| // Copyright 2014 the V8 project authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "src/base/adapters.h" |
| #include "src/base/bits.h" |
| #include "src/compiler/backend/instruction-selector-impl.h" |
| #include "src/compiler/node-matchers.h" |
| #include "src/compiler/node-properties.h" |
| |
| namespace v8 { |
| namespace internal { |
| namespace compiler { |
| |
| #define TRACE_UNIMPL() \ |
| PrintF("UNIMPLEMENTED instr_sel: %s at line %d\n", __FUNCTION__, __LINE__) |
| |
| #define TRACE() PrintF("instr_sel: %s at line %d\n", __FUNCTION__, __LINE__) |
| |
| // Adds Mips-specific methods for generating InstructionOperands. |
| class Mips64OperandGenerator final : public OperandGenerator { |
| public: |
| explicit Mips64OperandGenerator(InstructionSelector* selector) |
| : OperandGenerator(selector) {} |
| |
| InstructionOperand UseOperand(Node* node, InstructionCode opcode) { |
| if (CanBeImmediate(node, opcode)) { |
| return UseImmediate(node); |
| } |
| return UseRegister(node); |
| } |
| |
| // Use the zero register if the node has the immediate value zero, otherwise |
| // assign a register. |
| InstructionOperand UseRegisterOrImmediateZero(Node* node) { |
| if ((IsIntegerConstant(node) && (GetIntegerConstantValue(node) == 0)) || |
| (IsFloatConstant(node) && |
| (bit_cast<int64_t>(GetFloatConstantValue(node)) == 0))) { |
| return UseImmediate(node); |
| } |
| return UseRegister(node); |
| } |
| |
| bool IsIntegerConstant(Node* node) { |
| return (node->opcode() == IrOpcode::kInt32Constant) || |
| (node->opcode() == IrOpcode::kInt64Constant); |
| } |
| |
| int64_t GetIntegerConstantValue(Node* node) { |
| if (node->opcode() == IrOpcode::kInt32Constant) { |
| return OpParameter<int32_t>(node->op()); |
| } |
| DCHECK_EQ(IrOpcode::kInt64Constant, node->opcode()); |
| return OpParameter<int64_t>(node->op()); |
| } |
| |
| bool IsFloatConstant(Node* node) { |
| return (node->opcode() == IrOpcode::kFloat32Constant) || |
| (node->opcode() == IrOpcode::kFloat64Constant); |
| } |
| |
| double GetFloatConstantValue(Node* node) { |
| if (node->opcode() == IrOpcode::kFloat32Constant) { |
| return OpParameter<float>(node->op()); |
| } |
| DCHECK_EQ(IrOpcode::kFloat64Constant, node->opcode()); |
| return OpParameter<double>(node->op()); |
| } |
| |
| bool CanBeImmediate(Node* node, InstructionCode mode) { |
| return IsIntegerConstant(node) && |
| CanBeImmediate(GetIntegerConstantValue(node), mode); |
| } |
| |
| bool CanBeImmediate(int64_t value, InstructionCode opcode) { |
| switch (ArchOpcodeField::decode(opcode)) { |
| case kMips64Shl: |
| case kMips64Sar: |
| case kMips64Shr: |
| return is_uint5(value); |
| case kMips64Dshl: |
| case kMips64Dsar: |
| case kMips64Dshr: |
| return is_uint6(value); |
| case kMips64Add: |
| case kMips64And32: |
| case kMips64And: |
| case kMips64Dadd: |
| case kMips64Or32: |
| case kMips64Or: |
| case kMips64Tst: |
| case kMips64Xor: |
| return is_uint16(value); |
| case kMips64Lb: |
| case kMips64Lbu: |
| case kMips64Sb: |
| case kMips64Lh: |
| case kMips64Lhu: |
| case kMips64Sh: |
| case kMips64Lw: |
| case kMips64Sw: |
| case kMips64Ld: |
| case kMips64Sd: |
| case kMips64Lwc1: |
| case kMips64Swc1: |
| case kMips64Ldc1: |
| case kMips64Sdc1: |
| return is_int32(value); |
| default: |
| return is_int16(value); |
| } |
| } |
| |
| private: |
| bool ImmediateFitsAddrMode1Instruction(int32_t imm) const { |
| TRACE_UNIMPL(); |
| return false; |
| } |
| }; |
| |
| static void VisitRR(InstructionSelector* selector, ArchOpcode opcode, |
| Node* node) { |
| Mips64OperandGenerator g(selector); |
| selector->Emit(opcode, g.DefineAsRegister(node), |
| g.UseRegister(node->InputAt(0))); |
| } |
| |
| static void VisitRRI(InstructionSelector* selector, ArchOpcode opcode, |
| Node* node) { |
| Mips64OperandGenerator g(selector); |
| int32_t imm = OpParameter<int32_t>(node->op()); |
| selector->Emit(opcode, g.DefineAsRegister(node), |
| g.UseRegister(node->InputAt(0)), g.UseImmediate(imm)); |
| } |
| |
| static void VisitRRIR(InstructionSelector* selector, ArchOpcode opcode, |
| Node* node) { |
| Mips64OperandGenerator g(selector); |
| int32_t imm = OpParameter<int32_t>(node->op()); |
| selector->Emit(opcode, g.DefineAsRegister(node), |
| g.UseRegister(node->InputAt(0)), g.UseImmediate(imm), |
| g.UseRegister(node->InputAt(1))); |
| } |
| |
| static void VisitRRR(InstructionSelector* selector, ArchOpcode opcode, |
| Node* node) { |
| Mips64OperandGenerator g(selector); |
| selector->Emit(opcode, g.DefineAsRegister(node), |
| g.UseRegister(node->InputAt(0)), |
| g.UseRegister(node->InputAt(1))); |
| } |
| |
| void VisitRRRR(InstructionSelector* selector, ArchOpcode opcode, Node* node) { |
| Mips64OperandGenerator g(selector); |
| selector->Emit( |
| opcode, g.DefineSameAsFirst(node), g.UseRegister(node->InputAt(0)), |
| g.UseRegister(node->InputAt(1)), g.UseRegister(node->InputAt(2))); |
| } |
| |
| static void VisitRRO(InstructionSelector* selector, ArchOpcode opcode, |
| Node* node) { |
| Mips64OperandGenerator g(selector); |
| selector->Emit(opcode, g.DefineAsRegister(node), |
| g.UseRegister(node->InputAt(0)), |
| g.UseOperand(node->InputAt(1), opcode)); |
| } |
| |
| struct ExtendingLoadMatcher { |
| ExtendingLoadMatcher(Node* node, InstructionSelector* selector) |
| : matches_(false), selector_(selector), base_(nullptr), immediate_(0) { |
| Initialize(node); |
| } |
| |
| bool Matches() const { return matches_; } |
| |
| Node* base() const { |
| DCHECK(Matches()); |
| return base_; |
| } |
| int64_t immediate() const { |
| DCHECK(Matches()); |
| return immediate_; |
| } |
| ArchOpcode opcode() const { |
| DCHECK(Matches()); |
| return opcode_; |
| } |
| |
| private: |
| bool matches_; |
| InstructionSelector* selector_; |
| Node* base_; |
| int64_t immediate_; |
| ArchOpcode opcode_; |
| |
| void Initialize(Node* node) { |
| Int64BinopMatcher m(node); |
| // When loading a 64-bit value and shifting by 32, we should |
| // just load and sign-extend the interesting 4 bytes instead. |
| // This happens, for example, when we're loading and untagging SMIs. |
| DCHECK(m.IsWord64Sar()); |
| if (m.left().IsLoad() && m.right().Is(32) && |
| selector_->CanCover(m.node(), m.left().node())) { |
| DCHECK_EQ(selector_->GetEffectLevel(node), |
| selector_->GetEffectLevel(m.left().node())); |
| MachineRepresentation rep = |
| LoadRepresentationOf(m.left().node()->op()).representation(); |
| DCHECK_EQ(3, ElementSizeLog2Of(rep)); |
| if (rep != MachineRepresentation::kTaggedSigned && |
| rep != MachineRepresentation::kTaggedPointer && |
| rep != MachineRepresentation::kTagged && |
| rep != MachineRepresentation::kWord64) { |
| return; |
| } |
| |
| Mips64OperandGenerator g(selector_); |
| Node* load = m.left().node(); |
| Node* offset = load->InputAt(1); |
| base_ = load->InputAt(0); |
| opcode_ = kMips64Lw; |
| if (g.CanBeImmediate(offset, opcode_)) { |
| #if defined(V8_TARGET_LITTLE_ENDIAN) |
| immediate_ = g.GetIntegerConstantValue(offset) + 4; |
| #elif defined(V8_TARGET_BIG_ENDIAN) |
| immediate_ = g.GetIntegerConstantValue(offset); |
| #endif |
| matches_ = g.CanBeImmediate(immediate_, kMips64Lw); |
| } |
| } |
| } |
| }; |
| |
| bool TryEmitExtendingLoad(InstructionSelector* selector, Node* node, |
| Node* output_node) { |
| ExtendingLoadMatcher m(node, selector); |
| Mips64OperandGenerator g(selector); |
| if (m.Matches()) { |
| InstructionOperand inputs[2]; |
| inputs[0] = g.UseRegister(m.base()); |
| InstructionCode opcode = |
| m.opcode() | AddressingModeField::encode(kMode_MRI); |
| DCHECK(is_int32(m.immediate())); |
| inputs[1] = g.TempImmediate(static_cast<int32_t>(m.immediate())); |
| InstructionOperand outputs[] = {g.DefineAsRegister(output_node)}; |
| selector->Emit(opcode, arraysize(outputs), outputs, arraysize(inputs), |
| inputs); |
| return true; |
| } |
| return false; |
| } |
| |
| bool TryMatchImmediate(InstructionSelector* selector, |
| InstructionCode* opcode_return, Node* node, |
| size_t* input_count_return, InstructionOperand* inputs) { |
| Mips64OperandGenerator g(selector); |
| if (g.CanBeImmediate(node, *opcode_return)) { |
| *opcode_return |= AddressingModeField::encode(kMode_MRI); |
| inputs[0] = g.UseImmediate(node); |
| *input_count_return = 1; |
| return true; |
| } |
| return false; |
| } |
| |
| static void VisitBinop(InstructionSelector* selector, Node* node, |
| InstructionCode opcode, bool has_reverse_opcode, |
| InstructionCode reverse_opcode, |
| FlagsContinuation* cont) { |
| Mips64OperandGenerator g(selector); |
| Int32BinopMatcher m(node); |
| InstructionOperand inputs[2]; |
| size_t input_count = 0; |
| InstructionOperand outputs[1]; |
| size_t output_count = 0; |
| |
| if (TryMatchImmediate(selector, &opcode, m.right().node(), &input_count, |
| &inputs[1])) { |
| inputs[0] = g.UseRegister(m.left().node()); |
| input_count++; |
| } else if (has_reverse_opcode && |
| TryMatchImmediate(selector, &reverse_opcode, m.left().node(), |
| &input_count, &inputs[1])) { |
| inputs[0] = g.UseRegister(m.right().node()); |
| opcode = reverse_opcode; |
| input_count++; |
| } else { |
| inputs[input_count++] = g.UseRegister(m.left().node()); |
| inputs[input_count++] = g.UseOperand(m.right().node(), opcode); |
| } |
| |
| if (cont->IsDeoptimize()) { |
| // If we can deoptimize as a result of the binop, we need to make sure that |
| // the deopt inputs are not overwritten by the binop result. One way |
| // to achieve that is to declare the output register as same-as-first. |
| outputs[output_count++] = g.DefineSameAsFirst(node); |
| } else { |
| outputs[output_count++] = g.DefineAsRegister(node); |
| } |
| |
| DCHECK_NE(0u, input_count); |
| DCHECK_EQ(1u, output_count); |
| DCHECK_GE(arraysize(inputs), input_count); |
| DCHECK_GE(arraysize(outputs), output_count); |
| |
| selector->EmitWithContinuation(opcode, output_count, outputs, input_count, |
| inputs, cont); |
| } |
| |
| static void VisitBinop(InstructionSelector* selector, Node* node, |
| InstructionCode opcode, bool has_reverse_opcode, |
| InstructionCode reverse_opcode) { |
| FlagsContinuation cont; |
| VisitBinop(selector, node, opcode, has_reverse_opcode, reverse_opcode, &cont); |
| } |
| |
| static void VisitBinop(InstructionSelector* selector, Node* node, |
| InstructionCode opcode, FlagsContinuation* cont) { |
| VisitBinop(selector, node, opcode, false, kArchNop, cont); |
| } |
| |
| static void VisitBinop(InstructionSelector* selector, Node* node, |
| InstructionCode opcode) { |
| VisitBinop(selector, node, opcode, false, kArchNop); |
| } |
| |
| void InstructionSelector::VisitStackSlot(Node* node) { |
| StackSlotRepresentation rep = StackSlotRepresentationOf(node->op()); |
| int alignment = rep.alignment(); |
| int slot = frame_->AllocateSpillSlot(rep.size(), alignment); |
| OperandGenerator g(this); |
| |
| Emit(kArchStackSlot, g.DefineAsRegister(node), |
| sequence()->AddImmediate(Constant(slot)), |
| sequence()->AddImmediate(Constant(alignment)), 0, nullptr); |
| } |
| |
| void InstructionSelector::VisitAbortCSAAssert(Node* node) { |
| Mips64OperandGenerator g(this); |
| Emit(kArchAbortCSAAssert, g.NoOutput(), g.UseFixed(node->InputAt(0), a0)); |
| } |
| |
| void EmitLoad(InstructionSelector* selector, Node* node, InstructionCode opcode, |
| Node* output = nullptr) { |
| Mips64OperandGenerator g(selector); |
| Node* base = node->InputAt(0); |
| Node* index = node->InputAt(1); |
| |
| if (g.CanBeImmediate(index, opcode)) { |
| selector->Emit(opcode | AddressingModeField::encode(kMode_MRI), |
| g.DefineAsRegister(output == nullptr ? node : output), |
| g.UseRegister(base), g.UseImmediate(index)); |
| } else { |
| InstructionOperand addr_reg = g.TempRegister(); |
| selector->Emit(kMips64Dadd | AddressingModeField::encode(kMode_None), |
| addr_reg, g.UseRegister(index), g.UseRegister(base)); |
| // Emit desired load opcode, using temp addr_reg. |
| selector->Emit(opcode | AddressingModeField::encode(kMode_MRI), |
| g.DefineAsRegister(output == nullptr ? node : output), |
| addr_reg, g.TempImmediate(0)); |
| } |
| } |
| |
| void InstructionSelector::VisitLoad(Node* node) { |
| LoadRepresentation load_rep = LoadRepresentationOf(node->op()); |
| |
| InstructionCode opcode = kArchNop; |
| switch (load_rep.representation()) { |
| case MachineRepresentation::kFloat32: |
| opcode = kMips64Lwc1; |
| break; |
| case MachineRepresentation::kFloat64: |
| opcode = kMips64Ldc1; |
| break; |
| case MachineRepresentation::kBit: // Fall through. |
| case MachineRepresentation::kWord8: |
| opcode = load_rep.IsUnsigned() ? kMips64Lbu : kMips64Lb; |
| break; |
| case MachineRepresentation::kWord16: |
| opcode = load_rep.IsUnsigned() ? kMips64Lhu : kMips64Lh; |
| break; |
| case MachineRepresentation::kWord32: |
| opcode = load_rep.IsUnsigned() ? kMips64Lwu : kMips64Lw; |
| break; |
| case MachineRepresentation::kTaggedSigned: // Fall through. |
| case MachineRepresentation::kTaggedPointer: // Fall through. |
| case MachineRepresentation::kTagged: // Fall through. |
| case MachineRepresentation::kWord64: |
| opcode = kMips64Ld; |
| break; |
| case MachineRepresentation::kSimd128: |
| opcode = kMips64MsaLd; |
| break; |
| case MachineRepresentation::kCompressedSigned: // Fall through. |
| case MachineRepresentation::kCompressedPointer: // Fall through. |
| case MachineRepresentation::kCompressed: // Fall through. |
| case MachineRepresentation::kNone: |
| UNREACHABLE(); |
| } |
| if (node->opcode() == IrOpcode::kPoisonedLoad) { |
| CHECK_NE(poisoning_level_, PoisoningMitigationLevel::kDontPoison); |
| opcode |= MiscField::encode(kMemoryAccessPoisoned); |
| } |
| |
| EmitLoad(this, node, opcode); |
| } |
| |
| void InstructionSelector::VisitPoisonedLoad(Node* node) { VisitLoad(node); } |
| |
| void InstructionSelector::VisitProtectedLoad(Node* node) { |
| // TODO(eholk) |
| UNIMPLEMENTED(); |
| } |
| |
| void InstructionSelector::VisitStore(Node* node) { |
| Mips64OperandGenerator g(this); |
| Node* base = node->InputAt(0); |
| Node* index = node->InputAt(1); |
| Node* value = node->InputAt(2); |
| |
| StoreRepresentation store_rep = StoreRepresentationOf(node->op()); |
| WriteBarrierKind write_barrier_kind = store_rep.write_barrier_kind(); |
| MachineRepresentation rep = store_rep.representation(); |
| |
| // TODO(mips): I guess this could be done in a better way. |
| if (write_barrier_kind != kNoWriteBarrier) { |
| DCHECK(CanBeTaggedPointer(rep)); |
| InstructionOperand inputs[3]; |
| size_t input_count = 0; |
| inputs[input_count++] = g.UseUniqueRegister(base); |
| inputs[input_count++] = g.UseUniqueRegister(index); |
| inputs[input_count++] = g.UseUniqueRegister(value); |
| RecordWriteMode record_write_mode = |
| WriteBarrierKindToRecordWriteMode(write_barrier_kind); |
| InstructionOperand temps[] = {g.TempRegister(), g.TempRegister()}; |
| size_t const temp_count = arraysize(temps); |
| InstructionCode code = kArchStoreWithWriteBarrier; |
| code |= MiscField::encode(static_cast<int>(record_write_mode)); |
| Emit(code, 0, nullptr, input_count, inputs, temp_count, temps); |
| } else { |
| ArchOpcode opcode = kArchNop; |
| switch (rep) { |
| case MachineRepresentation::kFloat32: |
| opcode = kMips64Swc1; |
| break; |
| case MachineRepresentation::kFloat64: |
| opcode = kMips64Sdc1; |
| break; |
| case MachineRepresentation::kBit: // Fall through. |
| case MachineRepresentation::kWord8: |
| opcode = kMips64Sb; |
| break; |
| case MachineRepresentation::kWord16: |
| opcode = kMips64Sh; |
| break; |
| case MachineRepresentation::kWord32: |
| opcode = kMips64Sw; |
| break; |
| case MachineRepresentation::kTaggedSigned: // Fall through. |
| case MachineRepresentation::kTaggedPointer: // Fall through. |
| case MachineRepresentation::kTagged: // Fall through. |
| case MachineRepresentation::kWord64: |
| opcode = kMips64Sd; |
| break; |
| case MachineRepresentation::kSimd128: |
| opcode = kMips64MsaSt; |
| break; |
| case MachineRepresentation::kCompressedSigned: // Fall through. |
| case MachineRepresentation::kCompressedPointer: // Fall through. |
| case MachineRepresentation::kCompressed: // Fall through. |
| case MachineRepresentation::kNone: |
| UNREACHABLE(); |
| return; |
| } |
| |
| if (g.CanBeImmediate(index, opcode)) { |
| Emit(opcode | AddressingModeField::encode(kMode_MRI), g.NoOutput(), |
| g.UseRegister(base), g.UseImmediate(index), |
| g.UseRegisterOrImmediateZero(value)); |
| } else { |
| InstructionOperand addr_reg = g.TempRegister(); |
| Emit(kMips64Dadd | AddressingModeField::encode(kMode_None), addr_reg, |
| g.UseRegister(index), g.UseRegister(base)); |
| // Emit desired store opcode, using temp addr_reg. |
| Emit(opcode | AddressingModeField::encode(kMode_MRI), g.NoOutput(), |
| addr_reg, g.TempImmediate(0), g.UseRegisterOrImmediateZero(value)); |
| } |
| } |
| } |
| |
| void InstructionSelector::VisitProtectedStore(Node* node) { |
| // TODO(eholk) |
| UNIMPLEMENTED(); |
| } |
| |
| void InstructionSelector::VisitWord32And(Node* node) { |
| Mips64OperandGenerator g(this); |
| Int32BinopMatcher m(node); |
| if (m.left().IsWord32Shr() && CanCover(node, m.left().node()) && |
| m.right().HasValue()) { |
| uint32_t mask = m.right().Value(); |
| uint32_t mask_width = base::bits::CountPopulation(mask); |
| uint32_t mask_msb = base::bits::CountLeadingZeros32(mask); |
| if ((mask_width != 0) && (mask_msb + mask_width == 32)) { |
| // The mask must be contiguous, and occupy the least-significant bits. |
| DCHECK_EQ(0u, base::bits::CountTrailingZeros32(mask)); |
| |
| // Select Ext for And(Shr(x, imm), mask) where the mask is in the least |
| // significant bits. |
| Int32BinopMatcher mleft(m.left().node()); |
| if (mleft.right().HasValue()) { |
| // Any shift value can match; int32 shifts use `value % 32`. |
| uint32_t lsb = mleft.right().Value() & 0x1F; |
| |
| // Ext cannot extract bits past the register size, however since |
| // shifting the original value would have introduced some zeros we can |
| // still use Ext with a smaller mask and the remaining bits will be |
| // zeros. |
| if (lsb + mask_width > 32) mask_width = 32 - lsb; |
| |
| Emit(kMips64Ext, g.DefineAsRegister(node), |
| g.UseRegister(mleft.left().node()), g.TempImmediate(lsb), |
| g.TempImmediate(mask_width)); |
| return; |
| } |
| // Other cases fall through to the normal And operation. |
| } |
| } |
| if (m.right().HasValue()) { |
| uint32_t mask = m.right().Value(); |
| uint32_t shift = base::bits::CountPopulation(~mask); |
| uint32_t msb = base::bits::CountLeadingZeros32(~mask); |
| if (shift != 0 && shift != 32 && msb + shift == 32) { |
| // Insert zeros for (x >> K) << K => x & ~(2^K - 1) expression reduction |
| // and remove constant loading of inverted mask. |
| Emit(kMips64Ins, g.DefineSameAsFirst(node), |
| g.UseRegister(m.left().node()), g.TempImmediate(0), |
| g.TempImmediate(shift)); |
| return; |
| } |
| } |
| VisitBinop(this, node, kMips64And32, true, kMips64And32); |
| } |
| |
| void InstructionSelector::VisitWord64And(Node* node) { |
| Mips64OperandGenerator g(this); |
| Int64BinopMatcher m(node); |
| if (m.left().IsWord64Shr() && CanCover(node, m.left().node()) && |
| m.right().HasValue()) { |
| uint64_t mask = m.right().Value(); |
| uint32_t mask_width = base::bits::CountPopulation(mask); |
| uint32_t mask_msb = base::bits::CountLeadingZeros64(mask); |
| if ((mask_width != 0) && (mask_msb + mask_width == 64)) { |
| // The mask must be contiguous, and occupy the least-significant bits. |
| DCHECK_EQ(0u, base::bits::CountTrailingZeros64(mask)); |
| |
| // Select Dext for And(Shr(x, imm), mask) where the mask is in the least |
| // significant bits. |
| Int64BinopMatcher mleft(m.left().node()); |
| if (mleft.right().HasValue()) { |
| // Any shift value can match; int64 shifts use `value % 64`. |
| uint32_t lsb = static_cast<uint32_t>(mleft.right().Value() & 0x3F); |
| |
| // Dext cannot extract bits past the register size, however since |
| // shifting the original value would have introduced some zeros we can |
| // still use Dext with a smaller mask and the remaining bits will be |
| // zeros. |
| if (lsb + mask_width > 64) mask_width = 64 - lsb; |
| |
| if (lsb == 0 && mask_width == 64) { |
| Emit(kArchNop, g.DefineSameAsFirst(node), g.Use(mleft.left().node())); |
| } else { |
| Emit(kMips64Dext, g.DefineAsRegister(node), |
| g.UseRegister(mleft.left().node()), g.TempImmediate(lsb), |
| g.TempImmediate(static_cast<int32_t>(mask_width))); |
| } |
| return; |
| } |
| // Other cases fall through to the normal And operation. |
| } |
| } |
| if (m.right().HasValue()) { |
| uint64_t mask = m.right().Value(); |
| uint32_t shift = base::bits::CountPopulation(~mask); |
| uint32_t msb = base::bits::CountLeadingZeros64(~mask); |
| if (shift != 0 && shift < 32 && msb + shift == 64) { |
| // Insert zeros for (x >> K) << K => x & ~(2^K - 1) expression reduction |
| // and remove constant loading of inverted mask. Dins cannot insert bits |
| // past word size, so shifts smaller than 32 are covered. |
| Emit(kMips64Dins, g.DefineSameAsFirst(node), |
| g.UseRegister(m.left().node()), g.TempImmediate(0), |
| g.TempImmediate(shift)); |
| return; |
| } |
| } |
| VisitBinop(this, node, kMips64And, true, kMips64And); |
| } |
| |
| void InstructionSelector::VisitWord32Or(Node* node) { |
| VisitBinop(this, node, kMips64Or32, true, kMips64Or32); |
| } |
| |
| void InstructionSelector::VisitWord64Or(Node* node) { |
| VisitBinop(this, node, kMips64Or, true, kMips64Or); |
| } |
| |
| void InstructionSelector::VisitWord32Xor(Node* node) { |
| Int32BinopMatcher m(node); |
| if (m.left().IsWord32Or() && CanCover(node, m.left().node()) && |
| m.right().Is(-1)) { |
| Int32BinopMatcher mleft(m.left().node()); |
| if (!mleft.right().HasValue()) { |
| Mips64OperandGenerator g(this); |
| Emit(kMips64Nor32, g.DefineAsRegister(node), |
| g.UseRegister(mleft.left().node()), |
| g.UseRegister(mleft.right().node())); |
| return; |
| } |
| } |
| if (m.right().Is(-1)) { |
| // Use Nor for bit negation and eliminate constant loading for xori. |
| Mips64OperandGenerator g(this); |
| Emit(kMips64Nor32, g.DefineAsRegister(node), g.UseRegister(m.left().node()), |
| g.TempImmediate(0)); |
| return; |
| } |
| VisitBinop(this, node, kMips64Xor32, true, kMips64Xor32); |
| } |
| |
| void InstructionSelector::VisitWord64Xor(Node* node) { |
| Int64BinopMatcher m(node); |
| if (m.left().IsWord64Or() && CanCover(node, m.left().node()) && |
| m.right().Is(-1)) { |
| Int64BinopMatcher mleft(m.left().node()); |
| if (!mleft.right().HasValue()) { |
| Mips64OperandGenerator g(this); |
| Emit(kMips64Nor, g.DefineAsRegister(node), |
| g.UseRegister(mleft.left().node()), |
| g.UseRegister(mleft.right().node())); |
| return; |
| } |
| } |
| if (m.right().Is(-1)) { |
| // Use Nor for bit negation and eliminate constant loading for xori. |
| Mips64OperandGenerator g(this); |
| Emit(kMips64Nor, g.DefineAsRegister(node), g.UseRegister(m.left().node()), |
| g.TempImmediate(0)); |
| return; |
| } |
| VisitBinop(this, node, kMips64Xor, true, kMips64Xor); |
| } |
| |
| void InstructionSelector::VisitWord32Shl(Node* node) { |
| Int32BinopMatcher m(node); |
| if (m.left().IsWord32And() && CanCover(node, m.left().node()) && |
| m.right().IsInRange(1, 31)) { |
| Mips64OperandGenerator g(this); |
| Int32BinopMatcher mleft(m.left().node()); |
| // Match Word32Shl(Word32And(x, mask), imm) to Shl where the mask is |
| // contiguous, and the shift immediate non-zero. |
| if (mleft.right().HasValue()) { |
| uint32_t mask = mleft.right().Value(); |
| uint32_t mask_width = base::bits::CountPopulation(mask); |
| uint32_t mask_msb = base::bits::CountLeadingZeros32(mask); |
| if ((mask_width != 0) && (mask_msb + mask_width == 32)) { |
| uint32_t shift = m.right().Value(); |
| DCHECK_EQ(0u, base::bits::CountTrailingZeros32(mask)); |
| DCHECK_NE(0u, shift); |
| if ((shift + mask_width) >= 32) { |
| // If the mask is contiguous and reaches or extends beyond the top |
| // bit, only the shift is needed. |
| Emit(kMips64Shl, g.DefineAsRegister(node), |
| g.UseRegister(mleft.left().node()), |
| g.UseImmediate(m.right().node())); |
| return; |
| } |
| } |
| } |
| } |
| VisitRRO(this, kMips64Shl, node); |
| } |
| |
| void InstructionSelector::VisitWord32Shr(Node* node) { |
| Int32BinopMatcher m(node); |
| if (m.left().IsWord32And() && m.right().HasValue()) { |
| uint32_t lsb = m.right().Value() & 0x1F; |
| Int32BinopMatcher mleft(m.left().node()); |
| if (mleft.right().HasValue() && mleft.right().Value() != 0) { |
| // Select Ext for Shr(And(x, mask), imm) where the result of the mask is |
| // shifted into the least-significant bits. |
| uint32_t mask = (mleft.right().Value() >> lsb) << lsb; |
| unsigned mask_width = base::bits::CountPopulation(mask); |
| unsigned mask_msb = base::bits::CountLeadingZeros32(mask); |
| if ((mask_msb + mask_width + lsb) == 32) { |
| Mips64OperandGenerator g(this); |
| DCHECK_EQ(lsb, base::bits::CountTrailingZeros32(mask)); |
| Emit(kMips64Ext, g.DefineAsRegister(node), |
| g.UseRegister(mleft.left().node()), g.TempImmediate(lsb), |
| g.TempImmediate(mask_width)); |
| return; |
| } |
| } |
| } |
| VisitRRO(this, kMips64Shr, node); |
| } |
| |
| void InstructionSelector::VisitWord32Sar(Node* node) { |
| Int32BinopMatcher m(node); |
| if (m.left().IsWord32Shl() && CanCover(node, m.left().node())) { |
| Int32BinopMatcher mleft(m.left().node()); |
| if (m.right().HasValue() && mleft.right().HasValue()) { |
| Mips64OperandGenerator g(this); |
| uint32_t sar = m.right().Value(); |
| uint32_t shl = mleft.right().Value(); |
| if ((sar == shl) && (sar == 16)) { |
| Emit(kMips64Seh, g.DefineAsRegister(node), |
| g.UseRegister(mleft.left().node())); |
| return; |
| } else if ((sar == shl) && (sar == 24)) { |
| Emit(kMips64Seb, g.DefineAsRegister(node), |
| g.UseRegister(mleft.left().node())); |
| return; |
| } else if ((sar == shl) && (sar == 32)) { |
| Emit(kMips64Shl, g.DefineAsRegister(node), |
| g.UseRegister(mleft.left().node()), g.TempImmediate(0)); |
| return; |
| } |
| } |
| } |
| VisitRRO(this, kMips64Sar, node); |
| } |
| |
| void InstructionSelector::VisitWord64Shl(Node* node) { |
| Mips64OperandGenerator g(this); |
| Int64BinopMatcher m(node); |
| if ((m.left().IsChangeInt32ToInt64() || m.left().IsChangeUint32ToUint64()) && |
| m.right().IsInRange(32, 63) && CanCover(node, m.left().node())) { |
| // There's no need to sign/zero-extend to 64-bit if we shift out the upper |
| // 32 bits anyway. |
| Emit(kMips64Dshl, g.DefineSameAsFirst(node), |
| g.UseRegister(m.left().node()->InputAt(0)), |
| g.UseImmediate(m.right().node())); |
| return; |
| } |
| if (m.left().IsWord64And() && CanCover(node, m.left().node()) && |
| m.right().IsInRange(1, 63)) { |
| // Match Word64Shl(Word64And(x, mask), imm) to Dshl where the mask is |
| // contiguous, and the shift immediate non-zero. |
| Int64BinopMatcher mleft(m.left().node()); |
| if (mleft.right().HasValue()) { |
| uint64_t mask = mleft.right().Value(); |
| uint32_t mask_width = base::bits::CountPopulation(mask); |
| uint32_t mask_msb = base::bits::CountLeadingZeros64(mask); |
| if ((mask_width != 0) && (mask_msb + mask_width == 64)) { |
| uint64_t shift = m.right().Value(); |
| DCHECK_EQ(0u, base::bits::CountTrailingZeros64(mask)); |
| DCHECK_NE(0u, shift); |
| |
| if ((shift + mask_width) >= 64) { |
| // If the mask is contiguous and reaches or extends beyond the top |
| // bit, only the shift is needed. |
| Emit(kMips64Dshl, g.DefineAsRegister(node), |
| g.UseRegister(mleft.left().node()), |
| g.UseImmediate(m.right().node())); |
| return; |
| } |
| } |
| } |
| } |
| VisitRRO(this, kMips64Dshl, node); |
| } |
| |
| void InstructionSelector::VisitWord64Shr(Node* node) { |
| Int64BinopMatcher m(node); |
| if (m.left().IsWord64And() && m.right().HasValue()) { |
| uint32_t lsb = m.right().Value() & 0x3F; |
| Int64BinopMatcher mleft(m.left().node()); |
| if (mleft.right().HasValue() && mleft.right().Value() != 0) { |
| // Select Dext for Shr(And(x, mask), imm) where the result of the mask is |
| // shifted into the least-significant bits. |
| uint64_t mask = (mleft.right().Value() >> lsb) << lsb; |
| unsigned mask_width = base::bits::CountPopulation(mask); |
| unsigned mask_msb = base::bits::CountLeadingZeros64(mask); |
| if ((mask_msb + mask_width + lsb) == 64) { |
| Mips64OperandGenerator g(this); |
| DCHECK_EQ(lsb, base::bits::CountTrailingZeros64(mask)); |
| Emit(kMips64Dext, g.DefineAsRegister(node), |
| g.UseRegister(mleft.left().node()), g.TempImmediate(lsb), |
| g.TempImmediate(mask_width)); |
| return; |
| } |
| } |
| } |
| VisitRRO(this, kMips64Dshr, node); |
| } |
| |
| void InstructionSelector::VisitWord64Sar(Node* node) { |
| if (TryEmitExtendingLoad(this, node, node)) return; |
| VisitRRO(this, kMips64Dsar, node); |
| } |
| |
| void InstructionSelector::VisitWord32Ror(Node* node) { |
| VisitRRO(this, kMips64Ror, node); |
| } |
| |
| void InstructionSelector::VisitWord32Clz(Node* node) { |
| VisitRR(this, kMips64Clz, node); |
| } |
| |
| void InstructionSelector::VisitWord32ReverseBits(Node* node) { UNREACHABLE(); } |
| |
| void InstructionSelector::VisitWord64ReverseBits(Node* node) { UNREACHABLE(); } |
| |
| void InstructionSelector::VisitWord64ReverseBytes(Node* node) { |
| Mips64OperandGenerator g(this); |
| Emit(kMips64ByteSwap64, g.DefineAsRegister(node), |
| g.UseRegister(node->InputAt(0))); |
| } |
| |
| void InstructionSelector::VisitWord32ReverseBytes(Node* node) { |
| Mips64OperandGenerator g(this); |
| Emit(kMips64ByteSwap32, g.DefineAsRegister(node), |
| g.UseRegister(node->InputAt(0))); |
| } |
| |
| void InstructionSelector::VisitWord32Ctz(Node* node) { |
| Mips64OperandGenerator g(this); |
| Emit(kMips64Ctz, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0))); |
| } |
| |
| void InstructionSelector::VisitWord64Ctz(Node* node) { |
| Mips64OperandGenerator g(this); |
| Emit(kMips64Dctz, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0))); |
| } |
| |
| void InstructionSelector::VisitWord32Popcnt(Node* node) { |
| Mips64OperandGenerator g(this); |
| Emit(kMips64Popcnt, g.DefineAsRegister(node), |
| g.UseRegister(node->InputAt(0))); |
| } |
| |
| void InstructionSelector::VisitWord64Popcnt(Node* node) { |
| Mips64OperandGenerator g(this); |
| Emit(kMips64Dpopcnt, g.DefineAsRegister(node), |
| g.UseRegister(node->InputAt(0))); |
| } |
| |
| void InstructionSelector::VisitWord64Ror(Node* node) { |
| VisitRRO(this, kMips64Dror, node); |
| } |
| |
| void InstructionSelector::VisitWord64Clz(Node* node) { |
| VisitRR(this, kMips64Dclz, node); |
| } |
| |
| void InstructionSelector::VisitInt32Add(Node* node) { |
| Mips64OperandGenerator g(this); |
| Int32BinopMatcher m(node); |
| |
| if (kArchVariant == kMips64r6) { |
| // Select Lsa for (left + (left_of_right << imm)). |
| if (m.right().opcode() == IrOpcode::kWord32Shl && |
| CanCover(node, m.left().node()) && CanCover(node, m.right().node())) { |
| Int32BinopMatcher mright(m.right().node()); |
| if (mright.right().HasValue() && !m.left().HasValue()) { |
| int32_t shift_value = static_cast<int32_t>(mright.right().Value()); |
| if (shift_value > 0 && shift_value <= 31) { |
| Emit(kMips64Lsa, g.DefineAsRegister(node), |
| g.UseRegister(m.left().node()), |
| g.UseRegister(mright.left().node()), |
| g.TempImmediate(shift_value)); |
| return; |
| } |
| } |
| } |
| |
| // Select Lsa for ((left_of_left << imm) + right). |
| if (m.left().opcode() == IrOpcode::kWord32Shl && |
| CanCover(node, m.right().node()) && CanCover(node, m.left().node())) { |
| Int32BinopMatcher mleft(m.left().node()); |
| if (mleft.right().HasValue() && !m.right().HasValue()) { |
| int32_t shift_value = static_cast<int32_t>(mleft.right().Value()); |
| if (shift_value > 0 && shift_value <= 31) { |
| Emit(kMips64Lsa, g.DefineAsRegister(node), |
| g.UseRegister(m.right().node()), |
| g.UseRegister(mleft.left().node()), |
| g.TempImmediate(shift_value)); |
| return; |
| } |
| } |
| } |
| } |
| |
| VisitBinop(this, node, kMips64Add, true, kMips64Add); |
| } |
| |
| void InstructionSelector::VisitInt64Add(Node* node) { |
| Mips64OperandGenerator g(this); |
| Int64BinopMatcher m(node); |
| |
| if (kArchVariant == kMips64r6) { |
| // Select Dlsa for (left + (left_of_right << imm)). |
| if (m.right().opcode() == IrOpcode::kWord64Shl && |
| CanCover(node, m.left().node()) && CanCover(node, m.right().node())) { |
| Int64BinopMatcher mright(m.right().node()); |
| if (mright.right().HasValue() && !m.left().HasValue()) { |
| int32_t shift_value = static_cast<int32_t>(mright.right().Value()); |
| if (shift_value > 0 && shift_value <= 31) { |
| Emit(kMips64Dlsa, g.DefineAsRegister(node), |
| g.UseRegister(m.left().node()), |
| g.UseRegister(mright.left().node()), |
| g.TempImmediate(shift_value)); |
| return; |
| } |
| } |
| } |
| |
| // Select Dlsa for ((left_of_left << imm) + right). |
| if (m.left().opcode() == IrOpcode::kWord64Shl && |
| CanCover(node, m.right().node()) && CanCover(node, m.left().node())) { |
| Int64BinopMatcher mleft(m.left().node()); |
| if (mleft.right().HasValue() && !m.right().HasValue()) { |
| int32_t shift_value = static_cast<int32_t>(mleft.right().Value()); |
| if (shift_value > 0 && shift_value <= 31) { |
| Emit(kMips64Dlsa, g.DefineAsRegister(node), |
| g.UseRegister(m.right().node()), |
| g.UseRegister(mleft.left().node()), |
| g.TempImmediate(shift_value)); |
| return; |
| } |
| } |
| } |
| } |
| |
| VisitBinop(this, node, kMips64Dadd, true, kMips64Dadd); |
| } |
| |
| void InstructionSelector::VisitInt32Sub(Node* node) { |
| VisitBinop(this, node, kMips64Sub); |
| } |
| |
| void InstructionSelector::VisitInt64Sub(Node* node) { |
| VisitBinop(this, node, kMips64Dsub); |
| } |
| |
| void InstructionSelector::VisitInt32Mul(Node* node) { |
| Mips64OperandGenerator g(this); |
| Int32BinopMatcher m(node); |
| if (m.right().HasValue() && m.right().Value() > 0) { |
| uint32_t value = static_cast<uint32_t>(m.right().Value()); |
| if (base::bits::IsPowerOfTwo(value)) { |
| Emit(kMips64Shl | AddressingModeField::encode(kMode_None), |
| g.DefineAsRegister(node), g.UseRegister(m.left().node()), |
| g.TempImmediate(WhichPowerOf2(value))); |
| return; |
| } |
| if (base::bits::IsPowerOfTwo(value - 1) && kArchVariant == kMips64r6 && |
| value - 1 > 0 && value - 1 <= 31) { |
| Emit(kMips64Lsa, g.DefineAsRegister(node), g.UseRegister(m.left().node()), |
| g.UseRegister(m.left().node()), |
| g.TempImmediate(WhichPowerOf2(value - 1))); |
| return; |
| } |
| if (base::bits::IsPowerOfTwo(value + 1)) { |
| InstructionOperand temp = g.TempRegister(); |
| Emit(kMips64Shl | AddressingModeField::encode(kMode_None), temp, |
| g.UseRegister(m.left().node()), |
| g.TempImmediate(WhichPowerOf2(value + 1))); |
| Emit(kMips64Sub | AddressingModeField::encode(kMode_None), |
| g.DefineAsRegister(node), temp, g.UseRegister(m.left().node())); |
| return; |
| } |
| } |
| Node* left = node->InputAt(0); |
| Node* right = node->InputAt(1); |
| if (CanCover(node, left) && CanCover(node, right)) { |
| if (left->opcode() == IrOpcode::kWord64Sar && |
| right->opcode() == IrOpcode::kWord64Sar) { |
| Int64BinopMatcher leftInput(left), rightInput(right); |
| if (leftInput.right().Is(32) && rightInput.right().Is(32)) { |
| // Combine untagging shifts with Dmul high. |
| Emit(kMips64DMulHigh, g.DefineSameAsFirst(node), |
| g.UseRegister(leftInput.left().node()), |
| g.UseRegister(rightInput.left().node())); |
| return; |
| } |
| } |
| } |
| VisitRRR(this, kMips64Mul, node); |
| } |
| |
| void InstructionSelector::VisitInt32MulHigh(Node* node) { |
| VisitRRR(this, kMips64MulHigh, node); |
| } |
| |
| void InstructionSelector::VisitUint32MulHigh(Node* node) { |
| VisitRRR(this, kMips64MulHighU, node); |
| } |
| |
| void InstructionSelector::VisitInt64Mul(Node* node) { |
| Mips64OperandGenerator g(this); |
| Int64BinopMatcher m(node); |
| // TODO(dusmil): Add optimization for shifts larger than 32. |
| if (m.right().HasValue() && m.right().Value() > 0) { |
| uint32_t value = static_cast<uint32_t>(m.right().Value()); |
| if (base::bits::IsPowerOfTwo(value)) { |
| Emit(kMips64Dshl | AddressingModeField::encode(kMode_None), |
| g.DefineAsRegister(node), g.UseRegister(m.left().node()), |
| g.TempImmediate(WhichPowerOf2(value))); |
| return; |
| } |
| if (base::bits::IsPowerOfTwo(value - 1) && kArchVariant == kMips64r6 && |
| value - 1 > 0 && value - 1 <= 31) { |
| // Dlsa macro will handle the shifting value out of bound cases. |
| Emit(kMips64Dlsa, g.DefineAsRegister(node), |
| g.UseRegister(m.left().node()), g.UseRegister(m.left().node()), |
| g.TempImmediate(WhichPowerOf2(value - 1))); |
| return; |
| } |
| if (base::bits::IsPowerOfTwo(value + 1)) { |
| InstructionOperand temp = g.TempRegister(); |
| Emit(kMips64Dshl | AddressingModeField::encode(kMode_None), temp, |
| g.UseRegister(m.left().node()), |
| g.TempImmediate(WhichPowerOf2(value + 1))); |
| Emit(kMips64Dsub | AddressingModeField::encode(kMode_None), |
| g.DefineAsRegister(node), temp, g.UseRegister(m.left().node())); |
| return; |
| } |
| } |
| Emit(kMips64Dmul, g.DefineAsRegister(node), g.UseRegister(m.left().node()), |
| g.UseRegister(m.right().node())); |
| } |
| |
| void InstructionSelector::VisitInt32Div(Node* node) { |
| Mips64OperandGenerator g(this); |
| Int32BinopMatcher m(node); |
| Node* left = node->InputAt(0); |
| Node* right = node->InputAt(1); |
| if (CanCover(node, left) && CanCover(node, right)) { |
| if (left->opcode() == IrOpcode::kWord64Sar && |
| right->opcode() == IrOpcode::kWord64Sar) { |
| Int64BinopMatcher rightInput(right), leftInput(left); |
| if (rightInput.right().Is(32) && leftInput.right().Is(32)) { |
| // Combine both shifted operands with Ddiv. |
| Emit(kMips64Ddiv, g.DefineSameAsFirst(node), |
| g.UseRegister(leftInput.left().node()), |
| g.UseRegister(rightInput.left().node())); |
| return; |
| } |
| } |
| } |
| Emit(kMips64Div, g.DefineSameAsFirst(node), g.UseRegister(m.left().node()), |
| g.UseRegister(m.right().node())); |
| } |
| |
| void InstructionSelector::VisitUint32Div(Node* node) { |
| Mips64OperandGenerator g(this); |
| Int32BinopMatcher m(node); |
| Emit(kMips64DivU, g.DefineSameAsFirst(node), g.UseRegister(m.left().node()), |
| g.UseRegister(m.right().node())); |
| } |
| |
| void InstructionSelector::VisitInt32Mod(Node* node) { |
| Mips64OperandGenerator g(this); |
| Int32BinopMatcher m(node); |
| Node* left = node->InputAt(0); |
| Node* right = node->InputAt(1); |
| if (CanCover(node, left) && CanCover(node, right)) { |
| if (left->opcode() == IrOpcode::kWord64Sar && |
| right->opcode() == IrOpcode::kWord64Sar) { |
| Int64BinopMatcher rightInput(right), leftInput(left); |
| if (rightInput.right().Is(32) && leftInput.right().Is(32)) { |
| // Combine both shifted operands with Dmod. |
| Emit(kMips64Dmod, g.DefineSameAsFirst(node), |
| g.UseRegister(leftInput.left().node()), |
| g.UseRegister(rightInput.left().node())); |
| return; |
| } |
| } |
| } |
| Emit(kMips64Mod, g.DefineAsRegister(node), g.UseRegister(m.left().node()), |
| g.UseRegister(m.right().node())); |
| } |
| |
| void InstructionSelector::VisitUint32Mod(Node* node) { |
| Mips64OperandGenerator g(this); |
| Int32BinopMatcher m(node); |
| Emit(kMips64ModU, g.DefineAsRegister(node), g.UseRegister(m.left().node()), |
| g.UseRegister(m.right().node())); |
| } |
| |
| void InstructionSelector::VisitInt64Div(Node* node) { |
| Mips64OperandGenerator g(this); |
| Int64BinopMatcher m(node); |
| Emit(kMips64Ddiv, g.DefineSameAsFirst(node), g.UseRegister(m.left().node()), |
| g.UseRegister(m.right().node())); |
| } |
| |
| void InstructionSelector::VisitUint64Div(Node* node) { |
| Mips64OperandGenerator g(this); |
| Int64BinopMatcher m(node); |
| Emit(kMips64DdivU, g.DefineSameAsFirst(node), g.UseRegister(m.left().node()), |
| g.UseRegister(m.right().node())); |
| } |
| |
| void InstructionSelector::VisitInt64Mod(Node* node) { |
| Mips64OperandGenerator g(this); |
| Int64BinopMatcher m(node); |
| Emit(kMips64Dmod, g.DefineAsRegister(node), g.UseRegister(m.left().node()), |
| g.UseRegister(m.right().node())); |
| } |
| |
| void InstructionSelector::VisitUint64Mod(Node* node) { |
| Mips64OperandGenerator g(this); |
| Int64BinopMatcher m(node); |
| Emit(kMips64DmodU, g.DefineAsRegister(node), g.UseRegister(m.left().node()), |
| g.UseRegister(m.right().node())); |
| } |
| |
| void InstructionSelector::VisitChangeFloat32ToFloat64(Node* node) { |
| VisitRR(this, kMips64CvtDS, node); |
| } |
| |
| void InstructionSelector::VisitRoundInt32ToFloat32(Node* node) { |
| VisitRR(this, kMips64CvtSW, node); |
| } |
| |
| void InstructionSelector::VisitRoundUint32ToFloat32(Node* node) { |
| VisitRR(this, kMips64CvtSUw, node); |
| } |
| |
| void InstructionSelector::VisitChangeInt32ToFloat64(Node* node) { |
| VisitRR(this, kMips64CvtDW, node); |
| } |
| |
| void InstructionSelector::VisitChangeInt64ToFloat64(Node* node) { |
| VisitRR(this, kMips64CvtDL, node); |
| } |
| |
| void InstructionSelector::VisitChangeUint32ToFloat64(Node* node) { |
| VisitRR(this, kMips64CvtDUw, node); |
| } |
| |
| void InstructionSelector::VisitTruncateFloat32ToInt32(Node* node) { |
| VisitRR(this, kMips64TruncWS, node); |
| } |
| |
| void InstructionSelector::VisitTruncateFloat32ToUint32(Node* node) { |
| VisitRR(this, kMips64TruncUwS, node); |
| } |
| |
| void InstructionSelector::VisitChangeFloat64ToInt32(Node* node) { |
| Mips64OperandGenerator g(this); |
| Node* value = node->InputAt(0); |
| // Match ChangeFloat64ToInt32(Float64Round##OP) to corresponding instruction |
| // which does rounding and conversion to integer format. |
| if (CanCover(node, value)) { |
| switch (value->opcode()) { |
| case IrOpcode::kFloat64RoundDown: |
| Emit(kMips64FloorWD, g.DefineAsRegister(node), |
| g.UseRegister(value->InputAt(0))); |
| return; |
| case IrOpcode::kFloat64RoundUp: |
| Emit(kMips64CeilWD, g.DefineAsRegister(node), |
| g.UseRegister(value->InputAt(0))); |
| return; |
| case IrOpcode::kFloat64RoundTiesEven: |
| Emit(kMips64RoundWD, g.DefineAsRegister(node), |
| g.UseRegister(value->InputAt(0))); |
| return; |
| case IrOpcode::kFloat64RoundTruncate: |
| Emit(kMips64TruncWD, g.DefineAsRegister(node), |
| g.UseRegister(value->InputAt(0))); |
| return; |
| default: |
| break; |
| } |
| if (value->opcode() == IrOpcode::kChangeFloat32ToFloat64) { |
| Node* next = value->InputAt(0); |
| if (CanCover(value, next)) { |
| // Match ChangeFloat64ToInt32(ChangeFloat32ToFloat64(Float64Round##OP)) |
| switch (next->opcode()) { |
| case IrOpcode::kFloat32RoundDown: |
| Emit(kMips64FloorWS, g.DefineAsRegister(node), |
| g.UseRegister(next->InputAt(0))); |
| return; |
| case IrOpcode::kFloat32RoundUp: |
| Emit(kMips64CeilWS, g.DefineAsRegister(node), |
| g.UseRegister(next->InputAt(0))); |
| return; |
| case IrOpcode::kFloat32RoundTiesEven: |
| Emit(kMips64RoundWS, g.DefineAsRegister(node), |
| g.UseRegister(next->InputAt(0))); |
| return; |
| case IrOpcode::kFloat32RoundTruncate: |
| Emit(kMips64TruncWS, g.DefineAsRegister(node), |
| g.UseRegister(next->InputAt(0))); |
| return; |
| default: |
| Emit(kMips64TruncWS, g.DefineAsRegister(node), |
| g.UseRegister(value->InputAt(0))); |
| return; |
| } |
| } else { |
| // Match float32 -> float64 -> int32 representation change path. |
| Emit(kMips64TruncWS, g.DefineAsRegister(node), |
| g.UseRegister(value->InputAt(0))); |
| return; |
| } |
| } |
| } |
| VisitRR(this, kMips64TruncWD, node); |
| } |
| |
| void InstructionSelector::VisitChangeFloat64ToInt64(Node* node) { |
| VisitRR(this, kMips64TruncLD, node); |
| } |
| |
| void InstructionSelector::VisitChangeFloat64ToUint32(Node* node) { |
| VisitRR(this, kMips64TruncUwD, node); |
| } |
| |
| void InstructionSelector::VisitChangeFloat64ToUint64(Node* node) { |
| VisitRR(this, kMips64TruncUlD, node); |
| } |
| |
| void InstructionSelector::VisitTruncateFloat64ToUint32(Node* node) { |
| VisitRR(this, kMips64TruncUwD, node); |
| } |
| |
| void InstructionSelector::VisitTruncateFloat64ToInt64(Node* node) { |
| VisitRR(this, kMips64TruncLD, node); |
| } |
| |
| void InstructionSelector::VisitTryTruncateFloat32ToInt64(Node* node) { |
| Mips64OperandGenerator g(this); |
| InstructionOperand inputs[] = {g.UseRegister(node->InputAt(0))}; |
| InstructionOperand outputs[2]; |
| size_t output_count = 0; |
| outputs[output_count++] = g.DefineAsRegister(node); |
| |
| Node* success_output = NodeProperties::FindProjection(node, 1); |
| if (success_output) { |
| outputs[output_count++] = g.DefineAsRegister(success_output); |
| } |
| |
| this->Emit(kMips64TruncLS, output_count, outputs, 1, inputs); |
| } |
| |
| void InstructionSelector::VisitTryTruncateFloat64ToInt64(Node* node) { |
| Mips64OperandGenerator g(this); |
| InstructionOperand inputs[] = {g.UseRegister(node->InputAt(0))}; |
| InstructionOperand outputs[2]; |
| size_t output_count = 0; |
| outputs[output_count++] = g.DefineAsRegister(node); |
| |
| Node* success_output = NodeProperties::FindProjection(node, 1); |
| if (success_output) { |
| outputs[output_count++] = g.DefineAsRegister(success_output); |
| } |
| |
| Emit(kMips64TruncLD, output_count, outputs, 1, inputs); |
| } |
| |
| void InstructionSelector::VisitTryTruncateFloat32ToUint64(Node* node) { |
| Mips64OperandGenerator g(this); |
| InstructionOperand inputs[] = {g.UseRegister(node->InputAt(0))}; |
| InstructionOperand outputs[2]; |
| size_t output_count = 0; |
| outputs[output_count++] = g.DefineAsRegister(node); |
| |
| Node* success_output = NodeProperties::FindProjection(node, 1); |
| if (success_output) { |
| outputs[output_count++] = g.DefineAsRegister(success_output); |
| } |
| |
| Emit(kMips64TruncUlS, output_count, outputs, 1, inputs); |
| } |
| |
| void InstructionSelector::VisitTryTruncateFloat64ToUint64(Node* node) { |
| Mips64OperandGenerator g(this); |
| |
| InstructionOperand inputs[] = {g.UseRegister(node->InputAt(0))}; |
| InstructionOperand outputs[2]; |
| size_t output_count = 0; |
| outputs[output_count++] = g.DefineAsRegister(node); |
| |
| Node* success_output = NodeProperties::FindProjection(node, 1); |
| if (success_output) { |
| outputs[output_count++] = g.DefineAsRegister(success_output); |
| } |
| |
| Emit(kMips64TruncUlD, output_count, outputs, 1, inputs); |
| } |
| |
| void InstructionSelector::VisitChangeInt32ToInt64(Node* node) { |
| Node* value = node->InputAt(0); |
| if (value->opcode() == IrOpcode::kLoad && CanCover(node, value)) { |
| // Generate sign-extending load. |
| LoadRepresentation load_rep = LoadRepresentationOf(value->op()); |
| InstructionCode opcode = kArchNop; |
| switch (load_rep.representation()) { |
| case MachineRepresentation::kBit: // Fall through. |
| case MachineRepresentation::kWord8: |
| opcode = load_rep.IsUnsigned() ? kMips64Lbu : kMips64Lb; |
| break; |
| case MachineRepresentation::kWord16: |
| opcode = load_rep.IsUnsigned() ? kMips64Lhu : kMips64Lh; |
| break; |
| case MachineRepresentation::kWord32: |
| opcode = kMips64Lw; |
| break; |
| default: |
| UNREACHABLE(); |
| return; |
| } |
| EmitLoad(this, value, opcode, node); |
| } else { |
| Mips64OperandGenerator g(this); |
| Emit(kMips64Shl, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0)), |
| g.TempImmediate(0)); |
| } |
| } |
| |
| void InstructionSelector::VisitChangeUint32ToUint64(Node* node) { |
| Mips64OperandGenerator g(this); |
| Node* value = node->InputAt(0); |
| switch (value->opcode()) { |
| // 32-bit operations will write their result in a 64 bit register, |
| // clearing the top 32 bits of the destination register. |
| case IrOpcode::kUint32Div: |
| case IrOpcode::kUint32Mod: |
| case IrOpcode::kUint32MulHigh: { |
| Emit(kArchNop, g.DefineSameAsFirst(node), g.Use(value)); |
| return; |
| } |
| case IrOpcode::kLoad: { |
| LoadRepresentation load_rep = LoadRepresentationOf(value->op()); |
| if (load_rep.IsUnsigned()) { |
| switch (load_rep.representation()) { |
| case MachineRepresentation::kWord8: |
| case MachineRepresentation::kWord16: |
| case MachineRepresentation::kWord32: |
| Emit(kArchNop, g.DefineSameAsFirst(node), g.Use(value)); |
| return; |
| default: |
| break; |
| } |
| } |
| break; |
| } |
| default: |
| break; |
| } |
| Emit(kMips64Dext, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0)), |
| g.TempImmediate(0), g.TempImmediate(32)); |
| } |
| |
| void InstructionSelector::VisitTruncateInt64ToInt32(Node* node) { |
| Mips64OperandGenerator g(this); |
| Node* value = node->InputAt(0); |
| if (CanCover(node, value)) { |
| switch (value->opcode()) { |
| case IrOpcode::kWord64Sar: { |
| if (CanCoverTransitively(node, value, value->InputAt(0)) && |
| TryEmitExtendingLoad(this, value, node)) { |
| return; |
| } else { |
| Int64BinopMatcher m(value); |
| if (m.right().IsInRange(32, 63)) { |
| // After smi untagging no need for truncate. Combine sequence. |
| Emit(kMips64Dsar, g.DefineSameAsFirst(node), |
| g.UseRegister(m.left().node()), |
| g.UseImmediate(m.right().node())); |
| return; |
| } |
| } |
| break; |
| } |
| default: |
| break; |
| } |
| } |
| Emit(kMips64Ext, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0)), |
| g.TempImmediate(0), g.TempImmediate(32)); |
| } |
| |
| void InstructionSelector::VisitTruncateFloat64ToFloat32(Node* node) { |
| Mips64OperandGenerator g(this); |
| Node* value = node->InputAt(0); |
| // Match TruncateFloat64ToFloat32(ChangeInt32ToFloat64) to corresponding |
| // instruction. |
| if (CanCover(node, value) && |
| value->opcode() == IrOpcode::kChangeInt32ToFloat64) { |
| Emit(kMips64CvtSW, g.DefineAsRegister(node), |
| g.UseRegister(value->InputAt(0))); |
| return; |
| } |
| VisitRR(this, kMips64CvtSD, node); |
| } |
| |
| void InstructionSelector::VisitTruncateFloat64ToWord32(Node* node) { |
| VisitRR(this, kArchTruncateDoubleToI, node); |
| } |
| |
| void InstructionSelector::VisitRoundFloat64ToInt32(Node* node) { |
| VisitRR(this, kMips64TruncWD, node); |
| } |
| |
| void InstructionSelector::VisitRoundInt64ToFloat32(Node* node) { |
| VisitRR(this, kMips64CvtSL, node); |
| } |
| |
| void InstructionSelector::VisitRoundInt64ToFloat64(Node* node) { |
| VisitRR(this, kMips64CvtDL, node); |
| } |
| |
| void InstructionSelector::VisitRoundUint64ToFloat32(Node* node) { |
| VisitRR(this, kMips64CvtSUl, node); |
| } |
| |
| void InstructionSelector::VisitRoundUint64ToFloat64(Node* node) { |
| VisitRR(this, kMips64CvtDUl, node); |
| } |
| |
| void InstructionSelector::VisitBitcastFloat32ToInt32(Node* node) { |
| VisitRR(this, kMips64Float64ExtractLowWord32, node); |
| } |
| |
| void InstructionSelector::VisitBitcastFloat64ToInt64(Node* node) { |
| VisitRR(this, kMips64BitcastDL, node); |
| } |
| |
| void InstructionSelector::VisitBitcastInt32ToFloat32(Node* node) { |
| Mips64OperandGenerator g(this); |
| Emit(kMips64Float64InsertLowWord32, g.DefineAsRegister(node), |
| ImmediateOperand(ImmediateOperand::INLINE, 0), |
| g.UseRegister(node->InputAt(0))); |
| } |
| |
| void InstructionSelector::VisitBitcastInt64ToFloat64(Node* node) { |
| VisitRR(this, kMips64BitcastLD, node); |
| } |
| |
| void InstructionSelector::VisitFloat32Add(Node* node) { |
| // Optimization with Madd.S(z, x, y) is intentionally removed. |
| // See explanation for madd_s in assembler-mips64.cc. |
| VisitRRR(this, kMips64AddS, node); |
| } |
| |
| void InstructionSelector::VisitFloat64Add(Node* node) { |
| // Optimization with Madd.D(z, x, y) is intentionally removed. |
| // See explanation for madd_d in assembler-mips64.cc. |
| VisitRRR(this, kMips64AddD, node); |
| } |
| |
| void InstructionSelector::VisitFloat32Sub(Node* node) { |
| // Optimization with Msub.S(z, x, y) is intentionally removed. |
| // See explanation for madd_s in assembler-mips64.cc. |
| VisitRRR(this, kMips64SubS, node); |
| } |
| |
| void InstructionSelector::VisitFloat64Sub(Node* node) { |
| // Optimization with Msub.D(z, x, y) is intentionally removed. |
| // See explanation for madd_d in assembler-mips64.cc. |
| VisitRRR(this, kMips64SubD, node); |
| } |
| |
| void InstructionSelector::VisitFloat32Mul(Node* node) { |
| VisitRRR(this, kMips64MulS, node); |
| } |
| |
| void InstructionSelector::VisitFloat64Mul(Node* node) { |
| VisitRRR(this, kMips64MulD, node); |
| } |
| |
| void InstructionSelector::VisitFloat32Div(Node* node) { |
| VisitRRR(this, kMips64DivS, node); |
| } |
| |
| void InstructionSelector::VisitFloat64Div(Node* node) { |
| VisitRRR(this, kMips64DivD, node); |
| } |
| |
| void InstructionSelector::VisitFloat64Mod(Node* node) { |
| Mips64OperandGenerator g(this); |
| Emit(kMips64ModD, g.DefineAsFixed(node, f0), |
| g.UseFixed(node->InputAt(0), f12), g.UseFixed(node->InputAt(1), f14)) |
| ->MarkAsCall(); |
| } |
| |
| void InstructionSelector::VisitFloat32Max(Node* node) { |
| Mips64OperandGenerator g(this); |
| Emit(kMips64Float32Max, g.DefineAsRegister(node), |
| g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1))); |
| } |
| |
| void InstructionSelector::VisitFloat64Max(Node* node) { |
| Mips64OperandGenerator g(this); |
| Emit(kMips64Float64Max, g.DefineAsRegister(node), |
| g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1))); |
| } |
| |
| void InstructionSelector::VisitFloat32Min(Node* node) { |
| Mips64OperandGenerator g(this); |
| Emit(kMips64Float32Min, g.DefineAsRegister(node), |
| g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1))); |
| } |
| |
| void InstructionSelector::VisitFloat64Min(Node* node) { |
| Mips64OperandGenerator g(this); |
| Emit(kMips64Float64Min, g.DefineAsRegister(node), |
| g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1))); |
| } |
| |
| void InstructionSelector::VisitFloat32Abs(Node* node) { |
| VisitRR(this, kMips64AbsS, node); |
| } |
| |
| void InstructionSelector::VisitFloat64Abs(Node* node) { |
| VisitRR(this, kMips64AbsD, node); |
| } |
| |
| void InstructionSelector::VisitFloat32Sqrt(Node* node) { |
| VisitRR(this, kMips64SqrtS, node); |
| } |
| |
| void InstructionSelector::VisitFloat64Sqrt(Node* node) { |
| VisitRR(this, kMips64SqrtD, node); |
| } |
| |
| void InstructionSelector::VisitFloat32RoundDown(Node* node) { |
| VisitRR(this, kMips64Float32RoundDown, node); |
| } |
| |
| void InstructionSelector::VisitFloat64RoundDown(Node* node) { |
| VisitRR(this, kMips64Float64RoundDown, node); |
| } |
| |
| void InstructionSelector::VisitFloat32RoundUp(Node* node) { |
| VisitRR(this, kMips64Float32RoundUp, node); |
| } |
| |
| void InstructionSelector::VisitFloat64RoundUp(Node* node) { |
| VisitRR(this, kMips64Float64RoundUp, node); |
| } |
| |
| void InstructionSelector::VisitFloat32RoundTruncate(Node* node) { |
| VisitRR(this, kMips64Float32RoundTruncate, node); |
| } |
| |
| void InstructionSelector::VisitFloat64RoundTruncate(Node* node) { |
| VisitRR(this, kMips64Float64RoundTruncate, node); |
| } |
| |
| void InstructionSelector::VisitFloat64RoundTiesAway(Node* node) { |
| UNREACHABLE(); |
| } |
| |
| void InstructionSelector::VisitFloat32RoundTiesEven(Node* node) { |
| VisitRR(this, kMips64Float32RoundTiesEven, node); |
| } |
| |
| void InstructionSelector::VisitFloat64RoundTiesEven(Node* node) { |
| VisitRR(this, kMips64Float64RoundTiesEven, node); |
| } |
| |
| void InstructionSelector::VisitFloat32Neg(Node* node) { |
| VisitRR(this, kMips64NegS, node); |
| } |
| |
| void InstructionSelector::VisitFloat64Neg(Node* node) { |
| VisitRR(this, kMips64NegD, node); |
| } |
| |
| void InstructionSelector::VisitFloat64Ieee754Binop(Node* node, |
| InstructionCode opcode) { |
| Mips64OperandGenerator g(this); |
| Emit(opcode, g.DefineAsFixed(node, f0), g.UseFixed(node->InputAt(0), f2), |
| g.UseFixed(node->InputAt(1), f4)) |
| ->MarkAsCall(); |
| } |
| |
| void InstructionSelector::VisitFloat64Ieee754Unop(Node* node, |
| InstructionCode opcode) { |
| Mips64OperandGenerator g(this); |
| Emit(opcode, g.DefineAsFixed(node, f0), g.UseFixed(node->InputAt(0), f12)) |
| ->MarkAsCall(); |
| } |
| |
| void InstructionSelector::EmitPrepareArguments( |
| ZoneVector<PushParameter>* arguments, const CallDescriptor* call_descriptor, |
| Node* node) { |
| Mips64OperandGenerator g(this); |
| |
| // Prepare for C function call. |
| if (call_descriptor->IsCFunctionCall()) { |
| Emit(kArchPrepareCallCFunction | MiscField::encode(static_cast<int>( |
| call_descriptor->ParameterCount())), |
| 0, nullptr, 0, nullptr); |
| |
| // Poke any stack arguments. |
| int slot = kCArgSlotCount; |
| for (PushParameter input : (*arguments)) { |
| Emit(kMips64StoreToStackSlot, g.NoOutput(), g.UseRegister(input.node), |
| g.TempImmediate(slot << kSystemPointerSizeLog2)); |
| ++slot; |
| } |
| } else { |
| int push_count = static_cast<int>(call_descriptor->StackParameterCount()); |
| if (push_count > 0) { |
| // Calculate needed space |
| int stack_size = 0; |
| for (PushParameter input : (*arguments)) { |
| if (input.node) { |
| stack_size += input.location.GetSizeInPointers(); |
| } |
| } |
| Emit(kMips64StackClaim, g.NoOutput(), |
| g.TempImmediate(stack_size << kSystemPointerSizeLog2)); |
| } |
| for (size_t n = 0; n < arguments->size(); ++n) { |
| PushParameter input = (*arguments)[n]; |
| if (input.node) { |
| Emit(kMips64StoreToStackSlot, g.NoOutput(), g.UseRegister(input.node), |
| g.TempImmediate(static_cast<int>(n << kSystemPointerSizeLog2))); |
| } |
| } |
| } |
| } |
| |
| void InstructionSelector::EmitPrepareResults( |
| ZoneVector<PushParameter>* results, const CallDescriptor* call_descriptor, |
| Node* node) { |
| Mips64OperandGenerator g(this); |
| |
| int reverse_slot = 0; |
| for (PushParameter output : *results) { |
| if (!output.location.IsCallerFrameSlot()) continue; |
| // Skip any alignment holes in nodes. |
| if (output.node != nullptr) { |
| DCHECK(!call_descriptor->IsCFunctionCall()); |
| if (output.location.GetType() == MachineType::Float32()) { |
| MarkAsFloat32(output.node); |
| } else if (output.location.GetType() == MachineType::Float64()) { |
| MarkAsFloat64(output.node); |
| } |
| Emit(kMips64Peek, g.DefineAsRegister(output.node), |
| g.UseImmediate(reverse_slot)); |
| } |
| reverse_slot += output.location.GetSizeInPointers(); |
| } |
| } |
| |
| bool InstructionSelector::IsTailCallAddressImmediate() { return false; } |
| |
| int InstructionSelector::GetTempsCountForTailCallFromJSFunction() { return 3; } |
| |
| void InstructionSelector::VisitUnalignedLoad(Node* node) { |
| LoadRepresentation load_rep = LoadRepresentationOf(node->op()); |
| Mips64OperandGenerator g(this); |
| Node* base = node->InputAt(0); |
| Node* index = node->InputAt(1); |
| |
| ArchOpcode opcode = kArchNop; |
| switch (load_rep.representation()) { |
| case MachineRepresentation::kFloat32: |
| opcode = kMips64Ulwc1; |
| break; |
| case MachineRepresentation::kFloat64: |
| opcode = kMips64Uldc1; |
| break; |
| case MachineRepresentation::kBit: // Fall through. |
| case MachineRepresentation::kWord8: |
| UNREACHABLE(); |
| case MachineRepresentation::kWord16: |
| opcode = load_rep.IsUnsigned() ? kMips64Ulhu : kMips64Ulh; |
| break; |
| case MachineRepresentation::kWord32: |
| opcode = load_rep.IsUnsigned() ? kMips64Ulwu : kMips64Ulw; |
| break; |
| case MachineRepresentation::kTaggedSigned: // Fall through. |
| case MachineRepresentation::kTaggedPointer: // Fall through. |
| case MachineRepresentation::kTagged: // Fall through. |
| case MachineRepresentation::kWord64: |
| opcode = kMips64Uld; |
| break; |
| case MachineRepresentation::kSimd128: |
| opcode = kMips64MsaLd; |
| break; |
| case MachineRepresentation::kCompressedSigned: // Fall through. |
| case MachineRepresentation::kCompressedPointer: // Fall through. |
| case MachineRepresentation::kCompressed: // Fall through. |
| case MachineRepresentation::kNone: |
| UNREACHABLE(); |
| } |
| |
| if (g.CanBeImmediate(index, opcode)) { |
| Emit(opcode | AddressingModeField::encode(kMode_MRI), |
| g.DefineAsRegister(node), g.UseRegister(base), g.UseImmediate(index)); |
| } else { |
| InstructionOperand addr_reg = g.TempRegister(); |
| Emit(kMips64Dadd | AddressingModeField::encode(kMode_None), addr_reg, |
| g.UseRegister(index), g.UseRegister(base)); |
| // Emit desired load opcode, using temp addr_reg. |
| Emit(opcode | AddressingModeField::encode(kMode_MRI), |
| g.DefineAsRegister(node), addr_reg, g.TempImmediate(0)); |
| } |
| } |
| |
| void InstructionSelector::VisitUnalignedStore(Node* node) { |
| Mips64OperandGenerator g(this); |
| Node* base = node->InputAt(0); |
| Node* index = node->InputAt(1); |
| Node* value = node->InputAt(2); |
| |
| UnalignedStoreRepresentation rep = UnalignedStoreRepresentationOf(node->op()); |
| ArchOpcode opcode = kArchNop; |
| switch (rep) { |
| case MachineRepresentation::kFloat32: |
| opcode = kMips64Uswc1; |
| break; |
| case MachineRepresentation::kFloat64: |
| opcode = kMips64Usdc1; |
| break; |
| case MachineRepresentation::kBit: // Fall through. |
| case MachineRepresentation::kWord8: |
| UNREACHABLE(); |
| case MachineRepresentation::kWord16: |
| opcode = kMips64Ush; |
| break; |
| case MachineRepresentation::kWord32: |
| opcode = kMips64Usw; |
| break; |
| case MachineRepresentation::kTaggedSigned: // Fall through. |
| case MachineRepresentation::kTaggedPointer: // Fall through. |
| case MachineRepresentation::kTagged: // Fall through. |
| case MachineRepresentation::kWord64: |
| opcode = kMips64Usd; |
| break; |
| case MachineRepresentation::kSimd128: |
| opcode = kMips64MsaSt; |
| break; |
| case MachineRepresentation::kCompressedSigned: // Fall through. |
| case MachineRepresentation::kCompressedPointer: // Fall through. |
| case MachineRepresentation::kCompressed: // Fall through. |
| case MachineRepresentation::kNone: |
| UNREACHABLE(); |
| } |
| |
| if (g.CanBeImmediate(index, opcode)) { |
| Emit(opcode | AddressingModeField::encode(kMode_MRI), g.NoOutput(), |
| g.UseRegister(base), g.UseImmediate(index), |
| g.UseRegisterOrImmediateZero(value)); |
| } else { |
| InstructionOperand addr_reg = g.TempRegister(); |
| Emit(kMips64Dadd | AddressingModeField::encode(kMode_None), addr_reg, |
| g.UseRegister(index), g.UseRegister(base)); |
| // Emit desired store opcode, using temp addr_reg. |
| Emit(opcode | AddressingModeField::encode(kMode_MRI), g.NoOutput(), |
| addr_reg, g.TempImmediate(0), g.UseRegisterOrImmediateZero(value)); |
| } |
| } |
| |
| namespace { |
| |
| // Shared routine for multiple compare operations. |
| static void VisitCompare(InstructionSelector* selector, InstructionCode opcode, |
| InstructionOperand left, InstructionOperand right, |
| FlagsContinuation* cont) { |
| selector->EmitWithContinuation(opcode, left, right, cont); |
| } |
| |
| // Shared routine for multiple float32 compare operations. |
| void VisitFloat32Compare(InstructionSelector* selector, Node* node, |
| FlagsContinuation* cont) { |
| Mips64OperandGenerator g(selector); |
| Float32BinopMatcher m(node); |
| InstructionOperand lhs, rhs; |
| |
| lhs = m.left().IsZero() ? g.UseImmediate(m.left().node()) |
| : g.UseRegister(m.left().node()); |
| rhs = m.right().IsZero() ? g.UseImmediate(m.right().node()) |
| : g.UseRegister(m.right().node()); |
| VisitCompare(selector, kMips64CmpS, lhs, rhs, cont); |
| } |
| |
| // Shared routine for multiple float64 compare operations. |
| void VisitFloat64Compare(InstructionSelector* selector, Node* node, |
| FlagsContinuation* cont) { |
| Mips64OperandGenerator g(selector); |
| Float64BinopMatcher m(node); |
| InstructionOperand lhs, rhs; |
| |
| lhs = m.left().IsZero() ? g.UseImmediate(m.left().node()) |
| : g.UseRegister(m.left().node()); |
| rhs = m.right().IsZero() ? g.UseImmediate(m.right().node()) |
| : g.UseRegister(m.right().node()); |
| VisitCompare(selector, kMips64CmpD, lhs, rhs, cont); |
| } |
| |
| // Shared routine for multiple word compare operations. |
| void VisitWordCompare(InstructionSelector* selector, Node* node, |
| InstructionCode opcode, FlagsContinuation* cont, |
| bool commutative) { |
| Mips64OperandGenerator g(selector); |
| Node* left = node->InputAt(0); |
| Node* right = node->InputAt(1); |
| |
| // Match immediates on left or right side of comparison. |
| if (g.CanBeImmediate(right, opcode)) { |
| if (opcode == kMips64Tst) { |
| VisitCompare(selector, opcode, g.UseRegister(left), g.UseImmediate(right), |
| cont); |
| } else { |
| switch (cont->condition()) { |
| case kEqual: |
| case kNotEqual: |
| if (cont->IsSet()) { |
| VisitCompare(selector, opcode, g.UseRegister(left), |
| g.UseImmediate(right), cont); |
| } else { |
| VisitCompare(selector, opcode, g.UseRegister(left), |
| g.UseRegister(right), cont); |
| } |
| break; |
| case kSignedLessThan: |
| case kSignedGreaterThanOrEqual: |
| case kUnsignedLessThan: |
| case kUnsignedGreaterThanOrEqual: |
| VisitCompare(selector, opcode, g.UseRegister(left), |
| g.UseImmediate(right), cont); |
| break; |
| default: |
| VisitCompare(selector, opcode, g.UseRegister(left), |
| g.UseRegister(right), cont); |
| } |
| } |
| } else if (g.CanBeImmediate(left, opcode)) { |
| if (!commutative) cont->Commute(); |
| if (opcode == kMips64Tst) { |
| VisitCompare(selector, opcode, g.UseRegister(right), g.UseImmediate(left), |
| cont); |
| } else { |
| switch (cont->condition()) { |
| case kEqual: |
| case kNotEqual: |
| if (cont->IsSet()) { |
| VisitCompare(selector, opcode, g.UseRegister(right), |
| g.UseImmediate(left), cont); |
| } else { |
| VisitCompare(selector, opcode, g.UseRegister(right), |
| g.UseRegister(left), cont); |
| } |
| break; |
| case kSignedLessThan: |
| case kSignedGreaterThanOrEqual: |
| case kUnsignedLessThan: |
| case kUnsignedGreaterThanOrEqual: |
| VisitCompare(selector, opcode, g.UseRegister(right), |
| g.UseImmediate(left), cont); |
| break; |
| default: |
| VisitCompare(selector, opcode, g.UseRegister(right), |
| g.UseRegister(left), cont); |
| } |
| } |
| } else { |
| VisitCompare(selector, opcode, g.UseRegister(left), g.UseRegister(right), |
| cont); |
| } |
| } |
| |
| bool IsNodeUnsigned(Node* n) { |
| NodeMatcher m(n); |
| |
| if (m.IsLoad() || m.IsUnalignedLoad() || m.IsPoisonedLoad() || |
| m.IsProtectedLoad() || m.IsWord32AtomicLoad() || m.IsWord64AtomicLoad()) { |
| LoadRepresentation load_rep = LoadRepresentationOf(n->op()); |
| return load_rep.IsUnsigned(); |
| } else { |
| return m.IsUint32Div() || m.IsUint32LessThan() || |
| m.IsUint32LessThanOrEqual() || m.IsUint32Mod() || |
| m.IsUint32MulHigh() || m.IsChangeFloat64ToUint32() || |
| m.IsTruncateFloat64ToUint32() || m.IsTruncateFloat32ToUint32(); |
| } |
| } |
| |
| // Shared routine for multiple word compare operations. |
| void VisitFullWord32Compare(InstructionSelector* selector, Node* node, |
| InstructionCode opcode, FlagsContinuation* cont) { |
| Mips64OperandGenerator g(selector); |
| InstructionOperand leftOp = g.TempRegister(); |
| InstructionOperand rightOp = g.TempRegister(); |
| |
| selector->Emit(kMips64Dshl, leftOp, g.UseRegister(node->InputAt(0)), |
| g.TempImmediate(32)); |
| selector->Emit(kMips64Dshl, rightOp, g.UseRegister(node->InputAt(1)), |
| g.TempImmediate(32)); |
| |
| VisitCompare(selector, opcode, leftOp, rightOp, cont); |
| } |
| |
| void VisitOptimizedWord32Compare(InstructionSelector* selector, Node* node, |
| InstructionCode opcode, |
| FlagsContinuation* cont) { |
| if (FLAG_debug_code) { |
| Mips64OperandGenerator g(selector); |
| InstructionOperand leftOp = g.TempRegister(); |
| InstructionOperand rightOp = g.TempRegister(); |
| InstructionOperand optimizedResult = g.TempRegister(); |
| InstructionOperand fullResult = g.TempRegister(); |
| FlagsCondition condition = cont->condition(); |
| InstructionCode testOpcode = opcode | |
| FlagsConditionField::encode(condition) | |
| FlagsModeField::encode(kFlags_set); |
| |
| selector->Emit(testOpcode, optimizedResult, g.UseRegister(node->InputAt(0)), |
| g.UseRegister(node->InputAt(1))); |
| |
| selector->Emit(kMips64Dshl, leftOp, g.UseRegister(node->InputAt(0)), |
| g.TempImmediate(32)); |
| selector->Emit(kMips64Dshl, rightOp, g.UseRegister(node->InputAt(1)), |
| g.TempImmediate(32)); |
| selector->Emit(testOpcode, fullResult, leftOp, rightOp); |
| |
| selector->Emit( |
| kMips64AssertEqual, g.NoOutput(), optimizedResult, fullResult, |
| g.TempImmediate( |
| static_cast<int>(AbortReason::kUnsupportedNonPrimitiveCompare))); |
| } |
| |
| VisitWordCompare(selector, node, opcode, cont, false); |
| } |
| |
| void VisitWord32Compare(InstructionSelector* selector, Node* node, |
| FlagsContinuation* cont) { |
| // MIPS64 doesn't support Word32 compare instructions. Instead it relies |
| // that the values in registers are correctly sign-extended and uses |
| // Word64 comparison instead. This behavior is correct in most cases, |
| // but doesn't work when comparing signed with unsigned operands. |
| // We could simulate full Word32 compare in all cases but this would |
| // create an unnecessary overhead since unsigned integers are rarely |
| // used in JavaScript. |
| // The solution proposed here tries to match a comparison of signed |
| // with unsigned operand, and perform full Word32Compare only |
| // in those cases. Unfortunately, the solution is not complete because |
| // it might skip cases where Word32 full compare is needed, so |
| // basically it is a hack. |
| // When call to a host function in simulator, if the function return a |
| // int32 value, the simulator do not sign-extended to int64 because in |
| // simulator we do not know the function whether return a int32 or int64. |
| // so we need do a full word32 compare in this case. |
| #ifndef USE_SIMULATOR |
| if (IsNodeUnsigned(node->InputAt(0)) != IsNodeUnsigned(node->InputAt(1))) { |
| #else |
| if (IsNodeUnsigned(node->InputAt(0)) != IsNodeUnsigned(node->InputAt(1)) || |
| node->InputAt(0)->opcode() == IrOpcode::kCall || |
| node->InputAt(1)->opcode() == IrOpcode::kCall ) { |
| #endif |
| VisitFullWord32Compare(selector, node, kMips64Cmp, cont); |
| } else { |
| VisitOptimizedWord32Compare(selector, node, kMips64Cmp, cont); |
| } |
| } |
| |
| void VisitWord64Compare(InstructionSelector* selector, Node* node, |
| FlagsContinuation* cont) { |
| VisitWordCompare(selector, node, kMips64Cmp, cont, false); |
| } |
| |
| void EmitWordCompareZero(InstructionSelector* selector, Node* value, |
| FlagsContinuation* cont) { |
| Mips64OperandGenerator g(selector); |
| selector->EmitWithContinuation(kMips64Cmp, g.UseRegister(value), |
| g.TempImmediate(0), cont); |
| } |
| |
| void VisitAtomicLoad(InstructionSelector* selector, Node* node, |
| ArchOpcode opcode) { |
| Mips64OperandGenerator g(selector); |
| Node* base = node->InputAt(0); |
| Node* index = node->InputAt(1); |
| if (g.CanBeImmediate(index, opcode)) { |
| selector->Emit(opcode | AddressingModeField::encode(kMode_MRI), |
| g.DefineAsRegister(node), g.UseRegister(base), |
| g.UseImmediate(index)); |
| } else { |
| InstructionOperand addr_reg = g.TempRegister(); |
| selector->Emit(kMips64Dadd | AddressingModeField::encode(kMode_None), |
| addr_reg, g.UseRegister(index), g.UseRegister(base)); |
| // Emit desired load opcode, using temp addr_reg. |
| selector->Emit(opcode | AddressingModeField::encode(kMode_MRI), |
| g.DefineAsRegister(node), addr_reg, g.TempImmediate(0)); |
| } |
| } |
| |
| void VisitAtomicStore(InstructionSelector* selector, Node* node, |
| ArchOpcode opcode) { |
| Mips64OperandGenerator g(selector); |
| Node* base = node->InputAt(0); |
| Node* index = node->InputAt(1); |
| Node* value = node->InputAt(2); |
| |
| if (g.CanBeImmediate(index, opcode)) { |
| selector->Emit(opcode | AddressingModeField::encode(kMode_MRI), |
| g.NoOutput(), g.UseRegister(base), g.UseImmediate(index), |
| g.UseRegisterOrImmediateZero(value)); |
| } else { |
| InstructionOperand addr_reg = g.TempRegister(); |
| selector->Emit(kMips64Dadd | AddressingModeField::encode(kMode_None), |
| addr_reg, g.UseRegister(index), g.UseRegister(base)); |
| // Emit desired store opcode, using temp addr_reg. |
| selector->Emit(opcode | AddressingModeField::encode(kMode_MRI), |
| g.NoOutput(), addr_reg, g.TempImmediate(0), |
| g.UseRegisterOrImmediateZero(value)); |
| } |
| } |
| |
| void VisitAtomicExchange(InstructionSelector* selector, Node* node, |
| ArchOpcode opcode) { |
| Mips64OperandGenerator g(selector); |
| Node* base = node->InputAt(0); |
| Node* index = node->InputAt(1); |
| Node* value = node->InputAt(2); |
| |
| AddressingMode addressing_mode = kMode_MRI; |
| InstructionOperand inputs[3]; |
| size_t input_count = 0; |
| inputs[input_count++] = g.UseUniqueRegister(base); |
| inputs[input_count++] = g.UseUniqueRegister(index); |
| inputs[input_count++] = g.UseUniqueRegister(value); |
| InstructionOperand outputs[1]; |
| outputs[0] = g.UseUniqueRegister(node); |
| InstructionOperand temp[3]; |
| temp[0] = g.TempRegister(); |
| temp[1] = g.TempRegister(); |
| temp[2] = g.TempRegister(); |
| InstructionCode code = opcode | AddressingModeField::encode(addressing_mode); |
| selector->Emit(code, 1, outputs, input_count, inputs, 3, temp); |
| } |
| |
| void VisitAtomicCompareExchange(InstructionSelector* selector, Node* node, |
| ArchOpcode opcode) { |
| Mips64OperandGenerator g(selector); |
| Node* base = node->InputAt(0); |
| Node* index = node->InputAt(1); |
| Node* old_value = node->InputAt(2); |
| Node* new_value = node->InputAt(3); |
| |
| AddressingMode addressing_mode = kMode_MRI; |
| InstructionOperand inputs[4]; |
| size_t input_count = 0; |
| inputs[input_count++] = g.UseUniqueRegister(base); |
| inputs[input_count++] = g.UseUniqueRegister(index); |
| inputs[input_count++] = g.UseUniqueRegister(old_value); |
| inputs[input_count++] = g.UseUniqueRegister(new_value); |
| InstructionOperand outputs[1]; |
| outputs[0] = g.UseUniqueRegister(node); |
| InstructionOperand temp[3]; |
| temp[0] = g.TempRegister(); |
| temp[1] = g.TempRegister(); |
| temp[2] = g.TempRegister(); |
| InstructionCode code = opcode | AddressingModeField::encode(addressing_mode); |
| selector->Emit(code, 1, outputs, input_count, inputs, 3, temp); |
| } |
| |
| void VisitAtomicBinop(InstructionSelector* selector, Node* node, |
| ArchOpcode opcode) { |
| Mips64OperandGenerator g(selector); |
| Node* base = node->InputAt(0); |
| Node* index = node->InputAt(1); |
| Node* value = node->InputAt(2); |
| |
| AddressingMode addressing_mode = kMode_MRI; |
| InstructionOperand inputs[3]; |
| size_t input_count = 0; |
| inputs[input_count++] = g.UseUniqueRegister(base); |
| inputs[input_count++] = g.UseUniqueRegister(index); |
| inputs[input_count++] = g.UseUniqueRegister(value); |
| InstructionOperand outputs[1]; |
| outputs[0] = g.UseUniqueRegister(node); |
| InstructionOperand temps[4]; |
| temps[0] = g.TempRegister(); |
| temps[1] = g.TempRegister(); |
| temps[2] = g.TempRegister(); |
| temps[3] = g.TempRegister(); |
| InstructionCode code = opcode | AddressingModeField::encode(addressing_mode); |
| selector->Emit(code, 1, outputs, input_count, inputs, 4, temps); |
| } |
| |
| } // namespace |
| |
| // Shared routine for word comparisons against zero. |
| void InstructionSelector::VisitWordCompareZero(Node* user, Node* value, |
| FlagsContinuation* cont) { |
| // Try to combine with comparisons against 0 by simply inverting the branch. |
| while (CanCover(user, value)) { |
| if (value->opcode() == IrOpcode::kWord32Equal) { |
| Int32BinopMatcher m(value); |
| if (!m.right().Is(0)) break; |
| user = value; |
| value = m.left().node(); |
| } else if (value->opcode() == IrOpcode::kWord64Equal) { |
| Int64BinopMatcher m(value); |
| if (!m.right().Is(0)) break; |
| user = value; |
| value = m.left().node(); |
| } else { |
| break; |
| } |
| |
| cont->Negate(); |
| } |
| |
| if (CanCover(user, value)) { |
| switch (value->opcode()) { |
| case IrOpcode::kWord32Equal: |
| cont->OverwriteAndNegateIfEqual(kEqual); |
| return VisitWord32Compare(this, value, cont); |
| case IrOpcode::kInt32LessThan: |
| cont->OverwriteAndNegateIfEqual(kSignedLessThan); |
| return VisitWord32Compare(this, value, cont); |
| case IrOpcode::kInt32LessThanOrEqual: |
| cont->OverwriteAndNegateIfEqual(kSignedLessThanOrEqual); |
| return VisitWord32Compare(this, value, cont); |
| case IrOpcode::kUint32LessThan: |
| cont->OverwriteAndNegateIfEqual(kUnsignedLessThan); |
| return VisitWord32Compare(this, value, cont); |
| case IrOpcode::kUint32LessThanOrEqual: |
| cont->OverwriteAndNegateIfEqual(kUnsignedLessThanOrEqual); |
| return VisitWord32Compare(this, value, cont); |
| case IrOpcode::kWord64Equal: |
| cont->OverwriteAndNegateIfEqual(kEqual); |
| return VisitWord64Compare(this, value, cont); |
| case IrOpcode::kInt64LessThan: |
| cont->OverwriteAndNegateIfEqual(kSignedLessThan); |
| return VisitWord64Compare(this, value, cont); |
| case IrOpcode::kInt64LessThanOrEqual: |
| cont->OverwriteAndNegateIfEqual(kSignedLessThanOrEqual); |
| return VisitWord64Compare(this, value, cont); |
| case IrOpcode::kUint64LessThan: |
| cont->OverwriteAndNegateIfEqual(kUnsignedLessThan); |
| return VisitWord64Compare(this, value, cont); |
| case IrOpcode::kUint64LessThanOrEqual: |
| cont->OverwriteAndNegateIfEqual(kUnsignedLessThanOrEqual); |
| return VisitWord64Compare(this, value, cont); |
| case IrOpcode::kFloat32Equal: |
| cont->OverwriteAndNegateIfEqual(kEqual); |
| return VisitFloat32Compare(this, value, cont); |
| case IrOpcode::kFloat32LessThan: |
| cont->OverwriteAndNegateIfEqual(kUnsignedLessThan); |
| return VisitFloat32Compare(this, value, cont); |
| case IrOpcode::kFloat32LessThanOrEqual: |
| cont->OverwriteAndNegateIfEqual(kUnsignedLessThanOrEqual); |
| return VisitFloat32Compare(this, value, cont); |
| case IrOpcode::kFloat64Equal: |
| cont->OverwriteAndNegateIfEqual(kEqual); |
| return VisitFloat64Compare(this, value, cont); |
| case IrOpcode::kFloat64LessThan: |
| cont->OverwriteAndNegateIfEqual(kUnsignedLessThan); |
| return VisitFloat64Compare(this, value, cont); |
| case IrOpcode::kFloat64LessThanOrEqual: |
| cont->OverwriteAndNegateIfEqual(kUnsignedLessThanOrEqual); |
| return VisitFloat64Compare(this, value, cont); |
| case IrOpcode::kProjection: |
| // Check if this is the overflow output projection of an |
| // <Operation>WithOverflow node. |
| if (ProjectionIndexOf(value->op()) == 1u) { |
| // We cannot combine the <Operation>WithOverflow with this branch |
| // unless the 0th projection (the use of the actual value of the |
| // <Operation> is either nullptr, which means there's no use of the |
| // actual value, or was already defined, which means it is scheduled |
| // *AFTER* this branch). |
| Node* const node = value->InputAt(0); |
| Node* const result = NodeProperties::FindProjection(node, 0); |
| if (result == nullptr || IsDefined(result)) { |
| switch (node->opcode()) { |
| case IrOpcode::kInt32AddWithOverflow: |
| cont->OverwriteAndNegateIfEqual(kOverflow); |
| return VisitBinop(this, node, kMips64Dadd, cont); |
| case IrOpcode::kInt32SubWithOverflow: |
| cont->OverwriteAndNegateIfEqual(kOverflow); |
| return VisitBinop(this, node, kMips64Dsub, cont); |
| case IrOpcode::kInt32MulWithOverflow: |
| cont->OverwriteAndNegateIfEqual(kOverflow); |
| return VisitBinop(this, node, kMips64MulOvf, cont); |
| case IrOpcode::kInt64AddWithOverflow: |
| cont->OverwriteAndNegateIfEqual(kOverflow); |
| return VisitBinop(this, node, kMips64DaddOvf, cont); |
| case IrOpcode::kInt64SubWithOverflow: |
| cont->OverwriteAndNegateIfEqual(kOverflow); |
| return VisitBinop(this, node, kMips64DsubOvf, cont); |
| default: |
| break; |
| } |
| } |
| } |
| break; |
| case IrOpcode::kWord32And: |
| case IrOpcode::kWord64And: |
| return VisitWordCompare(this, value, kMips64Tst, cont, true); |
| default: |
| break; |
| } |
| } |
| |
| // Continuation could not be combined with a compare, emit compare against 0. |
| EmitWordCompareZero(this, value, cont); |
| } |
| |
| void InstructionSelector::VisitSwitch(Node* node, const SwitchInfo& sw) { |
| Mips64OperandGenerator g(this); |
| InstructionOperand value_operand = g.UseRegister(node->InputAt(0)); |
| |
| // Emit either ArchTableSwitch or ArchLookupSwitch. |
| if (enable_switch_jump_table_ == kEnableSwitchJumpTable) { |
| static const size_t kMaxTableSwitchValueRange = 2 << 16; |
| size_t table_space_cost = 10 + 2 * sw.value_range(); |
| size_t table_time_cost = 3; |
| size_t lookup_space_cost = 2 + 2 * sw.case_count(); |
| size_t lookup_time_cost = sw.case_count(); |
| if (sw.case_count() > 0 && |
| table_space_cost + 3 * table_time_cost <= |
| lookup_space_cost + 3 * lookup_time_cost && |
| sw.min_value() > std::numeric_limits<int32_t>::min() && |
| sw.value_range() <= kMaxTableSwitchValueRange) { |
| InstructionOperand index_operand = value_operand; |
| if (sw.min_value()) { |
| index_operand = g.TempRegister(); |
| Emit(kMips64Sub, index_operand, value_operand, |
| g.TempImmediate(sw.min_value())); |
| } |
| // Generate a table lookup. |
| return EmitTableSwitch(sw, index_operand); |
| } |
| } |
| |
| // Generate a tree of conditional jumps. |
| return EmitBinarySearchSwitch(sw, value_operand); |
| } |
| |
| void InstructionSelector::VisitWord32Equal(Node* const node) { |
| FlagsContinuation cont = FlagsContinuation::ForSet(kEqual, node); |
| Int32BinopMatcher m(node); |
| if (m.right().Is(0)) { |
| return VisitWordCompareZero(m.node(), m.left().node(), &cont); |
| } |
| |
| VisitWord32Compare(this, node, &cont); |
| } |
| |
| void InstructionSelector::VisitInt32LessThan(Node* node) { |
| FlagsContinuation cont = FlagsContinuation::ForSet(kSignedLessThan, node); |
| VisitWord32Compare(this, node, &cont); |
| } |
| |
| void InstructionSelector::VisitInt32LessThanOrEqual(Node* node) { |
| FlagsContinuation cont = |
| FlagsContinuation::ForSet(kSignedLessThanOrEqual, node); |
| VisitWord32Compare(this, node, &cont); |
| } |
| |
| void InstructionSelector::VisitUint32LessThan(Node* node) { |
| FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedLessThan, node); |
| VisitWord32Compare(this, node, &cont); |
| } |
| |
| void InstructionSelector::VisitUint32LessThanOrEqual(Node* node) { |
| FlagsContinuation cont = |
| FlagsContinuation::ForSet(kUnsignedLessThanOrEqual, node); |
| VisitWord32Compare(this, node, &cont); |
| } |
| |
| void InstructionSelector::VisitInt32AddWithOverflow(Node* node) { |
| if (Node* ovf = NodeProperties::FindProjection(node, 1)) { |
| FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf); |
| return VisitBinop(this, node, kMips64Dadd, &cont); |
| } |
| FlagsContinuation cont; |
| VisitBinop(this, node, kMips64Dadd, &cont); |
| } |
| |
| void InstructionSelector::VisitInt32SubWithOverflow(Node* node) { |
| if (Node* ovf = NodeProperties::FindProjection(node, 1)) { |
| FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf); |
| return VisitBinop(this, node, kMips64Dsub, &cont); |
| } |
| FlagsContinuation cont; |
| VisitBinop(this, node, kMips64Dsub, &cont); |
| } |
| |
| void InstructionSelector::VisitInt32MulWithOverflow(Node* node) { |
| if (Node* ovf = NodeProperties::FindProjection(node, 1)) { |
| FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf); |
| return VisitBinop(this, node, kMips64MulOvf, &cont); |
| } |
| FlagsContinuation cont; |
| VisitBinop(this, node, kMips64MulOvf, &cont); |
| } |
| |
| void InstructionSelector::VisitInt64AddWithOverflow(Node* node) { |
| if (Node* ovf = NodeProperties::FindProjection(node, 1)) { |
| FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf); |
| return VisitBinop(this, node, kMips64DaddOvf, &cont); |
| } |
| FlagsContinuation cont; |
| VisitBinop(this, node, kMips64DaddOvf, &cont); |
| } |
| |
| void InstructionSelector::VisitInt64SubWithOverflow(Node* node) { |
| if (Node* ovf = NodeProperties::FindProjection(node, 1)) { |
| FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf); |
| return VisitBinop(this, node, kMips64DsubOvf, &cont); |
| } |
| FlagsContinuation cont; |
| VisitBinop(this, node, kMips64DsubOvf, &cont); |
| } |
| |
| void InstructionSelector::VisitWord64Equal(Node* const node) { |
| FlagsContinuation cont = FlagsContinuation::ForSet(kEqual, node); |
| Int64BinopMatcher m(node); |
| if (m.right().Is(0)) { |
| return VisitWordCompareZero(m.node(), m.left().node(), &cont); |
| } |
| |
| VisitWord64Compare(this, node, &cont); |
| } |
| |
| void InstructionSelector::VisitInt64LessThan(Node* node) { |
| FlagsContinuation cont = FlagsContinuation::ForSet(kSignedLessThan, node); |
| VisitWord64Compare(this, node, &cont); |
| } |
| |
| void InstructionSelector::VisitInt64LessThanOrEqual(Node* node) { |
| FlagsContinuation cont = |
| FlagsContinuation::ForSet(kSignedLessThanOrEqual, node); |
| VisitWord64Compare(this, node, &cont); |
| } |
| |
| void InstructionSelector::VisitUint64LessThan(Node* node) { |
| FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedLessThan, node); |
| VisitWord64Compare(this, node, &cont); |
| } |
| |
| void InstructionSelector::VisitUint64LessThanOrEqual(Node* node) { |
| FlagsContinuation cont = |
| FlagsContinuation::ForSet(kUnsignedLessThanOrEqual, node); |
| VisitWord64Compare(this, node, &cont); |
| } |
| |
| void InstructionSelector::VisitFloat32Equal(Node* node) { |
| FlagsContinuation cont = FlagsContinuation::ForSet(kEqual, node); |
| VisitFloat32Compare(this, node, &cont); |
| } |
| |
| void InstructionSelector::VisitFloat32LessThan(Node* node) { |
| FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedLessThan, node); |
| VisitFloat32Compare(this, node, &cont); |
| } |
| |
| void InstructionSelector::VisitFloat32LessThanOrEqual(Node* node) { |
| FlagsContinuation cont = |
| FlagsContinuation::ForSet(kUnsignedLessThanOrEqual, node); |
| VisitFloat32Compare(this, node, &cont); |
| } |
| |
| void InstructionSelector::VisitFloat64Equal(Node* node) { |
| FlagsContinuation cont = FlagsContinuation::ForSet(kEqual, node); |
| VisitFloat64Compare(this, node, &cont); |
| } |
| |
| void InstructionSelector::VisitFloat64LessThan(Node* node) { |
| FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedLessThan, node); |
| VisitFloat64Compare(this, node, &cont); |
| } |
| |
| void InstructionSelector::VisitFloat64LessThanOrEqual(Node* node) { |
| FlagsContinuation cont = |
| FlagsContinuation::ForSet(kUnsignedLessThanOrEqual, node); |
| VisitFloat64Compare(this, node, &cont); |
| } |
| |
| void InstructionSelector::VisitFloat64ExtractLowWord32(Node* node) { |
| VisitRR(this, kMips64Float64ExtractLowWord32, node); |
| } |
| |
| void InstructionSelector::VisitFloat64ExtractHighWord32(Node* node) { |
| VisitRR(this, kMips64Float64ExtractHighWord32, node); |
| } |
| |
| void InstructionSelector::VisitFloat64SilenceNaN(Node* node) { |
| VisitRR(this, kMips64Float64SilenceNaN, node); |
| } |
| |
| void InstructionSelector::VisitFloat64InsertLowWord32(Node* node) { |
| Mips64OperandGenerator g(this); |
| Node* left = node->InputAt(0); |
| Node* right = node->InputAt(1); |
| Emit(kMips64Float64InsertLowWord32, g.DefineSameAsFirst(node), |
| g.UseRegister(left), g.UseRegister(right)); |
| } |
| |
| void InstructionSelector::VisitFloat64InsertHighWord32(Node* node) { |
| Mips64OperandGenerator g(this); |
| Node* left = node->InputAt(0); |
| Node* right = node->InputAt(1); |
| Emit(kMips64Float64InsertHighWord32, g.DefineSameAsFirst(node), |
| g.UseRegister(left), g.UseRegister(right)); |
| } |
| |
| void InstructionSelector::VisitMemoryBarrier(Node* node) { |
| Mips64OperandGenerator g(this); |
| Emit(kMips64Sync, g.NoOutput()); |
| } |
| |
| void InstructionSelector::VisitWord32AtomicLoad(Node* node) { |
| LoadRepresentation load_rep = LoadRepresentationOf(node->op()); |
| ArchOpcode opcode = kArchNop; |
| switch (load_rep.representation()) { |
| case MachineRepresentation::kWord8: |
| opcode = |
| load_rep.IsSigned() ? kWord32AtomicLoadInt8 : kWord32AtomicLoadUint8; |
| break; |
| case MachineRepresentation::kWord16: |
| opcode = load_rep.IsSigned() ? kWord32AtomicLoadInt16 |
| : kWord32AtomicLoadUint16; |
| break; |
| case MachineRepresentation::kWord32: |
| opcode = kWord32AtomicLoadWord32; |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| VisitAtomicLoad(this, node, opcode); |
| } |
| |
| void InstructionSelector::VisitWord32AtomicStore(Node* node) { |
| MachineRepresentation rep = AtomicStoreRepresentationOf(node->op()); |
| ArchOpcode opcode = kArchNop; |
| switch (rep) { |
| case MachineRepresentation::kWord8: |
| opcode = kWord32AtomicStoreWord8; |
| break; |
| case MachineRepresentation::kWord16: |
| opcode = kWord32AtomicStoreWord16; |
| break; |
| case MachineRepresentation::kWord32: |
| opcode = kWord32AtomicStoreWord32; |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| |
| VisitAtomicStore(this, node, opcode); |
| } |
| |
| void InstructionSelector::VisitWord64AtomicLoad(Node* node) { |
| LoadRepresentation load_rep = LoadRepresentationOf(node->op()); |
| ArchOpcode opcode = kArchNop; |
| switch (load_rep.representation()) { |
| case MachineRepresentation::kWord8: |
| opcode = kMips64Word64AtomicLoadUint8; |
| break; |
| case MachineRepresentation::kWord16: |
| opcode = kMips64Word64AtomicLoadUint16; |
| break; |
| case MachineRepresentation::kWord32: |
| opcode = kMips64Word64AtomicLoadUint32; |
| break; |
| case MachineRepresentation::kWord64: |
| opcode = kMips64Word64AtomicLoadUint64; |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| VisitAtomicLoad(this, node, opcode); |
| } |
| |
| void InstructionSelector::VisitWord64AtomicStore(Node* node) { |
| MachineRepresentation rep = AtomicStoreRepresentationOf(node->op()); |
| ArchOpcode opcode = kArchNop; |
| switch (rep) { |
| case MachineRepresentation::kWord8: |
| opcode = kMips64Word64AtomicStoreWord8; |
| break; |
| case MachineRepresentation::kWord16: |
| opcode = kMips64Word64AtomicStoreWord16; |
| break; |
| case MachineRepresentation::kWord32: |
| opcode = kMips64Word64AtomicStoreWord32; |
| break; |
| case MachineRepresentation::kWord64: |
| opcode = kMips64Word64AtomicStoreWord64; |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| |
| VisitAtomicStore(this, node, opcode); |
| } |
| |
| void InstructionSelector::VisitWord32AtomicExchange(Node* node) { |
| ArchOpcode opcode = kArchNop; |
| MachineType type = AtomicOpType(node->op()); |
| if (type == MachineType::Int8()) { |
| opcode = kWord32AtomicExchangeInt8; |
| } else if (type == MachineType::Uint8()) { |
| opcode = kWord32AtomicExchangeUint8; |
| } else if (type == MachineType::Int16()) { |
| opcode = kWord32AtomicExchangeInt16; |
| } else if (type == MachineType::Uint16()) { |
| opcode = kWord32AtomicExchangeUint16; |
| } else if (type == MachineType::Int32() || type == MachineType::Uint32()) { |
| opcode = kWord32AtomicExchangeWord32; |
| } else { |
| UNREACHABLE(); |
| return; |
| } |
| |
| VisitAtomicExchange(this, node, opcode); |
| } |
| |
| void InstructionSelector::VisitWord64AtomicExchange(Node* node) { |
| ArchOpcode opcode = kArchNop; |
| MachineType type = AtomicOpType(node->op()); |
| if (type == MachineType::Uint8()) { |
| opcode = kMips64Word64AtomicExchangeUint8; |
| } else if (type == MachineType::Uint16()) { |
| opcode = kMips64Word64AtomicExchangeUint16; |
| } else if (type == MachineType::Uint32()) { |
| opcode = kMips64Word64AtomicExchangeUint32; |
| } else if (type == MachineType::Uint64()) { |
| opcode = kMips64Word64AtomicExchangeUint64; |
| } else { |
| UNREACHABLE(); |
| return; |
| } |
| VisitAtomicExchange(this, node, opcode); |
| } |
| |
| void InstructionSelector::VisitWord32AtomicCompareExchange(Node* node) { |
| ArchOpcode opcode = kArchNop; |
| MachineType type = AtomicOpType(node->op()); |
| if (type == MachineType::Int8()) { |
| opcode = kWord32AtomicCompareExchangeInt8; |
| } else if (type == MachineType::Uint8()) { |
| opcode = kWord32AtomicCompareExchangeUint8; |
| } else if (type == MachineType::Int16()) { |
| opcode = kWord32AtomicCompareExchangeInt16; |
| } else if (type == MachineType::Uint16()) { |
| opcode = kWord32AtomicCompareExchangeUint16; |
| } else if (type == MachineType::Int32() || type == MachineType::Uint32()) { |
| opcode = kWord32AtomicCompareExchangeWord32; |
| } else { |
| UNREACHABLE(); |
| return; |
| } |
| |
| VisitAtomicCompareExchange(this, node, opcode); |
| } |
| |
| void InstructionSelector::VisitWord64AtomicCompareExchange(Node* node) { |
| ArchOpcode opcode = kArchNop; |
| MachineType type = AtomicOpType(node->op()); |
| if (type == MachineType::Uint8()) { |
| opcode = kMips64Word64AtomicCompareExchangeUint8; |
| } else if (type == MachineType::Uint16()) { |
| opcode = kMips64Word64AtomicCompareExchangeUint16; |
| } else if (type == MachineType::Uint32()) { |
| opcode = kMips64Word64AtomicCompareExchangeUint32; |
| } else if (type == MachineType::Uint64()) { |
| opcode = kMips64Word64AtomicCompareExchangeUint64; |
| } else { |
| |