nodes = {}); |
| |
| void FastCheck(TNode<BoolT> condition); |
| |
| // The following Call wrappers call an object according to the semantics that |
| // one finds in the EcmaScript spec, operating on an Callable (e.g. a |
| // JSFunction or proxy) rather than a Code object. |
| template <class... TArgs> |
| TNode<Object> Call(TNode<Context> context, TNode<Object> callable, |
| TNode<JSReceiver> receiver, TArgs... args) { |
| return UncheckedCast<Object>(CallJS( |
| CodeFactory::Call(isolate(), ConvertReceiverMode::kNotNullOrUndefined), |
| context, callable, receiver, args...)); |
| } |
| template <class... TArgs> |
| TNode<Object> Call(TNode<Context> context, TNode<Object> callable, |
| TNode<Object> receiver, TArgs... args) { |
| if (IsUndefinedConstant(receiver) || IsNullConstant(receiver)) { |
| return UncheckedCast<Object>(CallJS( |
| CodeFactory::Call(isolate(), ConvertReceiverMode::kNullOrUndefined), |
| context, callable, receiver, args...)); |
| } |
| return UncheckedCast<Object>(CallJS(CodeFactory::Call(isolate()), context, |
| callable, receiver, args...)); |
| } |
| |
| template <class... TArgs> |
| TNode<JSReceiver> ConstructWithTarget(TNode<Context> context, |
| TNode<JSReceiver> target, |
| TNode<JSReceiver> new_target, |
| TArgs... args) { |
| return CAST(ConstructJSWithTarget(CodeFactory::Construct(isolate()), |
| context, target, new_target, |
| implicit_cast<TNode<Object>>(args)...)); |
| } |
| template <class... TArgs> |
| TNode<JSReceiver> Construct(TNode<Context> context, |
| TNode<JSReceiver> new_target, TArgs... args) { |
| return ConstructWithTarget(context, new_target, new_target, args...); |
| } |
| |
| template <class A, class F, class G> |
| TNode<A> Select(SloppyTNode<BoolT> condition, const F& true_body, |
| const G& false_body) { |
| return UncheckedCast<A>(SelectImpl( |
| condition, |
| [&]() -> Node* { return implicit_cast<TNode<A>>(true_body()); }, |
| [&]() -> Node* { return implicit_cast<TNode<A>>(false_body()); }, |
| MachineRepresentationOf<A>::value)); |
| } |
| |
| template <class A> |
| TNode<A> SelectConstant(TNode<BoolT> condition, TNode<A> true_value, |
| TNode<A> false_value) { |
| return Select<A>( |
| condition, [=] { return true_value; }, [=] { return false_value; }); |
| } |
| |
| TNode<Int32T> SelectInt32Constant(SloppyTNode<BoolT> condition, |
| int true_value, int false_value); |
| TNode<IntPtrT> SelectIntPtrConstant(SloppyTNode<BoolT> condition, |
| int true_value, int false_value); |
| TNode<Oddball> SelectBooleanConstant(SloppyTNode<BoolT> condition); |
| TNode<Smi> SelectSmiConstant(SloppyTNode<BoolT> condition, Smi true_value, |
| Smi false_value); |
| TNode<Smi> SelectSmiConstant(SloppyTNode<BoolT> condition, int true_value, |
| Smi false_value) { |
| return SelectSmiConstant(condition, Smi::FromInt(true_value), false_value); |
| } |
| TNode<Smi> SelectSmiConstant(SloppyTNode<BoolT> condition, Smi true_value, |
| int false_value) { |
| return SelectSmiConstant(condition, true_value, Smi::FromInt(false_value)); |
| } |
| TNode<Smi> SelectSmiConstant(SloppyTNode<BoolT> condition, int true_value, |
| int false_value) { |
| return SelectSmiConstant(condition, Smi::FromInt(true_value), |
| Smi::FromInt(false_value)); |
| } |
| |
| TNode<String> SingleCharacterStringConstant(char const* single_char) { |
| DCHECK_EQ(strlen(single_char), 1); |
| return HeapConstant( |
| isolate()->factory()->LookupSingleCharacterStringFromCode( |
| single_char[0])); |
| } |
| |
| TNode<Int32T> TruncateIntPtrToInt32(SloppyTNode<IntPtrT> value); |
| |
| // Check a value for smi-ness |
| TNode<BoolT> TaggedIsSmi(SloppyTNode<Object> a); |
| TNode<BoolT> TaggedIsSmi(TNode<MaybeObject> a); |
| TNode<BoolT> TaggedIsNotSmi(SloppyTNode<Object> a); |
| // Check that the value is a non-negative smi. |
| TNode<BoolT> TaggedIsPositiveSmi(SloppyTNode<Object> a); |
| // Check that a word has a word-aligned address. |
| TNode<BoolT> WordIsAligned(SloppyTNode<WordT> word, size_t alignment); |
| TNode<BoolT> WordIsPowerOfTwo(SloppyTNode<IntPtrT> value); |
| |
| #if DEBUG |
| void Bind(Label* label, AssemblerDebugInfo debug_info); |
| #endif // DEBUG |
| void Bind(Label* label); |
| |
| template <class... T> |
| void Bind(compiler::CodeAssemblerParameterizedLabel<T...>* label, |
| TNode<T>*... phis) { |
| CodeAssembler::Bind(label, phis...); |
| } |
| |
| void BranchIfSmiEqual(TNode<Smi> a, TNode<Smi> b, Label* if_true, |
| Label* if_false) { |
| Branch(SmiEqual(a, b), if_true, if_false); |
| } |
| |
| void BranchIfSmiLessThan(TNode<Smi> a, TNode<Smi> b, Label* if_true, |
| Label* if_false) { |
| Branch(SmiLessThan(a, b), if_true, if_false); |
| } |
| |
| void BranchIfSmiLessThanOrEqual(TNode<Smi> a, TNode<Smi> b, Label* if_true, |
| Label* if_false) { |
| Branch(SmiLessThanOrEqual(a, b), if_true, if_false); |
| } |
| |
| void BranchIfFloat64IsNaN(Node* value, Label* if_true, Label* if_false) { |
| Branch(Float64Equal(value, value), if_false, if_true); |
| } |
| |
| // Branches to {if_true} if ToBoolean applied to {value} yields true, |
| // otherwise goes to {if_false}. |
| void BranchIfToBooleanIsTrue(Node* value, Label* if_true, Label* if_false); |
| |
| // Branches to {if_false} if ToBoolean applied to {value} yields false, |
| // otherwise goes to {if_true}. |
| void BranchIfToBooleanIsFalse(Node* value, Label* if_false, Label* if_true) { |
| BranchIfToBooleanIsTrue(value, if_true, if_false); |
| } |
| |
| void BranchIfJSReceiver(Node* object, Label* if_true, Label* if_false); |
| |
| // Branches to {if_true} when --force-slow-path flag has been passed. |
| // It's used for testing to ensure that slow path implementation behave |
| // equivalent to corresponding fast paths (where applicable). |
| // |
| // Works only with V8_ENABLE_FORCE_SLOW_PATH compile time flag. Nop otherwise. |
| void GotoIfForceSlowPath(Label* if_true); |
| |
| // Branches to {if_true} when Debug::ExecutionMode is DebugInfo::kSideEffect. |
| void GotoIfDebugExecutionModeChecksSideEffects(Label* if_true); |
| |
| // Load value from current parent frame by given offset in bytes. |
| Node* LoadFromParentFrame(int offset, |
| MachineType type = MachineType::AnyTagged()); |
| |
| // Load an object pointer from a buffer that isn't in the heap. |
| Node* LoadBufferObject(Node* buffer, int offset, MachineType type); |
| TNode<Object> LoadBufferObject(TNode<RawPtrT> buffer, int offset) { |
| return CAST(LoadBufferObject(buffer, offset, MachineType::AnyTagged())); |
| } |
| TNode<RawPtrT> LoadBufferPointer(TNode<RawPtrT> buffer, int offset) { |
| return UncheckedCast<RawPtrT>( |
| LoadBufferObject(buffer, offset, MachineType::Pointer())); |
| } |
| TNode<Smi> LoadBufferSmi(TNode<RawPtrT> buffer, int offset) { |
| return CAST(LoadBufferObject(buffer, offset, MachineType::TaggedSigned())); |
| } |
| // Load a field from an object on the heap. |
| Node* LoadObjectField(SloppyTNode<HeapObject> object, int offset, |
| MachineType type); |
| template <class T, typename std::enable_if< |
| std::is_convertible<TNode<T>, TNode<Object>>::value, |
| int>::type = 0> |
| TNode<T> LoadObjectField(TNode<HeapObject> object, int offset) { |
| return CAST(LoadObjectField(object, offset, MachineTypeOf<T>::value)); |
| } |
| template <class T, typename std::enable_if< |
| std::is_convertible<TNode<T>, TNode<UntaggedT>>::value, |
| int>::type = 0> |
| TNode<T> LoadObjectField(TNode<HeapObject> object, int offset) { |
| return UncheckedCast<T>( |
| LoadObjectField(object, offset, MachineTypeOf<T>::value)); |
| } |
| TNode<Object> LoadObjectField(SloppyTNode<HeapObject> object, int offset) { |
| return UncheckedCast<Object>( |
| LoadObjectField(object, offset, MachineType::AnyTagged())); |
| } |
| Node* LoadObjectField(SloppyTNode<HeapObject> object, |
| SloppyTNode<IntPtrT> offset, MachineType type); |
| TNode<Object> LoadObjectField(SloppyTNode<HeapObject> object, |
| SloppyTNode<IntPtrT> offset) { |
| return UncheckedCast<Object>( |
| LoadObjectField(object, offset, MachineType::AnyTagged())); |
| } |
| template <class T, typename std::enable_if< |
| std::is_convertible<TNode<T>, TNode<UntaggedT>>::value, |
| int>::type = 0> |
| TNode<T> LoadObjectField(TNode<HeapObject> object, TNode<IntPtrT> offset) { |
| return UncheckedCast<T>( |
| LoadObjectField(object, offset, MachineTypeOf<T>::value)); |
| } |
| // Load a SMI field and untag it. |
| TNode<IntPtrT> LoadAndUntagObjectField(SloppyTNode<HeapObject> object, |
| int offset); |
| // Load a SMI field, untag it, and convert to Word32. |
| TNode<Int32T> LoadAndUntagToWord32ObjectField(Node* object, int offset); |
| // Load a SMI and untag it. |
| TNode<IntPtrT> LoadAndUntagSmi(Node* base, int index); |
| |
| TNode<MaybeObject> LoadMaybeWeakObjectField(SloppyTNode<HeapObject> object, |
| int offset) { |
| return UncheckedCast<MaybeObject>( |
| LoadObjectField(object, offset, MachineType::AnyTagged())); |
| } |
| |
| TNode<Object> LoadConstructorOrBackPointer(TNode<Map> map) { |
| return LoadObjectField(map, Map::kConstructorOrBackPointerOffset); |
| } |
| |
| // Reference is the CSA-equivalent of a Torque reference value, |
| // representing an inner pointer into a HeapObject. |
| struct Reference { |
| TNode<HeapObject> object; |
| TNode<IntPtrT> offset; |
| |
| std::tuple<TNode<HeapObject>, TNode<IntPtrT>> Flatten() const { |
| return std::make_tuple(object, offset); |
| } |
| }; |
| |
| template <class T, typename std::enable_if< |
| std::is_convertible<TNode<T>, TNode<Object>>::value, |
| int>::type = 0> |
| TNode<T> LoadReference(Reference reference) { |
| TNode<IntPtrT> offset = |
| IntPtrSub(reference.offset, IntPtrConstant(kHeapObjectTag)); |
| return CAST( |
| LoadFromObject(MachineTypeOf<T>::value, reference.object, offset)); |
| } |
| template <class T, typename std::enable_if< |
| std::is_convertible<TNode<T>, TNode<UntaggedT>>::value, |
| int>::type = 0> |
| TNode<T> LoadReference(Reference reference) { |
| TNode<IntPtrT> offset = |
| IntPtrSub(reference.offset, IntPtrConstant(kHeapObjectTag)); |
| return UncheckedCast<T>( |
| LoadFromObject(MachineTypeOf<T>::value, reference.object, offset)); |
| } |
| template <class T, typename std::enable_if< |
| std::is_convertible<TNode<T>, TNode<Object>>::value, |
| int>::type = 0> |
| void StoreReference(Reference reference, TNode<T> value) { |
| MachineRepresentation rep = MachineRepresentationOf<T>::value; |
| StoreToObjectWriteBarrier write_barrier = StoreToObjectWriteBarrier::kFull; |
| if (std::is_same<T, Smi>::value) { |
| write_barrier = StoreToObjectWriteBarrier::kNone; |
| } else if (std::is_same<T, Map>::value) { |
| write_barrier = StoreToObjectWriteBarrier::kMap; |
| } |
| TNode<IntPtrT> offset = |
| IntPtrSub(reference.offset, IntPtrConstant(kHeapObjectTag)); |
| StoreToObject(rep, reference.object, offset, value, write_barrier); |
| } |
| template <class T, typename std::enable_if< |
| std::is_convertible<TNode<T>, TNode<UntaggedT>>::value, |
| int>::type = 0> |
| void StoreReference(Reference reference, TNode<T> value) { |
| TNode<IntPtrT> offset = |
| IntPtrSub(reference.offset, IntPtrConstant(kHeapObjectTag)); |
| StoreToObject(MachineRepresentationOf<T>::value, reference.object, offset, |
| value, StoreToObjectWriteBarrier::kNone); |
| } |
| |
| // Tag a smi and store it. |
| void StoreAndTagSmi(Node* base, int offset, Node* value); |
| |
| // Load the floating point value of a HeapNumber. |
| TNode<Float64T> LoadHeapNumberValue(SloppyTNode<HeapNumber> object); |
| // Load the Map of an HeapObject. |
| TNode<Map> LoadMap(SloppyTNode<HeapObject> object); |
| // Load the instance type of an HeapObject. |
| TNode<Uint16T> LoadInstanceType(SloppyTNode<HeapObject> object); |
| // Compare the instance the type of the object against the provided one. |
| TNode<BoolT> HasInstanceType(SloppyTNode<HeapObject> object, |
| InstanceType type); |
| TNode<BoolT> DoesntHaveInstanceType(SloppyTNode<HeapObject> object, |
| InstanceType type); |
| TNode<BoolT> TaggedDoesntHaveInstanceType(SloppyTNode<HeapObject> any_tagged, |
| InstanceType type); |
| // Load the properties backing store of a JSObject. |
| TNode<HeapObject> LoadSlowProperties(SloppyTNode<JSObject> object); |
| TNode<HeapObject> LoadFastProperties(SloppyTNode<JSObject> object); |
| // Load the elements backing store of a JSObject. |
| TNode<FixedArrayBase> LoadElements(SloppyTNode<JSObject> object) { |
| return LoadJSObjectElements(object); |
| } |
| // Load the length of a JSArray instance. |
| TNode<Object> LoadJSArgumentsObjectWithLength( |
| SloppyTNode<JSArgumentsObjectWithLength> array); |
| // Load the length of a JSArray instance. |
| TNode<Number> LoadJSArrayLength(SloppyTNode<JSArray> array); |
| // Load the length of a fast JSArray instance. Returns a positive Smi. |
| TNode<Smi> LoadFastJSArrayLength(SloppyTNode<JSArray> array); |
| // Load the length of a fixed array base instance. |
| TNode<Smi> LoadFixedArrayBaseLength(SloppyTNode<FixedArrayBase> array); |
| // Load the length of a fixed array base instance. |
| TNode<IntPtrT> LoadAndUntagFixedArrayBaseLength( |
| SloppyTNode<FixedArrayBase> array); |
| // Load the length of a WeakFixedArray. |
| TNode<Smi> LoadWeakFixedArrayLength(TNode<WeakFixedArray> array); |
| TNode<IntPtrT> LoadAndUntagWeakFixedArrayLength( |
| SloppyTNode<WeakFixedArray> array); |
| // Load the number of descriptors in DescriptorArray. |
| TNode<Int32T> LoadNumberOfDescriptors(TNode<DescriptorArray> array); |
| // Load the bit field of a Map. |
| TNode<Int32T> LoadMapBitField(SloppyTNode<Map> map); |
| // Load bit field 2 of a map. |
| TNode<Int32T> LoadMapBitField2(SloppyTNode<Map> map); |
| // Load bit field 3 of a map. |
| TNode<Uint32T> LoadMapBitField3(SloppyTNode<Map> map); |
| // Load the instance type of a map. |
| TNode<Uint16T> LoadMapInstanceType(SloppyTNode<Map> map); |
| // Load the ElementsKind of a map. |
| TNode<Int32T> LoadMapElementsKind(SloppyTNode<Map> map); |
| TNode<Int32T> LoadElementsKind(SloppyTNode<HeapObject> object); |
| // Load the instance descriptors of a map. |
| TNode<DescriptorArray> LoadMapDescriptors(SloppyTNode<Map> map); |
| // Load the prototype of a map. |
| TNode<HeapObject> LoadMapPrototype(SloppyTNode<Map> map); |
| // Load the prototype info of a map. The result has to be checked if it is a |
| // prototype info object or not. |
| TNode<PrototypeInfo> LoadMapPrototypeInfo(SloppyTNode<Map> map, |
| Label* if_has_no_proto_info); |
| // Load the instance size of a Map. |
| TNode<IntPtrT> LoadMapInstanceSizeInWords(SloppyTNode<Map> map); |
| // Load the inobject properties start of a Map (valid only for JSObjects). |
| TNode<IntPtrT> LoadMapInobjectPropertiesStartInWords(SloppyTNode<Map> map); |
| // Load the constructor function index of a Map (only for primitive maps). |
| TNode<IntPtrT> LoadMapConstructorFunctionIndex(SloppyTNode<Map> map); |
| // Load the constructor of a Map (equivalent to Map::GetConstructor()). |
| TNode<Object> LoadMapConstructor(SloppyTNode<Map> map); |
| // Load the EnumLength of a Map. |
| Node* LoadMapEnumLength(SloppyTNode<Map> map); |
| // Load the back-pointer of a Map. |
| TNode<Object> LoadMapBackPointer(SloppyTNode<Map> map); |
| // Checks that |map| has only simple properties, returns bitfield3. |
| TNode<Uint32T> EnsureOnlyHasSimpleProperties(TNode<Map> map, |
| TNode<Int32T> instance_type, |
| Label* bailout); |
| // Load the identity hash of a JSRececiver. |
| TNode<IntPtrT> LoadJSReceiverIdentityHash(SloppyTNode<Object> receiver, |
| Label* if_no_hash = nullptr); |
| |
| // This is only used on a newly allocated PropertyArray which |
| // doesn't have an existing hash. |
| void InitializePropertyArrayLength(Node* property_array, Node* length, |
| ParameterMode mode); |
| |
| // Check if the map is set for slow properties. |
| TNode<BoolT> IsDictionaryMap(SloppyTNode<Map> map); |
| |
| // Load the hash field of a name as an uint32 value. |
| TNode<Uint32T> LoadNameHashField(SloppyTNode<Name> name); |
| // Load the hash value of a name as an uint32 value. |
| // If {if_hash_not_computed} label is specified then it also checks if |
| // hash is actually computed. |
| TNode<Uint32T> LoadNameHash(SloppyTNode<Name> name, |
| Label* if_hash_not_computed = nullptr); |
| |
| // Load length field of a String object as Smi value. |
| TNode<Smi> LoadStringLengthAsSmi(SloppyTNode<String> string); |
| // Load length field of a String object as intptr_t value. |
| TNode<IntPtrT> LoadStringLengthAsWord(SloppyTNode<String> string); |
| // Load length field of a String object as uint32_t value. |
| TNode<Uint32T> LoadStringLengthAsWord32(SloppyTNode<String> string); |
| // Loads a pointer to the sequential String char array. |
| Node* PointerToSeqStringData(Node* seq_string); |
| // Load value field of a JSPrimitiveWrapper object. |
| Node* LoadJSPrimitiveWrapperValue(Node* object); |
| |
| // Figures out whether the value of maybe_object is: |
| // - a SMI (jump to "if_smi", "extracted" will be the SMI value) |
| // - a cleared weak reference (jump to "if_cleared", "extracted" will be |
| // untouched) |
| // - a weak reference (jump to "if_weak", "extracted" will be the object |
| // pointed to) |
| // - a strong reference (jump to "if_strong", "extracted" will be the object |
| // pointed to) |
| void DispatchMaybeObject(TNode<MaybeObject> maybe_object, Label* if_smi, |
| Label* if_cleared, Label* if_weak, Label* if_strong, |
| TVariable<Object>* extracted); |
| // See MaybeObject for semantics of these functions. |
| TNode<BoolT> IsStrong(TNode<MaybeObject> value); |
| // This variant is for overzealous checking. |
| TNode<BoolT> IsStrong(TNode<Object> value) { |
| return IsStrong(ReinterpretCast<MaybeObject>(value)); |
| } |
| TNode<HeapObject> GetHeapObjectIfStrong(TNode<MaybeObject> value, |
| Label* if_not_strong); |
| |
| TNode<BoolT> IsWeakOrCleared(TNode<MaybeObject> value); |
| TNode<BoolT> IsCleared(TNode<MaybeObject> value); |
| TNode<BoolT> IsNotCleared(TNode<MaybeObject> value); |
| |
| // Removes the weak bit + asserts it was set. |
| TNode<HeapObject> GetHeapObjectAssumeWeak(TNode<MaybeObject> value); |
| |
| TNode<HeapObject> GetHeapObjectAssumeWeak(TNode<MaybeObject> value, |
| Label* if_cleared); |
| |
| TNode<BoolT> IsWeakReferenceTo(TNode<MaybeObject> object, |
| TNode<Object> value); |
| TNode<BoolT> IsNotWeakReferenceTo(TNode<MaybeObject> object, |
| TNode<Object> value); |
| TNode<BoolT> IsStrongReferenceTo(TNode<MaybeObject> object, |
| TNode<Object> value); |
| |
| TNode<MaybeObject> MakeWeak(TNode<HeapObject> value); |
| |
| void FixedArrayBoundsCheck(TNode<FixedArrayBase> array, Node* index, |
| int additional_offset = 0, |
| ParameterMode parameter_mode = INTPTR_PARAMETERS); |
| |
| // Array is any array-like type that has a fixed header followed by |
| // tagged elements. |
| template <typename Array> |
| TNode<IntPtrT> LoadArrayLength(TNode<Array> array); |
| |
| // Array is any array-like type that has a fixed header followed by |
| // tagged elements. |
| template <typename Array, typename T = MaybeObject> |
| TNode<T> LoadArrayElement( |
| TNode<Array> array, int array_header_size, Node* index, |
| int additional_offset = 0, |
| ParameterMode parameter_mode = INTPTR_PARAMETERS, |
| LoadSensitivity needs_poisoning = LoadSensitivity::kSafe); |
| |
| TNode<Object> LoadFixedArrayElement( |
| TNode<FixedArray> object, Node* index, int additional_offset = 0, |
| ParameterMode parameter_mode = INTPTR_PARAMETERS, |
| LoadSensitivity needs_poisoning = LoadSensitivity::kSafe, |
| CheckBounds check_bounds = CheckBounds::kAlways); |
| |
| // This doesn't emit a bounds-check. As part of the security-performance |
| // tradeoff, only use it if it is performance critical. |
| TNode<Object> UnsafeLoadFixedArrayElement( |
| TNode<FixedArray> object, Node* index, int additional_offset = 0, |
| ParameterMode parameter_mode = INTPTR_PARAMETERS, |
| LoadSensitivity needs_poisoning = LoadSensitivity::kSafe) { |
| return LoadFixedArrayElement(object, index, additional_offset, |
| parameter_mode, needs_poisoning, |
| CheckBounds::kDebugOnly); |
| } |
| |
| TNode<Object> LoadFixedArrayElement( |
| TNode<FixedArray> object, TNode<IntPtrT> index, |
| LoadSensitivity needs_poisoning, |
| CheckBounds check_bounds = CheckBounds::kAlways) { |
| return LoadFixedArrayElement(object, index, 0, INTPTR_PARAMETERS, |
| needs_poisoning, check_bounds); |
| } |
| // This doesn't emit a bounds-check. As part of the security-performance |
| // tradeoff, only use it if it is performance critical. |
| TNode<Object> UnsafeLoadFixedArrayElement(TNode<FixedArray> object, |
| TNode<IntPtrT> index, |
| LoadSensitivity needs_poisoning) { |
| return LoadFixedArrayElement(object, index, needs_poisoning, |
| CheckBounds::kDebugOnly); |
| } |
| |
| TNode<Object> LoadFixedArrayElement( |
| TNode<FixedArray> object, TNode<IntPtrT> index, int additional_offset = 0, |
| LoadSensitivity needs_poisoning = LoadSensitivity::kSafe) { |
| return LoadFixedArrayElement(object, index, additional_offset, |
| INTPTR_PARAMETERS, needs_poisoning); |
| } |
| |
| TNode<Object> LoadFixedArrayElement( |
| TNode<FixedArray> object, int index, int additional_offset = 0, |
| LoadSensitivity needs_poisoning = LoadSensitivity::kSafe) { |
| return LoadFixedArrayElement(object, IntPtrConstant(index), |
| additional_offset, INTPTR_PARAMETERS, |
| needs_poisoning); |
| } |
| // This doesn't emit a bounds-check. As part of the security-performance |
| // tradeoff, only use it if it is performance critical. |
| TNode<Object> UnsafeLoadFixedArrayElement( |
| TNode<FixedArray> object, int index, int additional_offset = 0, |
| LoadSensitivity needs_poisoning = LoadSensitivity::kSafe) { |
| return LoadFixedArrayElement(object, IntPtrConstant(index), |
| additional_offset, INTPTR_PARAMETERS, |
| needs_poisoning, CheckBounds::kDebugOnly); |
| } |
| TNode<Object> LoadFixedArrayElement(TNode<FixedArray> object, |
| TNode<Smi> index) { |
| return LoadFixedArrayElement(object, index, 0, SMI_PARAMETERS); |
| } |
| |
| TNode<Object> LoadPropertyArrayElement(TNode<PropertyArray> object, |
| SloppyTNode<IntPtrT> index); |
| TNode<IntPtrT> LoadPropertyArrayLength(TNode<PropertyArray> object); |
| |
| // Load an element from an array and untag it and return it as Word32. |
| // Array is any array-like type that has a fixed header followed by |
| // tagged elements. |
| template <typename Array> |
| TNode<Int32T> LoadAndUntagToWord32ArrayElement( |
| TNode<Array> array, int array_header_size, Node* index, |
| int additional_offset = 0, |
| ParameterMode parameter_mode = INTPTR_PARAMETERS); |
| |
| // Load an array element from a FixedArray, untag it and return it as Word32. |
| TNode<Int32T> LoadAndUntagToWord32FixedArrayElement( |
| TNode<FixedArray> object, Node* index, int additional_offset = 0, |
| ParameterMode parameter_mode = INTPTR_PARAMETERS); |
| |
| TNode<Int32T> LoadAndUntagToWord32FixedArrayElement( |
| TNode<FixedArray> object, int index, int additional_offset = 0) { |
| return LoadAndUntagToWord32FixedArrayElement( |
| object, IntPtrConstant(index), additional_offset, INTPTR_PARAMETERS); |
| } |
| |
| // Load an array element from a WeakFixedArray. |
| TNode<MaybeObject> LoadWeakFixedArrayElement( |
| TNode<WeakFixedArray> object, Node* index, int additional_offset = 0, |
| ParameterMode parameter_mode = INTPTR_PARAMETERS, |
| LoadSensitivity needs_poisoning = LoadSensitivity::kSafe); |
| |
| TNode<MaybeObject> LoadWeakFixedArrayElement( |
| TNode<WeakFixedArray> object, int index, int additional_offset = 0, |
| LoadSensitivity needs_poisoning = LoadSensitivity::kSafe) { |
| return LoadWeakFixedArrayElement(object, IntPtrConstant(index), |
| additional_offset, INTPTR_PARAMETERS, |
| needs_poisoning); |
| } |
| |
| // Load an array element from a FixedDoubleArray. |
| TNode<Float64T> LoadFixedDoubleArrayElement( |
| SloppyTNode<FixedDoubleArray> object, Node* index, |
| MachineType machine_type, int additional_offset = 0, |
| ParameterMode parameter_mode = INTPTR_PARAMETERS, |
| Label* if_hole = nullptr); |
| |
| Node* LoadFixedDoubleArrayElement(TNode<FixedDoubleArray> object, |
| TNode<Smi> index, |
| Label* if_hole = nullptr) { |
| return LoadFixedDoubleArrayElement(object, index, MachineType::Float64(), 0, |
| SMI_PARAMETERS, if_hole); |
| } |
| |
| Node* LoadFixedDoubleArrayElement(TNode<FixedDoubleArray> object, |
| TNode<IntPtrT> index, |
| Label* if_hole = nullptr) { |
| return LoadFixedDoubleArrayElement(object, index, MachineType::Float64(), 0, |
| INTPTR_PARAMETERS, if_hole); |
| } |
| |
| // Load an array element from a FixedArray, FixedDoubleArray or a |
| // NumberDictionary (depending on the |elements_kind|) and return |
| // it as a tagged value. Assumes that the |index| passed a length |
| // check before. Bails out to |if_accessor| if the element that |
| // was found is an accessor, or to |if_hole| if the element at |
| // the given |index| is not found in |elements|. |
| TNode<Object> LoadFixedArrayBaseElementAsTagged( |
| TNode<FixedArrayBase> elements, TNode<IntPtrT> index, |
| TNode<Int32T> elements_kind, Label* if_accessor, Label* if_hole); |
| |
| // Load a feedback slot from a FeedbackVector. |
| TNode<MaybeObject> LoadFeedbackVectorSlot( |
| Node* object, Node* index, int additional_offset = 0, |
| ParameterMode parameter_mode = INTPTR_PARAMETERS); |
| |
| TNode<IntPtrT> LoadFeedbackVectorLength(TNode<FeedbackVector>); |
| TNode<Float64T> LoadDoubleWithHoleCheck(TNode<FixedDoubleArray> array, |
| TNode<Smi> index, |
| Label* if_hole = nullptr); |
| TNode<Float64T> LoadDoubleWithHoleCheck(TNode<FixedDoubleArray> array, |
| TNode<IntPtrT> index, |
| Label* if_hole = nullptr); |
| |
| // Load Float64 value by |base| + |offset| address. If the value is a double |
| // hole then jump to |if_hole|. If |machine_type| is None then only the hole |
| // check is generated. |
| TNode<Float64T> LoadDoubleWithHoleCheck( |
| SloppyTNode<Object> base, SloppyTNode<IntPtrT> offset, Label* if_hole, |
| MachineType machine_type = MachineType::Float64()); |
| TNode<Numeric> LoadFixedTypedArrayElementAsTagged( |
| TNode<RawPtrT> data_pointer, Node* index_node, ElementsKind elements_kind, |
| ParameterMode parameter_mode = INTPTR_PARAMETERS); |
| TNode<Numeric> LoadFixedTypedArrayElementAsTagged( |
| TNode<RawPtrT> data_pointer, TNode<Smi> index_node, |
| ElementsKind elements_kind) { |
| return LoadFixedTypedArrayElementAsTagged(data_pointer, index_node, |
| elements_kind, SMI_PARAMETERS); |
| } |
| TNode<Numeric> LoadFixedTypedArrayElementAsTagged( |
| TNode<RawPtrT> data_pointer, TNode<Smi> index, |
| TNode<Int32T> elements_kind); |
| // Parts of the above, factored out for readability: |
| TNode<BigInt> LoadFixedBigInt64ArrayElementAsTagged( |
| SloppyTNode<RawPtrT> data_pointer, SloppyTNode<IntPtrT> offset); |
| TNode<BigInt> LoadFixedBigUint64ArrayElementAsTagged( |
| SloppyTNode<RawPtrT> data_pointer, SloppyTNode<IntPtrT> offset); |
| // 64-bit platforms only: |
| TNode<BigInt> BigIntFromInt64(TNode<IntPtrT> value); |
| TNode<BigInt> BigIntFromUint64(TNode<UintPtrT> value); |
| // 32-bit platforms only: |
| TNode<BigInt> BigIntFromInt32Pair(TNode<IntPtrT> low, TNode<IntPtrT> high); |
| TNode<BigInt> BigIntFromUint32Pair(TNode<UintPtrT> low, TNode<UintPtrT> high); |
| |
| void StoreJSTypedArrayElementFromTagged(TNode<Context> context, |
| TNode<JSTypedArray> typed_array, |
| TNode<Smi> index_node, |
| TNode<Object> value, |
| ElementsKind elements_kind); |
| |
| // Context manipulation |
| TNode<Object> LoadContextElement(SloppyTNode<Context> context, |
| int slot_index); |
| TNode<Object> LoadContextElement(SloppyTNode<Context> context, |
| SloppyTNode<IntPtrT> slot_index); |
| TNode<Object> LoadContextElement(TNode<Context> context, |
| TNode<Smi> slot_index); |
| void StoreContextElement(SloppyTNode<Context> context, int slot_index, |
| SloppyTNode<Object> value); |
| void StoreContextElement(SloppyTNode<Context> context, |
| SloppyTNode<IntPtrT> slot_index, |
| SloppyTNode<Object> value); |
| void StoreContextElementNoWriteBarrier(SloppyTNode<Context> context, |
| int slot_index, |
| SloppyTNode<Object> value); |
| TNode<Context> LoadNativeContext(SloppyTNode<Context> context); |
| // Calling this is only valid if there's a module context in the chain. |
| TNode<Context> LoadModuleContext(SloppyTNode<Context> context); |
| |
| void GotoIfContextElementEqual(Node* value, Node* native_context, |
| int slot_index, Label* if_equal) { |
| GotoIf(WordEqual(value, LoadContextElement(native_context, slot_index)), |
| if_equal); |
| } |
| |
| TNode<Map> LoadJSArrayElementsMap(ElementsKind kind, |
| SloppyTNode<Context> native_context); |
| TNode<Map> LoadJSArrayElementsMap(SloppyTNode<Int32T> kind, |
| SloppyTNode<Context> native_context); |
| |
| TNode<BoolT> IsGeneratorFunction(TNode<JSFunction> function); |
| TNode<BoolT> HasPrototypeProperty(TNode<JSFunction> function, TNode<Map> map); |
| void GotoIfPrototypeRequiresRuntimeLookup(TNode<JSFunction> function, |
| TNode<Map> map, Label* runtime); |
| // Load the "prototype" property of a JSFunction. |
| Node* LoadJSFunctionPrototype(Node* function, Label* if_bailout); |
| |
| TNode<BytecodeArray> LoadSharedFunctionInfoBytecodeArray( |
| SloppyTNode<SharedFunctionInfo> shared); |
| |
| void StoreObjectByteNoWriteBarrier(TNode<HeapObject> object, int offset, |
| TNode<Word32T> value); |
| |
| // Store the floating point value of a HeapNumber. |
| void StoreHeapNumberValue(SloppyTNode<HeapNumber> object, |
| SloppyTNode<Float64T> value); |
| void StoreMutableHeapNumberValue(SloppyTNode<MutableHeapNumber> object, |
| SloppyTNode<Float64T> value); |
| // Store a field to an object on the heap. |
| void StoreObjectField(Node* object, int offset, Node* value); |
| void StoreObjectField(Node* object, Node* offset, Node* value); |
| void StoreObjectFieldNoWriteBarrier( |
| Node* object, int offset, Node* value, |
| MachineRepresentation rep = MachineRepresentation::kTagged); |
| void UnsafeStoreObjectFieldNoWriteBarrier(TNode<HeapObject> object, |
| int offset, TNode<Object> value); |
| void StoreObjectFieldNoWriteBarrier( |
| Node* object, SloppyTNode<IntPtrT> offset, Node* value, |
| MachineRepresentation rep = MachineRepresentation::kTagged); |
| |
| template <class T = Object> |
| void StoreObjectFieldNoWriteBarrier(Node* object, SloppyTNode<IntPtrT> offset, |
| TNode<T> value) { |
| StoreObjectFieldNoWriteBarrier(object, offset, value, |
| MachineRepresentationOf<T>::value); |
| } |
| template <class T = Object> |
| void StoreObjectFieldNoWriteBarrier(Node* object, int offset, |
| TNode<T> value) { |
| StoreObjectFieldNoWriteBarrier(object, offset, value, |
| MachineRepresentationOf<T>::value); |
| } |
| |
| // Store the Map of an HeapObject. |
| void StoreMap(Node* object, Node* map); |
| void StoreMapNoWriteBarrier(Node* object, RootIndex map_root_index); |
| void StoreMapNoWriteBarrier(Node* object, Node* map); |
| void StoreObjectFieldRoot(Node* object, int offset, RootIndex root); |
| // Store an array element to a FixedArray. |
| void StoreFixedArrayElement( |
| TNode<FixedArray> object, int index, SloppyTNode<Object> value, |
| WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER, |
| CheckBounds check_bounds = CheckBounds::kAlways) { |
| return StoreFixedArrayElement(object, IntPtrConstant(index), value, |
| barrier_mode, 0, INTPTR_PARAMETERS, |
| check_bounds); |
| } |
| // This doesn't emit a bounds-check. As part of the security-performance |
| // tradeoff, only use it if it is performance critical. |
| void UnsafeStoreFixedArrayElement( |
| TNode<FixedArray> object, int index, SloppyTNode<Object> value, |
| WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER) { |
| return StoreFixedArrayElement(object, index, value, barrier_mode, |
| CheckBounds::kDebugOnly); |
| } |
| void UnsafeStoreFixedArrayElement( |
| TNode<FixedArray> object, int index, TNode<Smi> value, |
| WriteBarrierMode barrier_mode = SKIP_WRITE_BARRIER) { |
| DCHECK_EQ(SKIP_WRITE_BARRIER, barrier_mode); |
| return StoreFixedArrayElement(object, index, value, |
| UNSAFE_SKIP_WRITE_BARRIER, |
| CheckBounds::kDebugOnly); |
| } |
| void StoreFixedArrayElement(TNode<FixedArray> object, int index, |
| TNode<Smi> value, |
| CheckBounds check_bounds = CheckBounds::kAlways) { |
| return StoreFixedArrayElement(object, IntPtrConstant(index), value, |
| UNSAFE_SKIP_WRITE_BARRIER, 0, |
| INTPTR_PARAMETERS, check_bounds); |
| } |
| // This doesn't emit a bounds-check. As part of the security-performance |
| // tradeoff, only use it if it is performance critical. |
| void UnsafeStoreFixedArrayElement(TNode<FixedArray> object, int index, |
| TNode<Smi> value) { |
| return StoreFixedArrayElement(object, index, value, |
| CheckBounds::kDebugOnly); |
| } |
| |
| void StoreJSArrayLength(TNode<JSArray> array, TNode<Smi> length); |
| void StoreElements(TNode<Object> object, TNode<FixedArrayBase> elements); |
| |
| void StoreFixedArrayOrPropertyArrayElement( |
| Node* array, Node* index, Node* value, |
| WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER, |
| int additional_offset = 0, |
| ParameterMode parameter_mode = INTPTR_PARAMETERS); |
| |
| void StoreFixedArrayElement( |
| TNode<FixedArray> array, Node* index, SloppyTNode<Object> value, |
| WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER, |
| int additional_offset = 0, |
| ParameterMode parameter_mode = INTPTR_PARAMETERS, |
| CheckBounds check_bounds = CheckBounds::kAlways) { |
| if (NeedsBoundsCheck(check_bounds)) { |
| FixedArrayBoundsCheck(array, index, additional_offset, parameter_mode); |
| } |
| StoreFixedArrayOrPropertyArrayElement(array, index, value, barrier_mode, |
| additional_offset, parameter_mode); |
| } |
| |
| // This doesn't emit a bounds-check. As part of the security-performance |
| // tradeoff, only use it if it is performance critical. |
| void UnsafeStoreFixedArrayElement( |
| TNode<FixedArray> array, Node* index, SloppyTNode<Object> value, |
| WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER, |
| int additional_offset = 0, |
| ParameterMode parameter_mode = INTPTR_PARAMETERS) { |
| return StoreFixedArrayElement(array, index, value, barrier_mode, |
| additional_offset, parameter_mode, |
| CheckBounds::kDebugOnly); |
| } |
| void UnsafeStoreFixedArrayElement( |
| TNode<FixedArray> array, Node* index, TNode<Smi> value, |
| WriteBarrierMode barrier_mode = SKIP_WRITE_BARRIER, |
| int additional_offset = 0, |
| ParameterMode parameter_mode = INTPTR_PARAMETERS) { |
| DCHECK_EQ(SKIP_WRITE_BARRIER, barrier_mode); |
| return StoreFixedArrayElement(array, index, value, |
| UNSAFE_SKIP_WRITE_BARRIER, additional_offset, |
| parameter_mode, CheckBounds::kDebugOnly); |
| } |
| |
| void StorePropertyArrayElement( |
| TNode<PropertyArray> array, Node* index, SloppyTNode<Object> value, |
| WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER, |
| int additional_offset = 0, |
| ParameterMode parameter_mode = INTPTR_PARAMETERS) { |
| StoreFixedArrayOrPropertyArrayElement(array, index, value, barrier_mode, |
| additional_offset, parameter_mode); |
| } |
| |
| void StoreFixedArrayElement( |
| TNode<FixedArray> array, TNode<Smi> index, TNode<Object> value, |
| WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER) { |
| StoreFixedArrayElement(array, index, value, barrier_mode, 0, |
| SMI_PARAMETERS); |
| } |
| void StoreFixedArrayElement( |
| TNode<FixedArray> array, TNode<IntPtrT> index, TNode<Smi> value, |
| WriteBarrierMode barrier_mode = SKIP_WRITE_BARRIER, |
| int additional_offset = 0) { |
| DCHECK_EQ(SKIP_WRITE_BARRIER, barrier_mode); |
| StoreFixedArrayElement(array, index, TNode<Object>{value}, |
| UNSAFE_SKIP_WRITE_BARRIER, additional_offset); |
| } |
| void StoreFixedArrayElement( |
| TNode<FixedArray> array, TNode<Smi> index, TNode<Smi> value, |
| WriteBarrierMode barrier_mode = SKIP_WRITE_BARRIER, |
| int additional_offset = 0) { |
| DCHECK_EQ(SKIP_WRITE_BARRIER, barrier_mode); |
| StoreFixedArrayElement(array, index, TNode<Object>{value}, |
| UNSAFE_SKIP_WRITE_BARRIER, additional_offset, |
| SMI_PARAMETERS); |
| } |
| |
| void StoreFixedDoubleArrayElement( |
| TNode<FixedDoubleArray> object, Node* index, TNode<Float64T> value, |
| ParameterMode parameter_mode = INTPTR_PARAMETERS, |
| CheckBounds check_bounds = CheckBounds::kAlways); |
| // This doesn't emit a bounds-check. As part of the security-performance |
| // tradeoff, only use it if it is performance critical. |
| void UnsafeStoreFixedDoubleArrayElement( |
| TNode<FixedDoubleArray> object, Node* index, TNode<Float64T> value, |
| ParameterMode parameter_mode = INTPTR_PARAMETERS) { |
| return StoreFixedDoubleArrayElement(object, index, value, parameter_mode, |
| CheckBounds::kDebugOnly); |
| } |
| |
| void StoreFixedDoubleArrayElementSmi(TNode<FixedDoubleArray> object, |
| TNode<Smi> index, |
| TNode<Float64T> value) { |
| StoreFixedDoubleArrayElement(object, index, value, SMI_PARAMETERS); |
| } |
| |
| void StoreFixedDoubleArrayHole(TNode<FixedDoubleArray> array, Node* index, |
| ParameterMode mode = INTPTR_PARAMETERS); |
| void StoreFixedDoubleArrayHoleSmi(TNode<FixedDoubleArray> array, |
| TNode<Smi> index) { |
| StoreFixedDoubleArrayHole(array, index, SMI_PARAMETERS); |
| } |
| |
| void StoreFeedbackVectorSlot( |
| Node* object, Node* index, Node* value, |
| WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER, |
| int additional_offset = 0, |
| ParameterMode parameter_mode = INTPTR_PARAMETERS); |
| |
| void EnsureArrayLengthWritable(TNode<Map> map, Label* bailout); |
| |
| // EnsureArrayPushable verifies that receiver with this map is: |
| // 1. Is not a prototype. |
| // 2. Is not a dictionary. |
| // 3. Has a writeable length property. |
| // It returns ElementsKind as a node for further division into cases. |
| TNode<Int32T> EnsureArrayPushable(TNode<Map> map, Label* bailout); |
| |
| void TryStoreArrayElement(ElementsKind kind, ParameterMode mode, |
| Label* bailout, Node* elements, Node* index, |
| Node* value); |
| // Consumes args into the array, and returns tagged new length. |
| TNode<Smi> BuildAppendJSArray(ElementsKind kind, SloppyTNode<JSArray> array, |
| CodeStubArguments* args, |
| TVariable<IntPtrT>* arg_index, Label* bailout); |
| // Pushes value onto the end of array. |
| void BuildAppendJSArray(ElementsKind kind, Node* array, Node* value, |
| Label* bailout); |
| |
| void StoreFieldsNoWriteBarrier(Node* start_address, Node* end_address, |
| Node* value); |
| |
| Node* AllocateCellWithValue(Node* value, |
| WriteBarrierMode mode = UPDATE_WRITE_BARRIER); |
| Node* AllocateSmiCell(int value = 0) { |
| return AllocateCellWithValue(SmiConstant(value), SKIP_WRITE_BARRIER); |
| } |
| |
| Node* LoadCellValue(Node* cell); |
| |
| void StoreCellValue(Node* cell, Node* value, |
| WriteBarrierMode mode = UPDATE_WRITE_BARRIER); |
| |
| // Allocate a HeapNumber without initializing its value. |
| TNode<HeapNumber> AllocateHeapNumber(); |
| // Allocate a HeapNumber with a specific value. |
| TNode<HeapNumber> AllocateHeapNumberWithValue(SloppyTNode<Float64T> value); |
| TNode<HeapNumber> AllocateHeapNumberWithValue(double value) { |
| return AllocateHeapNumberWithValue(Float64Constant(value)); |
| } |
| |
| // Allocate a MutableHeapNumber with a specific value. |
| TNode<MutableHeapNumber> AllocateMutableHeapNumberWithValue( |
| SloppyTNode<Float64T> value); |
| |
| // Allocate a BigInt with {length} digits. Sets the sign bit to {false}. |
| // Does not initialize the digits. |
| TNode<BigInt> AllocateBigInt(TNode<IntPtrT> length); |
| // Like above, but allowing custom bitfield initialization. |
| TNode<BigInt> AllocateRawBigInt(TNode<IntPtrT> length); |
| void StoreBigIntBitfield(TNode<BigInt> bigint, TNode<Word32T> bitfield); |
| void StoreBigIntDigit(TNode<BigInt> bigint, intptr_t digit_index, |
| TNode<UintPtrT> digit); |
| void StoreBigIntDigit(TNode<BigInt> bigint, TNode<IntPtrT> digit_index, |
| TNode<UintPtrT> digit); |
| |
| TNode<Word32T> LoadBigIntBitfield(TNode<BigInt> bigint); |
| TNode<UintPtrT> LoadBigIntDigit(TNode<BigInt> bigint, intptr_t digit_index); |
| TNode<UintPtrT> LoadBigIntDigit(TNode<BigInt> bigint, |
| TNode<IntPtrT> digit_index); |
| |
| // Allocate a ByteArray with the given length. |
| TNode<ByteArray> AllocateByteArray(TNode<UintPtrT> length, |
| AllocationFlags flags = kNone); |
| |
| // Allocate a SeqOneByteString with the given length. |
| TNode<String> AllocateSeqOneByteString(uint32_t length, |
| AllocationFlags flags = kNone); |
| TNode<String> AllocateSeqOneByteString(Node* context, TNode<Uint32T> length, |
| AllocationFlags flags = kNone); |
| // Allocate a SeqTwoByteString with the given length. |
| TNode<String> AllocateSeqTwoByteString(uint32_t length, |
| AllocationFlags flags = kNone); |
| TNode<String> AllocateSeqTwoByteString(Node* context, TNode<Uint32T> length, |
| AllocationFlags flags = kNone); |
| |
| // Allocate a SlicedOneByteString with the given length, parent and offset. |
| // |length| and |offset| are expected to be tagged. |
| |
| TNode<String> AllocateSlicedOneByteString(TNode<Uint32T> length, |
| TNode<String> parent, |
| TNode<Smi> offset); |
| // Allocate a SlicedTwoByteString with the given length, parent and offset. |
| // |length| and |offset| are expected to be tagged. |
| TNode<String> AllocateSlicedTwoByteString(TNode<Uint32T> length, |
| TNode<String> parent, |
| TNode<Smi> offset); |
| |
| // Allocate an appropriate one- or two-byte ConsString with the first and |
| // second parts specified by |left| and |right|. |
| TNode<String> AllocateConsString(TNode<Uint32T> length, TNode<String> left, |
| TNode<String> right); |
| |
| TNode<NameDictionary> AllocateNameDictionary(int at_least_space_for); |
| TNode<NameDictionary> AllocateNameDictionary( |
| TNode<IntPtrT> at_least_space_for, AllocationFlags = kNone); |
| TNode<NameDictionary> AllocateNameDictionaryWithCapacity( |
| TNode<IntPtrT> capacity, AllocationFlags = kNone); |
| TNode<NameDictionary> CopyNameDictionary(TNode<NameDictionary> dictionary, |
| Label* large_object_fallback); |
| |
| template <typename CollectionType> |
| Node* AllocateOrderedHashTable(); |
| |
| // Builds code that finds OrderedHashTable entry for a key with hash code |
| // {hash} with using the comparison code generated by {key_compare}. The code |
| // jumps to {entry_found} if the key is found, or to {not_found} if the key |
| // was not found. In the {entry_found} branch, the variable |
| // entry_start_position will be bound to the index of the entry (relative to |
| // OrderedHashTable::kHashTableStartIndex). |
| // |
| // The {CollectionType} template parameter stands for the particular instance |
| // of OrderedHashTable, it should be OrderedHashMap or OrderedHashSet. |
| template <typename CollectionType> |
| void FindOrderedHashTableEntry( |
| Node* table, Node* hash, |
| const std::function<void(Node*, Label*, Label*)>& key_compare, |
| Variable* entry_start_position, Label* entry_found, Label* not_found); |
| |
| template <typename CollectionType> |
| TNode<CollectionType> AllocateSmallOrderedHashTable(TNode<IntPtrT> capacity); |
| |
| Node* AllocateStruct(Node* map, AllocationFlags flags = kNone); |
| void InitializeStructBody(Node* object, Node* map, Node* size, |
| int start_offset = Struct::kHeaderSize); |
| |
| TNode<JSObject> AllocateJSObjectFromMap( |
| SloppyTNode<Map> map, SloppyTNode<HeapObject> properties = nullptr, |
| SloppyTNode<FixedArray> elements = nullptr, AllocationFlags flags = kNone, |
| SlackTrackingMode slack_tracking_mode = kNoSlackTracking); |
| |
| void InitializeJSObjectFromMap( |
| Node* object, Node* map, Node* instance_size, Node* properties = nullptr, |
| Node* elements = nullptr, |
| SlackTrackingMode slack_tracking_mode = kNoSlackTracking); |
| |
| void InitializeJSObjectBodyWithSlackTracking(Node* object, Node* map, |
| Node* instance_size); |
| void InitializeJSObjectBodyNoSlackTracking( |
| Node* object, Node* map, Node* instance_size, |
| int start_offset = JSObject::kHeaderSize); |
| |
| TNode<BoolT> IsValidFastJSArrayCapacity(Node* capacity, |
| ParameterMode capacity_mode); |
| |
| // |
| // Allocate and return a JSArray with initialized header fields and its |
| // uninitialized elements. |
| // The ParameterMode argument is only used for the capacity parameter. |
| std::pair<TNode<JSArray>, TNode<FixedArrayBase>> |
| AllocateUninitializedJSArrayWithElements( |
| ElementsKind kind, TNode<Map> array_map, TNode<Smi> length, |
| Node* allocation_site, Node* capacity, |
| ParameterMode capacity_mode = INTPTR_PARAMETERS, |
| AllocationFlags allocation_flags = kNone, |
| int array_header_size = JSArray::kSize); |
| |
| // Allocate a JSArray and fill elements with the hole. |
| // The ParameterMode argument is only used for the capacity parameter. |
| TNode<JSArray> AllocateJSArray( |
| ElementsKind kind, TNode<Map> array_map, Node* capacity, |
| TNode<Smi> length, Node* allocation_site = nullptr, |
| ParameterMode capacity_mode = INTPTR_PARAMETERS, |
| AllocationFlags allocation_flags = kNone); |
| |
| TNode<JSArray> AllocateJSArray(ElementsKind kind, TNode<Map> array_map, |
| TNode<Smi> capacity, TNode<Smi> length) { |
| return AllocateJSArray(kind, array_map, capacity, length, nullptr, |
| SMI_PARAMETERS); |
| } |
| |
| TNode<JSArray> AllocateJSArray(ElementsKind kind, TNode<Map> array_map, |
| TNode<IntPtrT> capacity, TNode<Smi> length, |
| AllocationFlags allocation_flags = kNone) { |
| return AllocateJSArray(kind, array_map, capacity, length, nullptr, |
| INTPTR_PARAMETERS, allocation_flags); |
| } |
| |
| // Allocate a JSArray and initialize the header fields. |
| TNode<JSArray> AllocateJSArray(TNode<Map> array_map, |
| TNode<FixedArrayBase> elements, |
| TNode<Smi> length, |
| Node* allocation_site = nullptr, |
| int array_header_size = JSArray::kSize); |
| |
| enum class HoleConversionMode { kDontConvert, kConvertToUndefined }; |
| // Clone a fast JSArray |array| into a new fast JSArray. |
| // |convert_holes| tells the function to convert holes into undefined or not. |
| // If |convert_holes| is set to kConvertToUndefined, but the function did not |
| // find any hole in |array|, the resulting array will have the same elements |
| // kind as |array|. If the function did find a hole, it will convert holes in |
| // |array| to undefined in the resulting array, who will now have |
| // PACKED_ELEMENTS kind. |
| // If |convert_holes| is set kDontConvert, holes are also copied to the |
| // resulting array, who will have the same elements kind as |array|. The |
| // function generates significantly less code in this case. |
| Node* CloneFastJSArray( |
| Node* context, Node* array, ParameterMode mode = INTPTR_PARAMETERS, |
| Node* allocation_site = nullptr, |
| HoleConversionMode convert_holes = HoleConversionMode::kDontConvert); |
| |
| Node* ExtractFastJSArray(Node* context, Node* array, Node* begin, Node* count, |
| ParameterMode mode = INTPTR_PARAMETERS, |
| Node* capacity = nullptr, |
| Node* allocation_site = nullptr); |
| |
| TNode<FixedArrayBase> AllocateFixedArray( |
| ElementsKind kind, Node* capacity, ParameterMode mode = INTPTR_PARAMETERS, |
| AllocationFlags flags = kNone, |
| SloppyTNode<Map> fixed_array_map = nullptr); |
| |
| TNode<FixedArrayBase> AllocateFixedArray( |
| ElementsKind kind, TNode<IntPtrT> capacity, AllocationFlags flags, |
| SloppyTNode<Map> fixed_array_map = nullptr) { |
| return AllocateFixedArray(kind, capacity, INTPTR_PARAMETERS, flags, |
| fixed_array_map); |
| } |
| |
| TNode<Map> GetStructMap(InstanceType instance_type); |
| |
| TNode<FixedArray> AllocateUninitializedFixedArray(intptr_t capacity) { |
| return UncheckedCast<FixedArray>(AllocateFixedArray( |
| PACKED_ELEMENTS, IntPtrConstant(capacity), AllocationFlag::kNone)); |
| } |
| |
| TNode<FixedArray> AllocateZeroedFixedArray(TNode<IntPtrT> capacity) { |
| TNode<FixedArray> result = UncheckedCast<FixedArray>( |
| AllocateFixedArray(PACKED_ELEMENTS, capacity, |
| AllocationFlag::kAllowLargeObjectAllocation)); |
| FillFixedArrayWithSmiZero(result, capacity); |
| return result; |
| } |
| |
| TNode<FixedDoubleArray> AllocateZeroedFixedDoubleArray( |
| TNode<IntPtrT> capacity) { |
| TNode<FixedDoubleArray> result = UncheckedCast<FixedDoubleArray>( |
| AllocateFixedArray(PACKED_DOUBLE_ELEMENTS, capacity, |
| AllocationFlag::kAllowLargeObjectAllocation)); |
| FillFixedDoubleArrayWithZero(result, capacity); |
| return result; |
| } |
| |
| TNode<FixedArray> AllocateFixedArrayWithHoles(TNode<IntPtrT> capacity, |
| AllocationFlags flags) { |
| TNode<FixedArray> result = UncheckedCast<FixedArray>( |
| AllocateFixedArray(PACKED_ELEMENTS, capacity, flags)); |
| FillFixedArrayWithValue(PACKED_ELEMENTS, result, IntPtrConstant(0), |
| capacity, RootIndex::kTheHoleValue); |
| return result; |
| } |
| |
| TNode<FixedDoubleArray> AllocateFixedDoubleArrayWithHoles( |
| TNode<IntPtrT> capacity, AllocationFlags flags) { |
| TNode<FixedDoubleArray> result = UncheckedCast<FixedDoubleArray>( |
| AllocateFixedArray(PACKED_DOUBLE_ELEMENTS, capacity, flags)); |
| FillFixedArrayWithValue(PACKED_DOUBLE_ELEMENTS, result, IntPtrConstant(0), |
| capacity, RootIndex::kTheHoleValue); |
| return result; |
| } |
| |
| Node* AllocatePropertyArray(Node* capacity, |
| ParameterMode mode = INTPTR_PARAMETERS, |
| AllocationFlags flags = kNone); |
| |
| // Perform CreateArrayIterator (ES #sec-createarrayiterator). |
| TNode<JSArrayIterator> CreateArrayIterator(TNode<Context> context, |
| TNode<Object> object, |
| IterationKind mode); |
| |
| TNode<JSObject> AllocateJSIteratorResult(SloppyTNode<Context> context, |
| SloppyTNode<Object> value, |
| SloppyTNode<Oddball> done); |
| Node* AllocateJSIteratorResultForEntry(Node* context, Node* key, Node* value); |
| |
| TNode<JSReceiver> ArraySpeciesCreate(TNode<Context> context, |
| TNode<Object> originalArray, |
| TNode<Number> len); |
| |
| void FillFixedArrayWithValue(ElementsKind kind, Node* array, Node* from_index, |
| Node* to_index, RootIndex value_root_index, |
| ParameterMode mode = INTPTR_PARAMETERS); |
| |
| // Uses memset to effectively initialize the given FixedArray with zeroes. |
| void FillFixedArrayWithSmiZero(TNode<FixedArray> array, |
| TNode<IntPtrT> length); |
| void FillFixedDoubleArrayWithZero(TNode<FixedDoubleArray> array, |
| TNode<IntPtrT> length); |
| |
| void FillPropertyArrayWithUndefined(Node* array, Node* from_index, |
| Node* to_index, |
| ParameterMode mode = INTPTR_PARAMETERS); |
| |
| enum class DestroySource { kNo, kYes }; |
| |
| // Specify DestroySource::kYes if {from_array} is being supplanted by |
| // {to_array}. This offers a slight performance benefit by simply copying the |
| // array word by word. The source may be destroyed at the end of this macro. |
| // |
| // Otherwise, specify DestroySource::kNo for operations where an Object is |
| // being cloned, to ensure that MutableHeapNumbers are unique between the |
| // source and cloned object. |
| void CopyPropertyArrayValues(Node* from_array, Node* to_array, Node* length, |
| WriteBarrierMode barrier_mode, |
| ParameterMode mode, |
| DestroySource destroy_source); |
| |
| // Copies all elements from |from_array| of |length| size to |
| // |to_array| of the same size respecting the elements kind. |
| void CopyFixedArrayElements( |
| ElementsKind kind, Node* from_array, Node* to_array, Node* length, |
| WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER, |
| ParameterMode mode = INTPTR_PARAMETERS) { |
| CopyFixedArrayElements(kind, from_array, kind, to_array, |
| IntPtrOrSmiConstant(0, mode), length, length, |
| barrier_mode, mode); |
| } |
| |
| // Copies |element_count| elements from |from_array| starting from element |
| // zero to |to_array| of |capacity| size respecting both array's elements |
| // kinds. |
| void CopyFixedArrayElements( |
| ElementsKind from_kind, Node* from_array, ElementsKind to_kind, |
| Node* to_array, Node* element_count, Node* capacity, |
| WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER, |
| ParameterMode mode = INTPTR_PARAMETERS) { |
| CopyFixedArrayElements(from_kind, from_array, to_kind, to_array, |
| IntPtrOrSmiConstant(0, mode), element_count, |
| capacity, barrier_mode, mode); |
| } |
| |
| // Copies |element_count| elements from |from_array| starting from element |
| // |first_element| to |to_array| of |capacity| size respecting both array's |
| // elements kinds. |
| // |convert_holes| tells the function whether to convert holes to undefined. |
| // |var_holes_converted| can be used to signify that the conversion happened |
| // (i.e. that there were holes). If |convert_holes_to_undefined| is |
| // HoleConversionMode::kConvertToUndefined, then it must not be the case that |
| // IsDoubleElementsKind(to_kind). |
| void CopyFixedArrayElements( |
| ElementsKind from_kind, Node* from_array, ElementsKind to_kind, |
| Node* to_array, Node* first_element, Node* element_count, Node* capacity, |
| WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER, |
| ParameterMode mode = INTPTR_PARAMETERS, |
| HoleConversionMode convert_holes = HoleConversionMode::kDontConvert, |
| TVariable<BoolT>* var_holes_converted = nullptr); |
| |
| void CopyFixedArrayElements( |
| ElementsKind from_kind, TNode<FixedArrayBase> from_array, |
| ElementsKind to_kind, TNode<FixedArrayBase> to_array, |
| TNode<Smi> first_element, TNode<Smi> element_count, TNode<Smi> capacity, |
| WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER) { |
| CopyFixedArrayElements(from_kind, from_array, to_kind, to_array, |
| first_element, element_count, capacity, barrier_mode, |
| SMI_PARAMETERS); |
| } |
| |
| void JumpIfPointersFromHereAreInteresting(TNode<Object> object, |
| Label* interesting); |
| |
| // Efficiently copy elements within a single array. The regions |
| // [src_index, src_index + length) and [dst_index, dst_index + length) |
| // can be overlapping. |
| void MoveElements(ElementsKind kind, TNode<FixedArrayBase> elements, |
| TNode<IntPtrT> dst_index, TNode<IntPtrT> src_index, |
| TNode<IntPtrT> length); |
| |
| // Efficiently copy elements from one array to another. The ElementsKind |
| // needs to be the same. Copy from src_elements at |
| // [src_index, src_index + length) to dst_elements at |
| // [dst_index, dst_index + length). |
| // The function decides whether it can use memcpy. In case it cannot, |
| // |write_barrier| can help it to skip write barrier. SKIP_WRITE_BARRIER is |
| // only safe when copying to new space, or when copying to old space and the |
| // array does not contain object pointers. |
| void CopyElements(ElementsKind kind, TNode<FixedArrayBase> dst_elements, |
| TNode<IntPtrT> dst_index, |
| TNode<FixedArrayBase> src_elements, |
| TNode<IntPtrT> src_index, TNode<IntPtrT> length, |
| WriteBarrierMode write_barrier = UPDATE_WRITE_BARRIER); |
| |
| TNode<FixedArray> HeapObjectToFixedArray(TNode<HeapObject> base, |
| Label* cast_fail); |
| |
| TNode<FixedDoubleArray> HeapObjectToFixedDoubleArray(TNode<HeapObject> base, |
| Label* cast_fail) { |
| GotoIf( |
| WordNotEqual(LoadMap(base), LoadRoot(RootIndex::kFixedDoubleArrayMap)), |
| cast_fail); |
| return UncheckedCast<FixedDoubleArray>(base); |
| } |
| |
| TNode<SloppyArgumentsElements> HeapObjectToSloppyArgumentsElements( |
| TNode<HeapObject> base, Label* cast_fail) { |
| GotoIf(WordNotEqual(LoadMap(base), |
| LoadRoot(RootIndex::kSloppyArgumentsElementsMap)), |
| cast_fail); |
| return UncheckedCast<SloppyArgumentsElements>(base); |
| } |
| |
| TNode<Int32T> ConvertElementsKindToInt(TNode<Int32T> elements_kind) { |
| return UncheckedCast<Int32T>(elements_kind); |
| } |
| |
| enum class ExtractFixedArrayFlag { |
| kFixedArrays = 1, |
| kFixedDoubleArrays = 2, |
| kDontCopyCOW = 4, |
| kNewSpaceAllocationOnly = 8, |
| kAllFixedArrays = kFixedArrays | kFixedDoubleArrays, |
| kAllFixedArraysDontCopyCOW = kAllFixedArrays | kDontCopyCOW |
| }; |
| |
| using ExtractFixedArrayFlags = base::Flags<ExtractFixedArrayFlag>; |
| |
| // Copy a portion of an existing FixedArray or FixedDoubleArray into a new |
| // array, including special appropriate handling for empty arrays and COW |
| // arrays. The result array will be of the same type as the original array. |
| // |
| // * |source| is either a FixedArray or FixedDoubleArray from which to copy |
| // elements. |
| // * |first| is the starting element index to copy from, if nullptr is passed |
| // then index zero is used by default. |
| // * |count| is the number of elements to copy out of the source array |
| // starting from and including the element indexed by |start|. If |count| is |
| // nullptr, then all of the elements from |start| to the end of |source| are |
| // copied. |
| // * |capacity| determines the size of the allocated result array, with |
| // |capacity| >= |count|. If |capacity| is nullptr, then |count| is used as |
| // the destination array's capacity. |
| // * |extract_flags| determines whether FixedArrays, FixedDoubleArrays or both |
| // are detected and copied. Although it's always correct to pass |
| // kAllFixedArrays, the generated code is more compact and efficient if the |
| // caller can specify whether only FixedArrays or FixedDoubleArrays will be |
| // passed as the |source| parameter. |
| // * |parameter_mode| determines the parameter mode of |first|, |count| and |
| // |capacity|. |
| // * If |var_holes_converted| is given, any holes will be converted to |
| // undefined and the variable will be set according to whether or not there |
| // were any hole. |
| // * If |source_elements_kind| is given, the function will try to use the |
| // runtime elements kind of source to make copy faster. More specifically, it |
| // can skip write barriers. |
| TNode<FixedArrayBase> ExtractFixedArray( |
| Node* source, Node* first, Node* count = nullptr, |
| Node* capacity = nullptr, |
| ExtractFixedArrayFlags extract_flags = |
| ExtractFixedArrayFlag::kAllFixedArrays, |
| ParameterMode parameter_mode = INTPTR_PARAMETERS, |
| TVariable<BoolT>* var_holes_converted = nullptr, |
| Node* source_elements_kind = nullptr); |
| |
| TNode<FixedArrayBase> ExtractFixedArray( |
| TNode<FixedArrayBase> source, TNode<Smi> first, TNode<Smi> count, |
| TNode<Smi> capacity, |
| ExtractFixedArrayFlags extract_flags = |
| ExtractFixedArrayFlag::kAllFixedArrays) { |
| return ExtractFixedArray(source, first, count, capacity, extract_flags, |
| SMI_PARAMETERS); |
| } |
| |
| TNode<FixedArray> ExtractFixedArray( |
| TNode<FixedArray> source, TNode<IntPtrT> first, TNode<IntPtrT> count, |
| TNode<IntPtrT> capacity, |
| ExtractFixedArrayFlags extract_flags = |
| ExtractFixedArrayFlag::kAllFixedArrays) { |
| return CAST(ExtractFixedArray(source, first, count, capacity, extract_flags, |
| INTPTR_PARAMETERS)); |
| } |
| |
| // Copy a portion of an existing FixedArray or FixedDoubleArray into a new |
| // FixedArray, including special appropriate handling for COW arrays. |
| // * |source| is either a FixedArray or FixedDoubleArray from which to copy |
| // elements. |source| is assumed to be non-empty. |
| // * |first| is the starting element index to copy from. |
| // * |count| is the number of elements to copy out of the source array |
| // starting from and including the element indexed by |start|. |
| // * |capacity| determines the size of the allocated result array, with |
| // |capacity| >= |count|. |
| // * |source_map| is the map of the |source|. |
| // * |from_kind| is the elements kind that is consistent with |source| being |
| // a FixedArray or FixedDoubleArray. This function only cares about double vs. |
| // non-double, so as to distinguish FixedDoubleArray vs. FixedArray. It does |
| // not care about holeyness. For example, when |source| is a FixedArray, |
| // PACKED/HOLEY_ELEMENTS can be used, but not PACKED_DOUBLE_ELEMENTS. |
| // * |allocation_flags| and |extract_flags| influence how the target |
| // FixedArray is allocated. |
| // * |parameter_mode| determines the parameter mode of |first|, |count| and |
| // |capacity|. |
| // * |convert_holes| is used to signify that the target array should use |
| // undefined in places of holes. |
| // * If |convert_holes| is true and |var_holes_converted| not nullptr, then |
| // |var_holes_converted| is used to signal whether any holes were found and |
| // converted. The caller should use this information to decide which map is |
| // compatible with the result array. For example, if the input was of |
| // HOLEY_SMI_ELEMENTS kind, and a conversion took place, the result will be |
| // compatible only with HOLEY_ELEMENTS and PACKED_ELEMENTS. |
| TNode<FixedArray> ExtractToFixedArray( |
| Node* source, Node* first, Node* count, Node* capacity, Node* source_map, |
| ElementsKind from_kind = PACKED_ELEMENTS, |
| AllocationFlags allocation_flags = AllocationFlag::kNone, |
| ExtractFixedArrayFlags extract_flags = |
| ExtractFixedArrayFlag::kAllFixedArrays, |
| ParameterMode parameter_mode = INTPTR_PARAMETERS, |
| HoleConversionMode convert_holes = HoleConversionMode::kDontConvert, |
| TVariable<BoolT>* var_holes_converted = nullptr, |
| Node* source_runtime_kind = nullptr); |
| |
| // Attempt to copy a FixedDoubleArray to another FixedDoubleArray. In the case |
| // where the source array has a hole, produce a FixedArray instead where holes |
| // are replaced with undefined. |
| // * |source| is a FixedDoubleArray from which to copy elements. |
| // * |first| is the starting element index to copy from. |
| // * |count| is the number of elements to copy out of the source array |
| // starting from and including the element indexed by |start|. |
| // * |capacity| determines the size of the allocated result array, with |
| // |capacity| >= |count|. |
| // * |source_map| is the map of |source|. It will be used as the map of the |
| // target array if the target can stay a FixedDoubleArray. Otherwise if the |
| // target array needs to be a FixedArray, the FixedArrayMap will be used. |
| // * |var_holes_converted| is used to signal whether a FixedAray |
| // is produced or not. |
| // * |allocation_flags| and |extract_flags| influence how the target array is |
| // allocated. |
| // * |parameter_mode| determines the parameter mode of |first|, |count| and |
| // |capacity|. |
| TNode<FixedArrayBase> ExtractFixedDoubleArrayFillingHoles( |
| Node* source, Node* first, Node* count, Node* capacity, Node* source_map, |
| TVariable<BoolT>* var_holes_converted, AllocationFlags allocation_flags, |
| ExtractFixedArrayFlags extract_flags = |
| ExtractFixedArrayFlag::kAllFixedArrays, |
| ParameterMode parameter_mode = INTPTR_PARAMETERS); |
| |
| // Copy the entire contents of a FixedArray or FixedDoubleArray to a new |
| // array, including special appropriate handling for empty arrays and COW |
| // arrays. |
| // |
| // * |source| is either a FixedArray or FixedDoubleArray from which to copy |
| // elements. |
| // * |extract_flags| determines whether FixedArrays, FixedDoubleArrays or both |
| // are detected and copied. Although it's always correct to pass |
| // kAllFixedArrays, the generated code is more compact and efficient if the |
| // caller can specify whether only FixedArrays or FixedDoubleArrays will be |
| // passed as the |source| parameter. |
| Node* CloneFixedArray(Node* source, |
| ExtractFixedArrayFlags flags = |
| ExtractFixedArrayFlag::kAllFixedArraysDontCopyCOW) { |
| ParameterMode mode = OptimalParameterMode(); |
| return ExtractFixedArray(source, IntPtrOrSmiConstant(0, mode), nullptr, |
| nullptr, flags, mode); |
| } |
| |
| // Copies |character_count| elements from |from_string| to |to_string| |
| // starting at the |from_index|'th character. |from_string| and |to_string| |
| // can either be one-byte strings or two-byte strings, although if |
| // |from_string| is two-byte, then |to_string| must be two-byte. |
| // |from_index|, |to_index| and |character_count| must be intptr_ts s.t. 0 <= |
| // |from_index| <= |from_index| + |character_count| <= from_string.length and |
| // 0 <= |to_index| <= |to_index| + |character_count| <= to_string.length. |
| void CopyStringCharacters(Node* from_string, Node* to_string, |
| TNode<IntPtrT> from_index, TNode<IntPtrT> to_index, |
| TNode<IntPtrT> character_count, |
| String::Encoding from_encoding, |
| String::Encoding to_encoding); |
| |
| // Loads an element from |array| of |from_kind| elements by given |offset| |
| // (NOTE: not index!), does a hole check if |if_hole| is provided and |
| // converts the value so that it becomes ready for storing to array of |
| // |to_kind| elements. |
| Node* LoadElementAndPrepareForStore(Node* array, Node* offset, |
| ElementsKind from_kind, |
| ElementsKind to_kind, Label* if_hole); |
| |
| Node* CalculateNewElementsCapacity(Node* old_capacity, |
| ParameterMode mode = INTPTR_PARAMETERS); |
| |
| TNode<Smi> CalculateNewElementsCapacity(TNode<Smi> old_capacity) { |
| return CAST(CalculateNewElementsCapacity(old_capacity, SMI_PARAMETERS)); |
| } |
| TNode<IntPtrT> CalculateNewElementsCapacity(TNode<IntPtrT> old_capacity) { |
| return UncheckedCast<IntPtrT>( |
| CalculateNewElementsCapacity(old_capacity, INTPTR_PARAMETERS)); |
| } |
| |
| // Tries to grow the |elements| array of given |object| to store the |key| |
| // or bails out if the growing gap is too big. Returns new elements. |
| Node* TryGrowElementsCapacity(Node* object, Node* elements, ElementsKind kind, |
| Node* key, Label* bailout); |
| |
| // Tries to grow the |capacity|-length |elements| array of given |object| |
| // to store the |key| or bails out if the growing gap is too big. Returns |
| // new elements. |
| Node* TryGrowElementsCapacity(Node* object, Node* elements, ElementsKind kind, |
| Node* key, Node* capacity, ParameterMode mode, |
| Label* bailout); |
| |
| // Grows elements capacity of given object. Returns new elements. |
| Node* GrowElementsCapacity(Node* object, Node* elements, |
| ElementsKind from_kind, ElementsKind to_kind, |
| Node* capacity, Node* new_capacity, |
| ParameterMode mode, Label* bailout); |
| |
| // Given a need to grow by |growth|, allocate an appropriate new capacity |
| // if necessary, and return a new elements FixedArray object. Label |bailout| |
| // is followed for allocation failure. |
| void PossiblyGrowElementsCapacity(ParameterMode mode, ElementsKind kind, |
| Node* array, Node* length, |
| Variable* var_elements, Node* growth, |
| Label* bailout); |
| |
| // Allocation site manipulation |
| void InitializeAllocationMemento(Node* base_allocation, |
| Node* base_allocation_size, |
| Node* allocation_site); |
| |
| Node* TryTaggedToFloat64(Node* value, Label* if_valueisnotnumber); |
| Node* TruncateTaggedToFloat64(Node* context, Node* value); |
| Node* TruncateTaggedToWord32(Node* context, Node* value); |
| void TaggedToWord32OrBigInt(Node* context, Node* value, Label* if_number, |
| Variable* var_word32, Label* if_bigint, |
| Variable* var_bigint); |
| void TaggedToWord32OrBigIntWithFeedback( |
| Node* context, Node* value, Label* if_number, Variable* var_word32, |
| Label* if_bigint, Variable* var_bigint, Variable* var_feedback); |
| |
| // Truncate the floating point value of a HeapNumber to an Int32. |
| TNode<Int32T> TruncateHeapNumberValueToWord32(TNode<HeapNumber> object); |
| |
| // Conversions. |
| void TryHeapNumberToSmi(TNode<HeapNumber> number, |
| TVariable<Smi>& output, // NOLINT(runtime/references) |
| Label* if_smi); |
| void TryFloat64ToSmi(TNode<Float64T> number, |
| TVariable<Smi>& output, // NOLINT(runtime/references) |
| Label* if_smi); |
| TNode<Number> ChangeFloat64ToTagged(SloppyTNode<Float64T> value); |
| TNode<Number> ChangeInt32ToTagged(SloppyTNode<Int32T> value); |
| TNode<Number> ChangeUint32ToTagged(SloppyTNode<Uint32T> value); |
| TNode<Number> ChangeUintPtrToTagged(TNode<UintPtrT> value); |
| TNode<Uint32T> ChangeNumberToUint32(TNode<Number> value); |
| TNode<Float64T> ChangeNumberToFloat64(TNode<Number> value); |
| TNode<UintPtrT> TryNumberToUintPtr(TNode<Number> value, Label* if_negative); |
| TNode<UintPtrT> ChangeNonnegativeNumberToUintPtr(TNode<Number> value) { |
| return TryNumberToUintPtr(value, nullptr); |
| } |
| |
| void TaggedToNumeric(Node* context, Node* value, Label* done, |
| Variable* var_numeric); |
| void TaggedToNumericWithFeedback(Node* context, Node* value, Label* done, |
| Variable* var_numeric, |
| Variable* var_feedback); |
| |
| TNode<WordT> TimesSystemPointerSize(SloppyTNode<WordT> value); |
| TNode<IntPtrT> TimesSystemPointerSize(TNode<IntPtrT> value) { |
| return Signed(TimesSystemPointerSize(implicit_cast<TNode<WordT>>(value))); |
| } |
| TNode<UintPtrT> TimesSystemPointerSize(TNode<UintPtrT> value) { |
| return Unsigned(TimesSystemPointerSize(implicit_cast<TNode<WordT>>(value))); |
| } |
| |
| TNode<WordT> TimesTaggedSize(SloppyTNode<WordT> value); |
| TNode<IntPtrT> TimesTaggedSize(TNode<IntPtrT> value) { |
| return Signed(TimesTaggedSize(implicit_cast<TNode<WordT>>(value))); |
| } |
| TNode<UintPtrT> TimesTaggedSize(TNode<UintPtrT> value) { |
| return Unsigned(TimesTaggedSize(implicit_cast<TNode<WordT>>(value))); |
| } |
| |
| TNode<WordT> TimesDoubleSize(SloppyTNode<WordT> value); |
| TNode<UintPtrT> TimesDoubleSize(TNode<UintPtrT> value) { |
| return Unsigned(TimesDoubleSize(implicit_cast<TNode<WordT>>(value))); |
| } |
| TNode<IntPtrT> TimesDoubleSize(TNode<IntPtrT> value) { |
| return Signed(TimesDoubleSize(implicit_cast<TNode<WordT>>(value))); |
| } |
| |
| // Type conversions. |
| // Throws a TypeError for {method_name} if {value} is not coercible to Object, |
| // or returns the {value} converted to a String otherwise. |
| TNode<String> ToThisString(TNode<Context> context, TNode<Object> value, |
| TNode<String> method_name); |
| TNode<String> ToThisString(TNode<Context> context, TNode<Object> value, |
| char const* method_name) { |
| return ToThisString(context, value, StringConstant(method_name)); |
| } |
| |
| // Throws a TypeError for {method_name} if {value} is neither of the given |
| // {primitive_type} nor a JSPrimitiveWrapper wrapping a value of |
| // {primitive_type}, or returns the {value} (or wrapped value) otherwise. |
| TNode<Object> ToThisValue(TNode<Context> context, TNode<Object> value, |
| PrimitiveType primitive_type, |
| char const* method_name); |
| |
| // Throws a TypeError for {method_name} if {value} is not of the given |
| // instance type. Returns {value}'s map. |
| Node* ThrowIfNotInstanceType(Node* context, Node* value, |
| InstanceType instance_type, |
| char const* method_name); |
| // Throws a TypeError for {method_name} if {value} is not a JSReceiver. |
| // Returns the {value}'s map. |
| Node* ThrowIfNotJSReceiver(Node* context, Node* value, |
| MessageTemplate msg_template, |
| const char* method_name = nullptr); |
| void ThrowIfNotCallable(TNode<Context> context, TNode<Object> value, |
| const char* method_name); |
| |
| void ThrowRangeError(Node* context, MessageTemplate message, |
| Node* arg0 = nullptr, Node* arg1 = nullptr, |
| Node* arg2 = nullptr); |
| void ThrowTypeError(Node* context, MessageTemplate message, |
| char const* arg0 = nullptr, char const* arg1 = nullptr); |
| void ThrowTypeError(Node* context, MessageTemplate message, Node* arg0, |
| Node* arg1 = nullptr, Node* arg2 = nullptr); |
| |
| // Type checks. |
| // Check whether the map is for an object with special properties, such as a |
| // JSProxy or an object with interceptors. |
| TNode<BoolT> InstanceTypeEqual(SloppyTNode<Int32T> instance_type, int type); |
| TNode<BoolT> IsAccessorInfo(SloppyTNode<HeapObject> object); |
| TNode<BoolT> IsAccessorPair(SloppyTNode<HeapObject> object); |
| TNode<BoolT> IsAllocationSite(SloppyTNode<HeapObject> object); |
| TNode<BoolT> IsAnyHeapNumber(SloppyTNode<HeapObject> object); |
| TNode<BoolT> IsNoElementsProtectorCellInvalid(); |
| TNode<BoolT> IsArrayIteratorProtectorCellInvalid(); |
| TNode<BoolT> IsBigIntInstanceType(SloppyTNode<Int32T> instance_type); |
| TNode<BoolT> IsBigInt(SloppyTNode<HeapObject> object); |
| TNode<BoolT> IsBoolean(SloppyTNode<HeapObject> object); |
| TNode<BoolT> IsCallableMap(SloppyTNode<Map> map); |
| TNode<BoolT> IsCallable(SloppyTNode<HeapObject> object); |
| TNode<BoolT> TaggedIsCallable(TNode<Object> object); |
| TNode<BoolT> IsCell(SloppyTNode<HeapObject> object); |
| TNode<BoolT> IsCode(SloppyTNode<HeapObject> object); |
| TNode<BoolT> IsConsStringInstanceType(SloppyTNode<Int32T> instance_type); |
| TNode<BoolT> IsConstructorMap(SloppyTNode<Map> map); |
| TNode<BoolT> IsConstructor(SloppyTNode<HeapObject> object); |
| TNode<BoolT> IsDebugInfo(TNode<HeapObject> object); |
| TNode<BoolT> IsDeprecatedMap(SloppyTNode<Map> map); |
| TNode<BoolT> IsNameDictionary(SloppyTNode<HeapObject> object); |
| TNode<BoolT> IsGlobalDictionary(SloppyTNode<HeapObject> object); |
| TNode<BoolT> IsExtensibleMap(SloppyTNode<Map> map); |
| TNode<BoolT> IsFrozenOrSealedElementsKindMap(SloppyTNode<Map> map); |
| TNode<BoolT> IsExtensibleNonPrototypeMap(TNode<Map> map); |
| TNode<BoolT> IsExternalStringInstanceType(SloppyTNode<Int32T> instance_type); |
| TNode<BoolT> IsFeedbackCell(SloppyTNode<HeapObject> object); |
| TNode<BoolT> IsFeedbackVector(SloppyTNode<HeapObject> object); |
| TNode<BoolT> IsContext(SloppyTNode<HeapObject> object); |
| TNode<BoolT> IsFixedArray(SloppyTNode<HeapObject> object); |
| TNode<BoolT> IsFixedArraySubclass(SloppyTNode<HeapObject> object); |
| TNode<BoolT> IsFixedArrayWithKind(SloppyTNode<HeapObject> object, |
| ElementsKind kind); |
| TNode<BoolT> IsFixedArrayWithKindOrEmpty(SloppyTNode<HeapObject> object, |
| ElementsKind kind); |
| TNode<BoolT> IsFixedDoubleArray(SloppyTNode<HeapObject> object); |
| TNode<BoolT> IsFunctionWithPrototypeSlotMap(SloppyTNode<Map> map); |
| TNode<BoolT> IsHashTable(SloppyTNode<HeapObject> object); |
| TNode<BoolT> IsEphemeronHashTable(SloppyTNode<HeapObject> object); |
| TNode<BoolT> IsHeapNumber(SloppyTNode<HeapObject> object); |
| TNode<BoolT> IsHeapNumberInstanceType(SloppyTNode<Int32T> instance_type); |
| TNode<BoolT> IsOddball(SloppyTNode<HeapObject> object); |
| TNode<BoolT> IsOddballInstanceType(SloppyTNode<Int32T> instance_type); |
| TNode<BoolT> IsIndirectStringInstanceType(SloppyTNode<Int32T> instance_type); |
| TNode<BoolT> IsJSArrayBuffer(SloppyTNode<HeapObject> object); |
| TNode<BoolT> IsJSDataView(TNode<HeapObject> object); |
| TNode<BoolT> IsJSArrayInstanceType(SloppyTNode<Int32T> instance_type); |
| TNode<BoolT> IsJSArrayMap(SloppyTNode<Map> map); |
| TNode<BoolT> IsJSArray(SloppyTNode<HeapObject> object); |
| TNode<BoolT> IsJSArrayIterator(SloppyTNode<HeapObject> object); |
| TNode<BoolT> IsJSAsyncGeneratorObject(SloppyTNode<HeapObject> object); |
| TNode<BoolT> IsJSFunctionInstanceType(SloppyTNode<Int32T> instance_type); |
| TNode<BoolT> IsAllocationSiteInstanceType(SloppyTNode<Int32T> instance_type); |
| TNode<BoolT> IsJSFunctionMap(SloppyTNode<Map> map); |
| TNode<BoolT> IsJSFunction(SloppyTNode<HeapObject> object); |
| TNode<BoolT> IsJSGeneratorObject(SloppyTNode<HeapObject> object); |
| TNode<BoolT> IsJSGlobalProxyInstanceType(SloppyTNode<Int32T> instance_type); |
| TNode<BoolT> IsJSGlobalProxyMap(SloppyTNode<Map> map); |
| TNode<BoolT> IsJSGlobalProxy(SloppyTNode<HeapObject> object); |
| TNode<BoolT> IsJSObjectInstanceType(SloppyTNode<Int32T> instance_type); |
| TNode<BoolT> IsJSObjectMap(SloppyTNode<Map> map); |
| TNode<BoolT> IsJSObject(SloppyTNode<HeapObject> object); |
| TNode<BoolT> IsJSPromiseMap(SloppyTNode<Map> map); |
| TNode<BoolT> IsJSPromise(SloppyTNode<HeapObject> object); |
| TNode<BoolT> IsJSProxy(SloppyTNode<HeapObject> object); |
| TNode<BoolT> IsJSStringIterator(SloppyTNode<HeapObject> object); |
| TNode<BoolT> IsJSReceiverInstanceType(SloppyTNode<Int32T> instance_type); |
| TNode<BoolT> IsJSReceiverMap(SloppyTNode<Map> map); |
| TNode<BoolT> IsJSReceiver(SloppyTNode<HeapObject> object); |
| TNode<BoolT> IsJSRegExp(SloppyTNode<HeapObject> object); |
| TNode<BoolT> IsJSTypedArrayInstanceType(SloppyTNode<Int32T> instance_type); |
| TNode<BoolT> IsJSTypedArrayMap(SloppyTNode<Map> map); |
| TNode<BoolT> IsJSTypedArray(SloppyTNode<HeapObject> object); |
| TNode<BoolT> IsJSPrimitiveWrapperInstanceType( |
| SloppyTNode<Int32T> instance_type); |
| TNode<BoolT> IsJSPrimitiveWrapperMap(SloppyTNode<Map> map); |
| TNode<BoolT> IsJSPrimitiveWrapper(SloppyTNode<HeapObject> object); |
| TNode<BoolT> IsMap(SloppyTNode<HeapObject> object); |
| TNode<BoolT> IsMutableHeapNumber(SloppyTNode<HeapObject> object); |
| TNode<BoolT> IsName(SloppyTNode<HeapObject> object); |
| TNode<BoolT> IsNameInstanceType(SloppyTNode<Int32T> instance_type); |
| TNode<BoolT> IsNativeContext(SloppyTNode<HeapObject> object); |
| TNode<BoolT> IsNullOrJSReceiver(SloppyTNode<HeapObject> object); |
| TNode<BoolT> IsNullOrUndefined(SloppyTNode<Object> object); |
| TNode<BoolT> IsNumberDictionary(SloppyTNode<HeapObject> object); |
| TNode<BoolT> IsOneByteStringInstanceType(SloppyTNode<Int32T> instance_type); |
| TNode<BoolT> IsPrimitiveInstanceType(SloppyTNode<Int32T> instance_type); |
| TNode<BoolT> IsPrivateSymbol(SloppyTNode<HeapObject> object); |
| TNode<BoolT> IsPrivateName(SloppyTNode<Symbol> symbol); |
| TNode<BoolT> IsPromiseCapability(SloppyTNode<HeapObject> object); |
| TNode<BoolT> IsPropertyArray(SloppyTNode<HeapObject> object); |
| TNode<BoolT> IsPropertyCell(SloppyTNode<HeapObject> object); |
| TNode<BoolT> IsPrototypeInitialArrayPrototype(SloppyTNode<Context> context, |
| SloppyTNode<Map> map); |
| TNode<BoolT> IsPrototypeTypedArrayPrototype(SloppyTNode<Context> context, |
| SloppyTNode<Map> map); |
| |
| TNode<BoolT> IsFastAliasedArgumentsMap(TNode<Context> context, |
| TNode<Map> map); |
| TNode<BoolT> IsSlowAliasedArgumentsMap(TNode<Context> context, |
| TNode<Map> map); |
| TNode<BoolT> IsSloppyArgumentsMap(TNode<Context> context, TNode<Map> map); |
| TNode<BoolT> IsStrictArgumentsMap(TNode<Context> context, TNode<Map> map); |
| |
| TNode<BoolT> IsSequentialStringInstanceType( |
| SloppyTNode<Int32T> instance_type); |
| TNode<BoolT> IsUncachedExternalStringInstanceType( |
| SloppyTNode<Int32T> instance_type); |
| TNode<BoolT> IsSpecialReceiverInstanceType(TNode<Int32T> instance_type); |
| TNode<BoolT> IsCustomElementsReceiverInstanceType( |
| TNode<Int32T> instance_type); |
| TNode<BoolT> IsSpecialReceiverMap(SloppyTNode<Map> map); |
| // Returns true if the map corresponds to non-special fast or dictionary |
| // object. |
| TNode<BoolT> IsSimpleObjectMap(TNode<Map> map); |
| TNode<BoolT> IsStringInstanceType(SloppyTNode<Int32T> instance_type); |
| TNode<BoolT> IsString(SloppyTNode<HeapObject> object); |
| TNode<BoolT> IsSymbolInstanceType(SloppyTNode<Int32T> instance_type); |
| TNode<BoolT> IsSymbol(SloppyTNode<HeapObject> object); |
| TNode<BoolT> IsInternalizedStringInstanceType(TNode<Int32T> instance_type); |
| TNode<BoolT> IsUniqueName(TNode<HeapObject> object); |
| TNode<BoolT> IsUniqueNameNoIndex(TNode<HeapObject> object); |
| TNode<BoolT> IsUndetectableMap(SloppyTNode<Map> map); |
| TNode<BoolT> IsNotWeakFixedArraySubclass(SloppyTNode<HeapObject> object); |
| TNode<BoolT> IsZeroOrContext(SloppyTNode<Object> object); |
| |
| inline Node* IsSharedFunctionInfo(Node* object) { |
| return IsSharedFunctionInfoMap(LoadMap(object)); |
| } |
| |
| TNode<BoolT> IsPromiseResolveProtectorCellInvalid(); |
| TNode<BoolT> IsPromiseThenProtectorCellInvalid(); |
| TNode<BoolT> IsArraySpeciesProtectorCellInvalid(); |
| TNode<BoolT> IsTypedArraySpeciesProtectorCellInvalid(); |
| TNode<BoolT> IsRegExpSpeciesProtectorCellInvalid( |
| TNode<Context> native_context); |
| TNode<BoolT> IsPromiseSpeciesProtectorCellInvalid(); |
| |
| TNode<BoolT> IsMockArrayBufferAllocatorFlag() { |
| TNode<Word32T> flag_value = UncheckedCast<Word32T>(Load( |
| MachineType::Uint8(), |
| ExternalConstant( |
| ExternalReference::address_of_mock_arraybuffer_allocator_flag()))); |
| return Word32NotEqual(Word32And(flag_value, Int32Constant(0xFF)), |
| Int32Constant(0)); |
| } |
| |
| // True iff |object| is a Smi or a HeapNumber. |
| TNode<BoolT> IsNumber(SloppyTNode<Object> object); |
| // True iff |object| is a Smi or a HeapNumber or a BigInt. |
| TNode<BoolT> IsNumeric(SloppyTNode<Object> object); |
| |
| // True iff |number| is either a Smi, or a HeapNumber whose value is not |
| // within Smi range. |
| TNode<BoolT> IsNumberNormalized(SloppyTNode<Number> number); |
| TNode<BoolT> IsNumberPositive(SloppyTNode<Number> number); |
| TNode<BoolT> IsHeapNumberPositive(TNode<HeapNumber> number); |
| |
| // True iff {number} is non-negative and less or equal than 2**53-1. |
| TNode<BoolT> IsNumberNonNegativeSafeInteger(TNode<Number> number); |
| |
| // True iff {number} represents an integer value. |
| TNode<BoolT> IsInteger(TNode<Object> number); |
| TNode<BoolT> IsInteger(TNode<HeapNumber> number); |
| |
| // True iff abs({number}) <= 2**53 -1 |
| TNode<BoolT> IsSafeInteger(TNode<Object> number); |
| TNode<BoolT> IsSafeInteger(TNode<HeapNumber> number); |
| |
| // True iff {number} represents a valid uint32t value. |
| TNode<BoolT> IsHeapNumberUint32(TNode<HeapNumber> number); |
| |
| // True iff {number} is a positive number and a valid array index in the range |
| // [0, 2^32-1). |
| TNode<BoolT> IsNumberArrayIndex(TNode<Number> number); |
| |
| Node* FixedArraySizeDoesntFitInNewSpace( |
| Node* element_count, int base_size = FixedArray::kHeaderSize, |
| ParameterMode mode = INTPTR_PARAMETERS); |
| |
| // ElementsKind helpers: |
| TNode<BoolT> ElementsKindEqual(TNode<Int32T> a, TNode<Int32T> b) { |
| return Word32Equal(a, b); |
| } |
| bool ElementsKindEqual(ElementsKind a, ElementsKind b) { return a == b; } |
| TNode<BoolT> IsFastElementsKind(TNode<Int32T> elements_kind); |
| bool IsFastElementsKind(ElementsKind kind) { |
| return v8::internal::IsFastElementsKind(kind); |
| } |
| TNode<BoolT> IsDictionaryElementsKind(TNode<Int32T> elements_kind) { |
| return ElementsKindEqual(elements_kind, Int32Constant(DICTIONARY_ELEMENTS)); |
| } |
| TNode<BoolT> IsDoubleElementsKind(TNode<Int32T> elements_kind); |
| bool IsDoubleElementsKind(ElementsKind kind) { |
| return v8::internal::IsDoubleElementsKind(kind); |
| } |
| TNode<BoolT> IsFastSmiOrTaggedElementsKind(TNode<Int32T> elements_kind); |
| TNode<BoolT> IsFastSmiElementsKind(SloppyTNode<Int32T> elements_kind); |
| TNode<BoolT> IsHoleyFastElementsKind(TNode<Int32T> elements_kind); |
| TNode<BoolT> IsHoleyFastElementsKindForRead(TNode<Int32T> elements_kind); |
| TNode<BoolT> IsElementsKindGreaterThan(TNode<Int32T> target_kind, |
| ElementsKind reference_kind); |
| TNode<BoolT> IsElementsKindLessThanOrEqual(TNode<Int32T> target_kind, |
| ElementsKind reference_kind); |
| // Check if reference_kind_a <= target_kind <= reference_kind_b |
| TNode<BoolT> IsElementsKindInRange(TNode<Int32T> target_kind, |
| ElementsKind lower_reference_kind, |
| ElementsKind higher_reference_kind); |
| |
| // String helpers. |
| // Load a character from a String (might flatten a ConsString). |
| TNode<Int32T> StringCharCodeAt(SloppyTNode<String> string, |
| SloppyTNode<IntPtrT> index); |
| // Return the single character string with only {code}. |
| TNode<String> StringFromSingleCharCode(TNode<Int32T> code); |
| |
| // Return a new string object which holds a substring containing the range |
| // [from,to[ of string. |
| TNode<String> SubString(TNode<String> string, TNode<IntPtrT> from, |
| TNode<IntPtrT> to); |
| |
| // Return a new string object produced by concatenating |first| with |second|. |
| TNode<String> StringAdd(Node* context, TNode<String> first, |
| TNode<String> second); |
| |
| // Check if |string| is an indirect (thin or flat cons) string type that can |
| // be dereferenced by DerefIndirectString. |
| void BranchIfCanDerefIndirectString(Node* string, Node* instance_type, |
| Label* can_deref, Label* cannot_deref); |
| // Unpack an indirect (thin or flat cons) string type. |
| void DerefIndirectString(Variable* var_string, Node* instance_type); |
| // Check if |var_string| has an indirect (thin or flat cons) string type, |
| // and unpack it if so. |
| void MaybeDerefIndirectString(Variable* var_string, Node* instance_type, |
| Label* did_deref, Label* cannot_deref); |
| // Check if |var_left| or |var_right| has an indirect (thin or flat cons) |
| // string type, and unpack it/them if so. Fall through if nothing was done. |
| void MaybeDerefIndirectStrings(Variable* var_left, Node* left_instance_type, |
|