blob: 44701f8159385cbcfcd3c8f8bc000800908597c8 [file] [log] [blame]
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/compiler/backend/register-allocator.h"
#include <iomanip>
#include "src/base/adapters.h"
#include "src/base/small-vector.h"
#include "src/codegen/assembler-inl.h"
#include "src/codegen/tick-counter.h"
#include "src/compiler/linkage.h"
#include "src/strings/string-stream.h"
#include "src/utils/vector.h"
namespace v8 {
namespace internal {
namespace compiler {
#define TRACE_COND(cond, ...) \
do { \
if (cond) PrintF(__VA_ARGS__); \
} while (false)
#define TRACE(...) TRACE_COND(data()->is_trace_alloc(), __VA_ARGS__)
namespace {
static constexpr int kFloat32Bit =
RepresentationBit(MachineRepresentation::kFloat32);
static constexpr int kSimd128Bit =
RepresentationBit(MachineRepresentation::kSimd128);
int GetRegisterCount(const RegisterConfiguration* cfg, RegisterKind kind) {
return kind == FP_REGISTERS ? cfg->num_double_registers()
: cfg->num_general_registers();
}
int GetAllocatableRegisterCount(const RegisterConfiguration* cfg,
RegisterKind kind) {
return kind == FP_REGISTERS ? cfg->num_allocatable_double_registers()
: cfg->num_allocatable_general_registers();
}
const int* GetAllocatableRegisterCodes(const RegisterConfiguration* cfg,
RegisterKind kind) {
return kind == FP_REGISTERS ? cfg->allocatable_double_codes()
: cfg->allocatable_general_codes();
}
const InstructionBlock* GetContainingLoop(const InstructionSequence* sequence,
const InstructionBlock* block) {
RpoNumber index = block->loop_header();
if (!index.IsValid()) return nullptr;
return sequence->InstructionBlockAt(index);
}
const InstructionBlock* GetInstructionBlock(const InstructionSequence* code,
LifetimePosition pos) {
return code->GetInstructionBlock(pos.ToInstructionIndex());
}
Instruction* GetLastInstruction(InstructionSequence* code,
const InstructionBlock* block) {
return code->InstructionAt(block->last_instruction_index());
}
// TODO(dcarney): fix frame to allow frame accesses to half size location.
int GetByteWidth(MachineRepresentation rep) {
switch (rep) {
case MachineRepresentation::kBit:
case MachineRepresentation::kWord8:
case MachineRepresentation::kWord16:
case MachineRepresentation::kWord32:
case MachineRepresentation::kFloat32:
return kSystemPointerSize;
case MachineRepresentation::kTaggedSigned:
case MachineRepresentation::kTaggedPointer:
case MachineRepresentation::kTagged:
case MachineRepresentation::kCompressedSigned:
case MachineRepresentation::kCompressedPointer:
case MachineRepresentation::kCompressed:
// TODO(ishell): kTaggedSize once half size locations are supported.
return kSystemPointerSize;
case MachineRepresentation::kWord64:
case MachineRepresentation::kFloat64:
return kDoubleSize;
case MachineRepresentation::kSimd128:
return kSimd128Size;
case MachineRepresentation::kNone:
break;
}
UNREACHABLE();
}
} // namespace
class LiveRangeBound {
public:
explicit LiveRangeBound(LiveRange* range, bool skip)
: range_(range), start_(range->Start()), end_(range->End()), skip_(skip) {
DCHECK(!range->IsEmpty());
}
bool CanCover(LifetimePosition position) {
return start_ <= position && position < end_;
}
LiveRange* const range_;
const LifetimePosition start_;
const LifetimePosition end_;
const bool skip_;
private:
DISALLOW_COPY_AND_ASSIGN(LiveRangeBound);
};
struct FindResult {
LiveRange* cur_cover_;
LiveRange* pred_cover_;
};
class LiveRangeBoundArray {
public:
LiveRangeBoundArray() : length_(0), start_(nullptr) {}
bool ShouldInitialize() { return start_ == nullptr; }
void Initialize(Zone* zone, TopLevelLiveRange* range) {
size_t max_child_count = range->GetMaxChildCount();
start_ = zone->NewArray<LiveRangeBound>(max_child_count);
length_ = 0;
LiveRangeBound* curr = start_;
// Normally, spilled ranges do not need connecting moves, because the spill
// location has been assigned at definition. For ranges spilled in deferred
// blocks, that is not the case, so we need to connect the spilled children.
for (LiveRange *i = range; i != nullptr; i = i->next(), ++curr, ++length_) {
new (curr) LiveRangeBound(i, i->spilled());
}
}
LiveRangeBound* Find(const LifetimePosition position) const {
size_t left_index = 0;
size_t right_index = length_;
while (true) {
size_t current_index = left_index + (right_index - left_index) / 2;
DCHECK(right_index > current_index);
LiveRangeBound* bound = &start_[current_index];
if (bound->start_ <= position) {
if (position < bound->end_) return bound;
DCHECK(left_index < current_index);
left_index = current_index;
} else {
right_index = current_index;
}
}
}
LiveRangeBound* FindPred(const InstructionBlock* pred) {
LifetimePosition pred_end =
LifetimePosition::InstructionFromInstructionIndex(
pred->last_instruction_index());
return Find(pred_end);
}
LiveRangeBound* FindSucc(const InstructionBlock* succ) {
LifetimePosition succ_start = LifetimePosition::GapFromInstructionIndex(
succ->first_instruction_index());
return Find(succ_start);
}
bool FindConnectableSubranges(const InstructionBlock* block,
const InstructionBlock* pred,
FindResult* result) const {
LifetimePosition pred_end =
LifetimePosition::InstructionFromInstructionIndex(
pred->last_instruction_index());
LiveRangeBound* bound = Find(pred_end);
result->pred_cover_ = bound->range_;
LifetimePosition cur_start = LifetimePosition::GapFromInstructionIndex(
block->first_instruction_index());
if (bound->CanCover(cur_start)) {
// Both blocks are covered by the same range, so there is nothing to
// connect.
return false;
}
bound = Find(cur_start);
if (bound->skip_) {
return false;
}
result->cur_cover_ = bound->range_;
DCHECK(result->pred_cover_ != nullptr && result->cur_cover_ != nullptr);
return (result->cur_cover_ != result->pred_cover_);
}
private:
size_t length_;
LiveRangeBound* start_;
DISALLOW_COPY_AND_ASSIGN(LiveRangeBoundArray);
};
class LiveRangeFinder {
public:
explicit LiveRangeFinder(const RegisterAllocationData* data, Zone* zone)
: data_(data),
bounds_length_(static_cast<int>(data_->live_ranges().size())),
bounds_(zone->NewArray<LiveRangeBoundArray>(bounds_length_)),
zone_(zone) {
for (int i = 0; i < bounds_length_; ++i) {
new (&bounds_[i]) LiveRangeBoundArray();
}
}
LiveRangeBoundArray* ArrayFor(int operand_index) {
DCHECK(operand_index < bounds_length_);
TopLevelLiveRange* range = data_->live_ranges()[operand_index];
DCHECK(range != nullptr && !range->IsEmpty());
LiveRangeBoundArray* array = &bounds_[operand_index];
if (array->ShouldInitialize()) {
array->Initialize(zone_, range);
}
return array;
}
private:
const RegisterAllocationData* const data_;
const int bounds_length_;
LiveRangeBoundArray* const bounds_;
Zone* const zone_;
DISALLOW_COPY_AND_ASSIGN(LiveRangeFinder);
};
using DelayedInsertionMapKey = std::pair<ParallelMove*, InstructionOperand>;
struct DelayedInsertionMapCompare {
bool operator()(const DelayedInsertionMapKey& a,
const DelayedInsertionMapKey& b) const {
if (a.first == b.first) {
return a.second.Compare(b.second);
}
return a.first < b.first;
}
};
using DelayedInsertionMap = ZoneMap<DelayedInsertionMapKey, InstructionOperand,
DelayedInsertionMapCompare>;
UsePosition::UsePosition(LifetimePosition pos, InstructionOperand* operand,
void* hint, UsePositionHintType hint_type)
: operand_(operand), hint_(hint), next_(nullptr), pos_(pos), flags_(0) {
DCHECK_IMPLIES(hint == nullptr, hint_type == UsePositionHintType::kNone);
bool register_beneficial = true;
UsePositionType type = UsePositionType::kRegisterOrSlot;
if (operand_ != nullptr && operand_->IsUnallocated()) {
const UnallocatedOperand* unalloc = UnallocatedOperand::cast(operand_);
if (unalloc->HasRegisterPolicy()) {
type = UsePositionType::kRequiresRegister;
} else if (unalloc->HasSlotPolicy()) {
type = UsePositionType::kRequiresSlot;
register_beneficial = false;
} else if (unalloc->HasRegisterOrSlotOrConstantPolicy()) {
type = UsePositionType::kRegisterOrSlotOrConstant;
register_beneficial = false;
} else {
register_beneficial = !unalloc->HasRegisterOrSlotPolicy();
}
}
flags_ = TypeField::encode(type) | HintTypeField::encode(hint_type) |
RegisterBeneficialField::encode(register_beneficial) |
AssignedRegisterField::encode(kUnassignedRegister);
DCHECK(pos_.IsValid());
}
bool UsePosition::HasHint() const {
int hint_register;
return HintRegister(&hint_register);
}
bool UsePosition::HintRegister(int* register_code) const {
if (hint_ == nullptr) return false;
switch (HintTypeField::decode(flags_)) {
case UsePositionHintType::kNone:
case UsePositionHintType::kUnresolved:
return false;
case UsePositionHintType::kUsePos: {
UsePosition* use_pos = reinterpret_cast<UsePosition*>(hint_);
int assigned_register = AssignedRegisterField::decode(use_pos->flags_);
if (assigned_register == kUnassignedRegister) return false;
*register_code = assigned_register;
return true;
}
case UsePositionHintType::kOperand: {
InstructionOperand* operand =
reinterpret_cast<InstructionOperand*>(hint_);
*register_code = LocationOperand::cast(operand)->register_code();
return true;
}
case UsePositionHintType::kPhi: {
RegisterAllocationData::PhiMapValue* phi =
reinterpret_cast<RegisterAllocationData::PhiMapValue*>(hint_);
int assigned_register = phi->assigned_register();
if (assigned_register == kUnassignedRegister) return false;
*register_code = assigned_register;
return true;
}
}
UNREACHABLE();
}
UsePositionHintType UsePosition::HintTypeForOperand(
const InstructionOperand& op) {
switch (op.kind()) {
case InstructionOperand::CONSTANT:
case InstructionOperand::IMMEDIATE:
case InstructionOperand::EXPLICIT:
return UsePositionHintType::kNone;
case InstructionOperand::UNALLOCATED:
return UsePositionHintType::kUnresolved;
case InstructionOperand::ALLOCATED:
if (op.IsRegister() || op.IsFPRegister()) {
return UsePositionHintType::kOperand;
} else {
DCHECK(op.IsStackSlot() || op.IsFPStackSlot());
return UsePositionHintType::kNone;
}
case InstructionOperand::INVALID:
break;
}
UNREACHABLE();
}
void UsePosition::SetHint(UsePosition* use_pos) {
DCHECK_NOT_NULL(use_pos);
hint_ = use_pos;
flags_ = HintTypeField::update(flags_, UsePositionHintType::kUsePos);
}
void UsePosition::ResolveHint(UsePosition* use_pos) {
DCHECK_NOT_NULL(use_pos);
if (HintTypeField::decode(flags_) != UsePositionHintType::kUnresolved) return;
hint_ = use_pos;
flags_ = HintTypeField::update(flags_, UsePositionHintType::kUsePos);
}
void UsePosition::set_type(UsePositionType type, bool register_beneficial) {
DCHECK_IMPLIES(type == UsePositionType::kRequiresSlot, !register_beneficial);
DCHECK_EQ(kUnassignedRegister, AssignedRegisterField::decode(flags_));
flags_ = TypeField::encode(type) |
RegisterBeneficialField::encode(register_beneficial) |
HintTypeField::encode(HintTypeField::decode(flags_)) |
AssignedRegisterField::encode(kUnassignedRegister);
}
UseInterval* UseInterval::SplitAt(LifetimePosition pos, Zone* zone) {
DCHECK(Contains(pos) && pos != start());
UseInterval* after = new (zone) UseInterval(pos, end_);
after->next_ = next_;
next_ = nullptr;
end_ = pos;
return after;
}
void LifetimePosition::Print() const { StdoutStream{} << *this << std::endl; }
std::ostream& operator<<(std::ostream& os, const LifetimePosition pos) {
os << '@' << pos.ToInstructionIndex();
if (pos.IsGapPosition()) {
os << 'g';
} else {
os << 'i';
}
if (pos.IsStart()) {
os << 's';
} else {
os << 'e';
}
return os;
}
LiveRange::LiveRange(int relative_id, MachineRepresentation rep,
TopLevelLiveRange* top_level)
: relative_id_(relative_id),
bits_(0),
last_interval_(nullptr),
first_interval_(nullptr),
first_pos_(nullptr),
top_level_(top_level),
next_(nullptr),
current_interval_(nullptr),
last_processed_use_(nullptr),
current_hint_position_(nullptr),
splitting_pointer_(nullptr) {
DCHECK(AllocatedOperand::IsSupportedRepresentation(rep));
bits_ = AssignedRegisterField::encode(kUnassignedRegister) |
RepresentationField::encode(rep) |
ControlFlowRegisterHint::encode(kUnassignedRegister);
}
void LiveRange::VerifyPositions() const {
// Walk the positions, verifying that each is in an interval.
UseInterval* interval = first_interval_;
for (UsePosition* pos = first_pos_; pos != nullptr; pos = pos->next()) {
CHECK(Start() <= pos->pos());
CHECK(pos->pos() <= End());
CHECK_NOT_NULL(interval);
while (!interval->Contains(pos->pos()) && interval->end() != pos->pos()) {
interval = interval->next();
CHECK_NOT_NULL(interval);
}
}
}
void LiveRange::VerifyIntervals() const {
DCHECK(first_interval()->start() == Start());
LifetimePosition last_end = first_interval()->end();
for (UseInterval* interval = first_interval()->next(); interval != nullptr;
interval = interval->next()) {
DCHECK(last_end <= interval->start());
last_end = interval->end();
}
DCHECK(last_end == End());
}
void LiveRange::set_assigned_register(int reg) {
DCHECK(!HasRegisterAssigned() && !spilled());
bits_ = AssignedRegisterField::update(bits_, reg);
}
void LiveRange::UnsetAssignedRegister() {
DCHECK(HasRegisterAssigned() && !spilled());
bits_ = AssignedRegisterField::update(bits_, kUnassignedRegister);
}
void LiveRange::AttachToNext() {
DCHECK_NOT_NULL(next_);
DCHECK_NE(TopLevel()->last_child_covers_, next_);
last_interval_->set_next(next_->first_interval());
next_->first_interval_ = nullptr;
last_interval_ = next_->last_interval_;
next_->last_interval_ = nullptr;
if (first_pos() == nullptr) {
first_pos_ = next_->first_pos();
} else {
UsePosition* ptr = first_pos_;
while (ptr->next() != nullptr) {
ptr = ptr->next();
}
ptr->set_next(next_->first_pos());
}
next_->first_pos_ = nullptr;
LiveRange* old_next = next_;
next_ = next_->next_;
old_next->next_ = nullptr;
}
void LiveRange::Unspill() {
DCHECK(spilled());
set_spilled(false);
bits_ = AssignedRegisterField::update(bits_, kUnassignedRegister);
}
void LiveRange::Spill() {
DCHECK(!spilled());
DCHECK(!TopLevel()->HasNoSpillType());
set_spilled(true);
bits_ = AssignedRegisterField::update(bits_, kUnassignedRegister);
}
RegisterKind LiveRange::kind() const {
return IsFloatingPoint(representation()) ? FP_REGISTERS : GENERAL_REGISTERS;
}
UsePosition* LiveRange::FirstHintPosition(int* register_index) const {
for (UsePosition* pos = first_pos_; pos != nullptr; pos = pos->next()) {
if (pos->HintRegister(register_index)) return pos;
}
return nullptr;
}
UsePosition* LiveRange::NextUsePosition(LifetimePosition start) const {
UsePosition* use_pos = last_processed_use_;
if (use_pos == nullptr || use_pos->pos() > start) {
use_pos = first_pos();
}
while (use_pos != nullptr && use_pos->pos() < start) {
use_pos = use_pos->next();
}
last_processed_use_ = use_pos;
return use_pos;
}
UsePosition* LiveRange::NextUsePositionRegisterIsBeneficial(
LifetimePosition start) const {
UsePosition* pos = NextUsePosition(start);
while (pos != nullptr && !pos->RegisterIsBeneficial()) {
pos = pos->next();
}
return pos;
}
LifetimePosition LiveRange::NextLifetimePositionRegisterIsBeneficial(
const LifetimePosition& start) const {
UsePosition* next_use = NextUsePositionRegisterIsBeneficial(start);
if (next_use == nullptr) return End();
return next_use->pos();
}
UsePosition* LiveRange::PreviousUsePositionRegisterIsBeneficial(
LifetimePosition start) const {
UsePosition* pos = first_pos();
UsePosition* prev = nullptr;
while (pos != nullptr && pos->pos() < start) {
if (pos->RegisterIsBeneficial()) prev = pos;
pos = pos->next();
}
return prev;
}
UsePosition* LiveRange::NextRegisterPosition(LifetimePosition start) const {
UsePosition* pos = NextUsePosition(start);
while (pos != nullptr && pos->type() != UsePositionType::kRequiresRegister) {
pos = pos->next();
}
return pos;
}
UsePosition* LiveRange::NextSlotPosition(LifetimePosition start) const {
for (UsePosition* pos = NextUsePosition(start); pos != nullptr;
pos = pos->next()) {
if (pos->type() != UsePositionType::kRequiresSlot) continue;
return pos;
}
return nullptr;
}
bool LiveRange::CanBeSpilled(LifetimePosition pos) const {
// We cannot spill a live range that has a use requiring a register
// at the current or the immediate next position.
UsePosition* use_pos = NextRegisterPosition(pos);
if (use_pos == nullptr) return true;
return use_pos->pos() > pos.NextStart().End();
}
bool LiveRange::IsTopLevel() const { return top_level_ == this; }
InstructionOperand LiveRange::GetAssignedOperand() const {
DCHECK(!IsEmpty());
if (HasRegisterAssigned()) {
DCHECK(!spilled());
return AllocatedOperand(LocationOperand::REGISTER, representation(),
assigned_register());
}
DCHECK(spilled());
DCHECK(!HasRegisterAssigned());
if (TopLevel()->HasSpillOperand()) {
InstructionOperand* op = TopLevel()->GetSpillOperand();
DCHECK(!op->IsUnallocated());
return *op;
}
return TopLevel()->GetSpillRangeOperand();
}
UseInterval* LiveRange::FirstSearchIntervalForPosition(
LifetimePosition position) const {
if (current_interval_ == nullptr) return first_interval_;
if (current_interval_->start() > position) {
current_interval_ = nullptr;
return first_interval_;
}
return current_interval_;
}
void LiveRange::AdvanceLastProcessedMarker(
UseInterval* to_start_of, LifetimePosition but_not_past) const {
if (to_start_of == nullptr) return;
if (to_start_of->start() > but_not_past) return;
LifetimePosition start = current_interval_ == nullptr
? LifetimePosition::Invalid()
: current_interval_->start();
if (to_start_of->start() > start) {
current_interval_ = to_start_of;
}
}
LiveRange* LiveRange::SplitAt(LifetimePosition position, Zone* zone) {
int new_id = TopLevel()->GetNextChildId();
LiveRange* child = new (zone) LiveRange(new_id, representation(), TopLevel());
child->set_bundle(bundle_);
// If we split, we do so because we're about to switch registers or move
// to/from a slot, so there's no value in connecting hints.
DetachAt(position, child, zone, DoNotConnectHints);
child->top_level_ = TopLevel();
child->next_ = next_;
next_ = child;
return child;
}
UsePosition* LiveRange::DetachAt(LifetimePosition position, LiveRange* result,
Zone* zone,
HintConnectionOption connect_hints) {
DCHECK(Start() < position);
DCHECK(End() > position);
DCHECK(result->IsEmpty());
// Find the last interval that ends before the position. If the
// position is contained in one of the intervals in the chain, we
// split that interval and use the first part.
UseInterval* current = FirstSearchIntervalForPosition(position);
// If the split position coincides with the beginning of a use interval
// we need to split use positons in a special way.
bool split_at_start = false;
if (current->start() == position) {
// When splitting at start we need to locate the previous use interval.
current = first_interval_;
}
UseInterval* after = nullptr;
while (current != nullptr) {
if (current->Contains(position)) {
after = current->SplitAt(position, zone);
break;
}
UseInterval* next = current->next();
if (next->start() >= position) {
split_at_start = (next->start() == position);
after = next;
current->set_next(nullptr);
break;
}
current = next;
}
DCHECK_NOT_NULL(after);
// Partition original use intervals to the two live ranges.
UseInterval* before = current;
result->last_interval_ =
(last_interval_ == before)
? after // Only interval in the range after split.
: last_interval_; // Last interval of the original range.
result->first_interval_ = after;
last_interval_ = before;
// Find the last use position before the split and the first use
// position after it.
UsePosition* use_after =
splitting_pointer_ == nullptr || splitting_pointer_->pos() > position
? first_pos()
: splitting_pointer_;
UsePosition* use_before = nullptr;
if (split_at_start) {
// The split position coincides with the beginning of a use interval (the
// end of a lifetime hole). Use at this position should be attributed to
// the split child because split child owns use interval covering it.
while (use_after != nullptr && use_after->pos() < position) {
use_before = use_after;
use_after = use_after->next();
}
} else {
while (use_after != nullptr && use_after->pos() <= position) {
use_before = use_after;
use_after = use_after->next();
}
}
// Partition original use positions to the two live ranges.
if (use_before != nullptr) {
use_before->set_next(nullptr);
} else {
first_pos_ = nullptr;
}
result->first_pos_ = use_after;
// Discard cached iteration state. It might be pointing
// to the use that no longer belongs to this live range.
last_processed_use_ = nullptr;
current_interval_ = nullptr;
if (connect_hints == ConnectHints && use_before != nullptr &&
use_after != nullptr) {
use_after->SetHint(use_before);
}
#ifdef DEBUG
VerifyChildStructure();
result->VerifyChildStructure();
#endif
return use_before;
}
void LiveRange::UpdateParentForAllChildren(TopLevelLiveRange* new_top_level) {
LiveRange* child = this;
for (; child != nullptr; child = child->next()) {
child->top_level_ = new_top_level;
}
}
void LiveRange::ConvertUsesToOperand(const InstructionOperand& op,
const InstructionOperand& spill_op) {
for (UsePosition* pos = first_pos(); pos != nullptr; pos = pos->next()) {
DCHECK(Start() <= pos->pos() && pos->pos() <= End());
if (!pos->HasOperand()) continue;
switch (pos->type()) {
case UsePositionType::kRequiresSlot:
DCHECK(spill_op.IsStackSlot() || spill_op.IsFPStackSlot());
InstructionOperand::ReplaceWith(pos->operand(), &spill_op);
break;
case UsePositionType::kRequiresRegister:
DCHECK(op.IsRegister() || op.IsFPRegister());
V8_FALLTHROUGH;
case UsePositionType::kRegisterOrSlot:
case UsePositionType::kRegisterOrSlotOrConstant:
InstructionOperand::ReplaceWith(pos->operand(), &op);
break;
}
}
}
// This implements an ordering on live ranges so that they are ordered by their
// start positions. This is needed for the correctness of the register
// allocation algorithm. If two live ranges start at the same offset then there
// is a tie breaker based on where the value is first used. This part of the
// ordering is merely a heuristic.
bool LiveRange::ShouldBeAllocatedBefore(const LiveRange* other) const {
LifetimePosition start = Start();
LifetimePosition other_start = other->Start();
if (start == other_start) {
// Prefer register that has a controlflow hint to make sure it gets
// allocated first. This allows the control flow aware alloction to
// just put ranges back into the queue without other ranges interfering.
if (controlflow_hint() < other->controlflow_hint()) {
return true;
}
// The other has a smaller hint.
if (controlflow_hint() > other->controlflow_hint()) {
return false;
}
// Both have the same hint or no hint at all. Use first use position.
UsePosition* pos = first_pos();
UsePosition* other_pos = other->first_pos();
// To make the order total, handle the case where both positions are null.
if (pos == other_pos) return TopLevel()->vreg() < other->TopLevel()->vreg();
if (pos == nullptr) return false;
if (other_pos == nullptr) return true;
// To make the order total, handle the case where both positions are equal.
if (pos->pos() == other_pos->pos())
return TopLevel()->vreg() < other->TopLevel()->vreg();
return pos->pos() < other_pos->pos();
}
return start < other_start;
}
void LiveRange::SetUseHints(int register_index) {
for (UsePosition* pos = first_pos(); pos != nullptr; pos = pos->next()) {
if (!pos->HasOperand()) continue;
switch (pos->type()) {
case UsePositionType::kRequiresSlot:
break;
case UsePositionType::kRequiresRegister:
case UsePositionType::kRegisterOrSlot:
case UsePositionType::kRegisterOrSlotOrConstant:
pos->set_assigned_register(register_index);
break;
}
}
}
bool LiveRange::CanCover(LifetimePosition position) const {
if (IsEmpty()) return false;
return Start() <= position && position < End();
}
bool LiveRange::Covers(LifetimePosition position) const {
if (!CanCover(position)) return false;
UseInterval* start_search = FirstSearchIntervalForPosition(position);
for (UseInterval* interval = start_search; interval != nullptr;
interval = interval->next()) {
DCHECK(interval->next() == nullptr ||
interval->next()->start() >= interval->start());
AdvanceLastProcessedMarker(interval, position);
if (interval->Contains(position)) return true;
if (interval->start() > position) return false;
}
return false;
}
LifetimePosition LiveRange::NextEndAfter(LifetimePosition position) const {
UseInterval* start_search = FirstSearchIntervalForPosition(position);
while (start_search->end() < position) {
start_search = start_search->next();
}
return start_search->end();
}
LifetimePosition LiveRange::NextStartAfter(LifetimePosition position) const {
UseInterval* start_search = FirstSearchIntervalForPosition(position);
while (start_search->start() < position) {
start_search = start_search->next();
}
return start_search->start();
}
LifetimePosition LiveRange::FirstIntersection(LiveRange* other) const {
UseInterval* b = other->first_interval();
if (b == nullptr) return LifetimePosition::Invalid();
LifetimePosition advance_last_processed_up_to = b->start();
UseInterval* a = FirstSearchIntervalForPosition(b->start());
while (a != nullptr && b != nullptr) {
if (a->start() > other->End()) break;
if (b->start() > End()) break;
LifetimePosition cur_intersection = a->Intersect(b);
if (cur_intersection.IsValid()) {
return cur_intersection;
}
if (a->start() < b->start()) {
a = a->next();
if (a == nullptr || a->start() > other->End()) break;
AdvanceLastProcessedMarker(a, advance_last_processed_up_to);
} else {
b = b->next();
}
}
return LifetimePosition::Invalid();
}
void LiveRange::Print(const RegisterConfiguration* config,
bool with_children) const {
StdoutStream os;
PrintableLiveRange wrapper;
wrapper.register_configuration_ = config;
for (const LiveRange* i = this; i != nullptr; i = i->next()) {
wrapper.range_ = i;
os << wrapper << std::endl;
if (!with_children) break;
}
}
void LiveRange::Print(bool with_children) const {
Print(RegisterConfiguration::Default(), with_children);
}
bool LiveRange::RegisterFromBundle(int* hint) const {
if (bundle_ == nullptr || bundle_->reg() == kUnassignedRegister) return false;
*hint = bundle_->reg();
return true;
}
void LiveRange::UpdateBundleRegister(int reg) const {
if (bundle_ == nullptr || bundle_->reg() != kUnassignedRegister) return;
bundle_->set_reg(reg);
}
struct TopLevelLiveRange::SpillMoveInsertionList : ZoneObject {
SpillMoveInsertionList(int gap_index, InstructionOperand* operand,
SpillMoveInsertionList* next)
: gap_index(gap_index), operand(operand), next(next) {}
const int gap_index;
InstructionOperand* const operand;
SpillMoveInsertionList* const next;
};
TopLevelLiveRange::TopLevelLiveRange(int vreg, MachineRepresentation rep)
: LiveRange(0, rep, this),
vreg_(vreg),
last_child_id_(0),
splintered_from_(nullptr),
spill_operand_(nullptr),
spill_move_insertion_locations_(nullptr),
spilled_in_deferred_blocks_(false),
spill_start_index_(kMaxInt),
last_pos_(nullptr),
last_child_covers_(this),
splinter_(nullptr),
has_preassigned_slot_(false) {
bits_ |= SpillTypeField::encode(SpillType::kNoSpillType);
}
#if DEBUG
int TopLevelLiveRange::debug_virt_reg() const {
return IsSplinter() ? splintered_from()->vreg() : vreg();
}
#endif
void TopLevelLiveRange::RecordSpillLocation(Zone* zone, int gap_index,
InstructionOperand* operand) {
DCHECK(HasNoSpillType());
spill_move_insertion_locations_ = new (zone) SpillMoveInsertionList(
gap_index, operand, spill_move_insertion_locations_);
}
void TopLevelLiveRange::CommitSpillMoves(RegisterAllocationData* data,
const InstructionOperand& op,
bool might_be_duplicated) {
DCHECK_IMPLIES(op.IsConstant(),
GetSpillMoveInsertionLocations(data) == nullptr);
InstructionSequence* sequence = data->code();
Zone* zone = sequence->zone();
for (SpillMoveInsertionList* to_spill = GetSpillMoveInsertionLocations(data);
to_spill != nullptr; to_spill = to_spill->next) {
Instruction* instr = sequence->InstructionAt(to_spill->gap_index);
ParallelMove* move =
instr->GetOrCreateParallelMove(Instruction::START, zone);
// Skip insertion if it's possible that the move exists already as a
// constraint move from a fixed output register to a slot.
if (might_be_duplicated || has_preassigned_slot()) {
bool found = false;
for (MoveOperands* move_op : *move) {
if (move_op->IsEliminated()) continue;
if (move_op->source().Equals(*to_spill->operand) &&
move_op->destination().Equals(op)) {
found = true;
if (has_preassigned_slot()) move_op->Eliminate();
break;
}
}
if (found) continue;
}
if (!has_preassigned_slot()) {
move->AddMove(*to_spill->operand, op);
}
}
}
void TopLevelLiveRange::SetSpillOperand(InstructionOperand* operand) {
DCHECK(HasNoSpillType());
DCHECK(!operand->IsUnallocated() && !operand->IsImmediate());
set_spill_type(SpillType::kSpillOperand);
spill_operand_ = operand;
}
void TopLevelLiveRange::SetSpillRange(SpillRange* spill_range) {
DCHECK(!HasSpillOperand());
DCHECK(spill_range);
spill_range_ = spill_range;
}
AllocatedOperand TopLevelLiveRange::GetSpillRangeOperand() const {
SpillRange* spill_range = GetSpillRange();
int index = spill_range->assigned_slot();
return AllocatedOperand(LocationOperand::STACK_SLOT, representation(), index);
}
void TopLevelLiveRange::Splinter(LifetimePosition start, LifetimePosition end,
Zone* zone) {
DCHECK(start != Start() || end != End());
DCHECK(start < end);
TopLevelLiveRange splinter_temp(-1, representation());
UsePosition* last_in_splinter = nullptr;
// Live ranges defined in deferred blocks stay in deferred blocks, so we
// don't need to splinter them. That means that start should always be
// after the beginning of the range.
DCHECK(start > Start());
if (end >= End()) {
DCHECK(start > Start());
DetachAt(start, &splinter_temp, zone, ConnectHints);
next_ = nullptr;
} else {
DCHECK(start < End() && Start() < end);
const int kInvalidId = std::numeric_limits<int>::max();
UsePosition* last = DetachAt(start, &splinter_temp, zone, ConnectHints);
LiveRange end_part(kInvalidId, this->representation(), nullptr);
// The last chunk exits the deferred region, and we don't want to connect
// hints here, because the non-deferred region shouldn't be affected
// by allocation decisions on the deferred path.
last_in_splinter =
splinter_temp.DetachAt(end, &end_part, zone, DoNotConnectHints);
next_ = end_part.next_;
last_interval_->set_next(end_part.first_interval_);
// The next splinter will happen either at or after the current interval.
// We can optimize DetachAt by setting current_interval_ accordingly,
// which will then be picked up by FirstSearchIntervalForPosition.
current_interval_ = last_interval_;
last_interval_ = end_part.last_interval_;
if (first_pos_ == nullptr) {
first_pos_ = end_part.first_pos_;
} else {
splitting_pointer_ = last;
if (last != nullptr) last->set_next(end_part.first_pos_);
}
}
if (splinter()->IsEmpty()) {
splinter()->first_interval_ = splinter_temp.first_interval_;
splinter()->last_interval_ = splinter_temp.last_interval_;
} else {
splinter()->last_interval_->set_next(splinter_temp.first_interval_);
splinter()->last_interval_ = splinter_temp.last_interval_;
}
if (splinter()->first_pos() == nullptr) {
splinter()->first_pos_ = splinter_temp.first_pos_;
} else {
splinter()->last_pos_->set_next(splinter_temp.first_pos_);
}
if (last_in_splinter != nullptr) {
splinter()->last_pos_ = last_in_splinter;
} else {
if (splinter()->first_pos() != nullptr &&
splinter()->last_pos_ == nullptr) {
splinter()->last_pos_ = splinter()->first_pos();
for (UsePosition* pos = splinter()->first_pos(); pos != nullptr;
pos = pos->next()) {
splinter()->last_pos_ = pos;
}
}
}
#if DEBUG
Verify();
splinter()->Verify();
#endif
}
void TopLevelLiveRange::SetSplinteredFrom(TopLevelLiveRange* splinter_parent) {
splintered_from_ = splinter_parent;
if (!HasSpillOperand() && splinter_parent->spill_range_ != nullptr) {
SetSpillRange(splinter_parent->spill_range_);
}
}
void TopLevelLiveRange::UpdateSpillRangePostMerge(TopLevelLiveRange* merged) {
DCHECK(merged->TopLevel() == this);
if (HasNoSpillType() && merged->HasSpillRange()) {
set_spill_type(merged->spill_type());
DCHECK_LT(0, GetSpillRange()->live_ranges().size());
merged->spill_range_ = nullptr;
merged->bits_ =
SpillTypeField::update(merged->bits_, SpillType::kNoSpillType);
}
}
void TopLevelLiveRange::Merge(TopLevelLiveRange* other, Zone* zone) {
DCHECK(Start() < other->Start());
DCHECK(other->splintered_from() == this);
LiveRange* first = this;
LiveRange* second = other;
DCHECK(first->Start() < second->Start());
while (first != nullptr && second != nullptr) {
DCHECK(first != second);
// Make sure the ranges are in order each time we iterate.
if (second->Start() < first->Start()) {
LiveRange* tmp = second;
second = first;
first = tmp;
continue;
}
if (first->End() <= second->Start()) {
if (first->next() == nullptr ||
first->next()->Start() > second->Start()) {
// First is in order before second.
LiveRange* temp = first->next();
first->next_ = second;
first = temp;
} else {
// First is in order before its successor (or second), so advance first.
first = first->next();
}
continue;
}
DCHECK(first->Start() < second->Start());
// If first and second intersect, split first.
if (first->Start() < second->End() && second->Start() < first->End()) {
LiveRange* temp = first->SplitAt(second->Start(), zone);
CHECK(temp != first);
temp->set_spilled(first->spilled());
if (!temp->spilled())
temp->set_assigned_register(first->assigned_register());
first->next_ = second;
first = temp;
continue;
}
DCHECK(first->End() <= second->Start());
}
TopLevel()->UpdateParentForAllChildren(TopLevel());
TopLevel()->UpdateSpillRangePostMerge(other);
TopLevel()->register_slot_use(other->slot_use_kind());
#if DEBUG
Verify();
#endif
}
void TopLevelLiveRange::VerifyChildrenInOrder() const {
LifetimePosition last_end = End();
for (const LiveRange* child = this->next(); child != nullptr;
child = child->next()) {
DCHECK(last_end <= child->Start());
last_end = child->End();
}
}
LiveRange* TopLevelLiveRange::GetChildCovers(LifetimePosition pos) {
LiveRange* child = last_child_covers_;
while (child != nullptr && child->End() <= pos) {
child = child->next();
}
last_child_covers_ = child;
return !child || !child->Covers(pos) ? nullptr : child;
}
void TopLevelLiveRange::Verify() const {
VerifyChildrenInOrder();
for (const LiveRange* child = this; child != nullptr; child = child->next()) {
VerifyChildStructure();
}
}
void TopLevelLiveRange::ShortenTo(LifetimePosition start, bool trace_alloc) {
TRACE_COND(trace_alloc, "Shorten live range %d to [%d\n", vreg(),
start.value());
DCHECK_NOT_NULL(first_interval_);
DCHECK(first_interval_->start() <= start);
DCHECK(start < first_interval_->end());
first_interval_->set_start(start);
}
void TopLevelLiveRange::EnsureInterval(LifetimePosition start,
LifetimePosition end, Zone* zone,
bool trace_alloc) {
TRACE_COND(trace_alloc, "Ensure live range %d in interval [%d %d[\n", vreg(),
start.value(), end.value());
LifetimePosition new_end = end;
while (first_interval_ != nullptr && first_interval_->start() <= end) {
if (first_interval_->end() > end) {
new_end = first_interval_->end();
}
first_interval_ = first_interval_->next();
}
UseInterval* new_interval = new (zone) UseInterval(start, new_end);
new_interval->set_next(first_interval_);
first_interval_ = new_interval;
if (new_interval->next() == nullptr) {
last_interval_ = new_interval;
}
}
void TopLevelLiveRange::AddUseInterval(LifetimePosition start,
LifetimePosition end, Zone* zone,
bool trace_alloc) {
TRACE_COND(trace_alloc, "Add to live range %d interval [%d %d[\n", vreg(),
start.value(), end.value());
if (first_interval_ == nullptr) {
UseInterval* interval = new (zone) UseInterval(start, end);
first_interval_ = interval;
last_interval_ = interval;
} else {
if (end == first_interval_->start()) {
first_interval_->set_start(start);
} else if (end < first_interval_->start()) {
UseInterval* interval = new (zone) UseInterval(start, end);
interval->set_next(first_interval_);
first_interval_ = interval;
} else {
// Order of instruction's processing (see ProcessInstructions) guarantees
// that each new use interval either precedes, intersects with or touches
// the last added interval.
DCHECK(start <= first_interval_->end());
first_interval_->set_start(Min(start, first_interval_->start()));
first_interval_->set_end(Max(end, first_interval_->end()));
}
}
}
void TopLevelLiveRange::AddUsePosition(UsePosition* use_pos, bool trace_alloc) {
LifetimePosition pos = use_pos->pos();
TRACE_COND(trace_alloc, "Add to live range %d use position %d\n", vreg(),
pos.value());
UsePosition* prev_hint = nullptr;
UsePosition* prev = nullptr;
UsePosition* current = first_pos_;
while (current != nullptr && current->pos() < pos) {
prev_hint = current->HasHint() ? current : prev_hint;
prev = current;
current = current->next();
}
if (prev == nullptr) {
use_pos->set_next(first_pos_);
first_pos_ = use_pos;
} else {
use_pos->set_next(prev->next());
prev->set_next(use_pos);
}
if (prev_hint == nullptr && use_pos->HasHint()) {
current_hint_position_ = use_pos;
}
}
static bool AreUseIntervalsIntersecting(UseInterval* interval1,
UseInterval* interval2) {
while (interval1 != nullptr && interval2 != nullptr) {
if (interval1->start() < interval2->start()) {
if (interval1->end() > interval2->start()) {
return true;
}
interval1 = interval1->next();
} else {
if (interval2->end() > interval1->start()) {
return true;
}
interval2 = interval2->next();
}
}
return false;
}
std::ostream& operator<<(std::ostream& os,
const PrintableLiveRange& printable_range) {
const LiveRange* range = printable_range.range_;
os << "Range: " << range->TopLevel()->vreg() << ":" << range->relative_id()
<< " ";
if (range->TopLevel()->is_phi()) os << "phi ";
if (range->TopLevel()->is_non_loop_phi()) os << "nlphi ";
os << "{" << std::endl;
UseInterval* interval = range->first_interval();
UsePosition* use_pos = range->first_pos();
while (use_pos != nullptr) {
if (use_pos->HasOperand()) {
os << *use_pos->operand() << use_pos->pos() << " ";
}
use_pos = use_pos->next();
}
os << std::endl;
while (interval != nullptr) {
os << '[' << interval->start() << ", " << interval->end() << ')'
<< std::endl;
interval = interval->next();
}
os << "}";
return os;
}
namespace {
void PrintBlockRow(std::ostream& os, const InstructionBlocks& blocks) {
os << " ";
for (auto block : blocks) {
LifetimePosition start_pos = LifetimePosition::GapFromInstructionIndex(
block->first_instruction_index());
LifetimePosition end_pos = LifetimePosition::GapFromInstructionIndex(
block->last_instruction_index())
.NextFullStart();
int length = end_pos.value() - start_pos.value();
constexpr int kMaxPrefixLength = 32;
char buffer[kMaxPrefixLength];
int rpo_number = block->rpo_number().ToInt();
const char* deferred_marker = block->IsDeferred() ? "(deferred)" : "";
int max_prefix_length = std::min(length, kMaxPrefixLength);
int prefix = snprintf(buffer, max_prefix_length, "[-B%d-%s", rpo_number,
deferred_marker);
os << buffer;
int remaining = length - std::min(prefix, max_prefix_length) - 1;
for (int i = 0; i < remaining; ++i) os << '-';
os << ']';
}
os << '\n';
}
} // namespace
void LinearScanAllocator::PrintRangeRow(std::ostream& os,
const TopLevelLiveRange* toplevel) {
int position = 0;
os << std::setw(3) << toplevel->vreg()
<< (toplevel->IsSplinter() ? "s:" : ": ");
const char* kind_string;
switch (toplevel->spill_type()) {
case TopLevelLiveRange::SpillType::kSpillRange:
kind_string = "ss";
break;
case TopLevelLiveRange::SpillType::kDeferredSpillRange:
kind_string = "sd";
break;
case TopLevelLiveRange::SpillType::kSpillOperand:
kind_string = "so";
break;
default:
kind_string = "s?";
}
for (const LiveRange* range = toplevel; range != nullptr;
range = range->next()) {
for (UseInterval* interval = range->first_interval(); interval != nullptr;
interval = interval->next()) {
LifetimePosition start = interval->start();
LifetimePosition end = interval->end();
CHECK_GE(start.value(), position);
for (; start.value() > position; position++) {
os << ' ';
}
int length = end.value() - start.value();
constexpr int kMaxPrefixLength = 32;
char buffer[kMaxPrefixLength];
int max_prefix_length = std::min(length + 1, kMaxPrefixLength);
int prefix;
if (range->spilled()) {
prefix = snprintf(buffer, max_prefix_length, "|%s", kind_string);
} else {
prefix = snprintf(buffer, max_prefix_length, "|%s",
RegisterName(range->assigned_register()));
}
os << buffer;
position += std::min(prefix, max_prefix_length - 1);
CHECK_GE(end.value(), position);
const char line_style = range->spilled() ? '-' : '=';
for (; end.value() > position; position++) {
os << line_style;
}
}
}
os << '\n';
}
void LinearScanAllocator::PrintRangeOverview(std::ostream& os) {
PrintBlockRow(os, code()->instruction_blocks());
for (auto const toplevel : data()->fixed_live_ranges()) {
if (toplevel == nullptr) continue;
PrintRangeRow(os, toplevel);
}
int rowcount = 0;
for (auto toplevel : data()->live_ranges()) {
if (!CanProcessRange(toplevel)) continue;
if (rowcount++ % 10 == 0) PrintBlockRow(os, code()->instruction_blocks());
PrintRangeRow(os, toplevel);
}
}
SpillRange::SpillRange(TopLevelLiveRange* parent, Zone* zone)
: live_ranges_(zone),
assigned_slot_(kUnassignedSlot),
byte_width_(GetByteWidth(parent->representation())) {
// Spill ranges are created for top level, non-splintered ranges. This is so
// that, when merging decisions are made, we consider the full extent of the
// virtual register, and avoid clobbering it.
DCHECK(!parent->IsSplinter());
UseInterval* result = nullptr;
UseInterval* node = nullptr;
// Copy the intervals for all ranges.
for (LiveRange* range = parent; range != nullptr; range = range->next()) {
UseInterval* src = range->first_interval();
while (src != nullptr) {
UseInterval* new_node = new (zone) UseInterval(src->start(), src->end());
if (result == nullptr) {
result = new_node;
} else {
node->set_next(new_node);
}
node = new_node;
src = src->next();
}
}
use_interval_ = result;
live_ranges().push_back(parent);
end_position_ = node->end();
parent->SetSpillRange(this);
}
bool SpillRange::IsIntersectingWith(SpillRange* other) const {
if (this->use_interval_ == nullptr || other->use_interval_ == nullptr ||
this->End() <= other->use_interval_->start() ||
other->End() <= this->use_interval_->start()) {
return false;
}
return AreUseIntervalsIntersecting(use_interval_, other->use_interval_);
}
bool SpillRange::TryMerge(SpillRange* other) {
if (HasSlot() || other->HasSlot()) return false;
if (byte_width() != other->byte_width() || IsIntersectingWith(other))
return false;
LifetimePosition max = LifetimePosition::MaxPosition();
if (End() < other->End() && other->End() != max) {
end_position_ = other->End();
}
other->end_position_ = max;
MergeDisjointIntervals(other->use_interval_);
other->use_interval_ = nullptr;
for (TopLevelLiveRange* range : other->live_ranges()) {
DCHECK(range->GetSpillRange() == other);
range->SetSpillRange(this);
}
live_ranges().insert(live_ranges().end(), other->live_ranges().begin(),
other->live_ranges().end());
other->live_ranges().clear();
return true;
}
void SpillRange::MergeDisjointIntervals(UseInterval* other) {
UseInterval* tail = nullptr;
UseInterval* current = use_interval_;
while (other != nullptr) {
// Make sure the 'current' list starts first
if (current == nullptr || current->start() > other->start()) {
std::swap(current, other);
}
// Check disjointness
DCHECK(other == nullptr || current->end() <= other->start());
// Append the 'current' node to the result accumulator and move forward
if (tail == nullptr) {
use_interval_ = current;
} else {
tail->set_next(current);
}
tail = current;
current = current->next();
}
// Other list is empty => we are done
}
void SpillRange::Print() const {
StdoutStream os;
os << "{" << std::endl;
for (TopLevelLiveRange* range : live_ranges()) {
os << range->vreg() << " ";
}
os << std::endl;
for (UseInterval* i = interval(); i != nullptr; i = i->next()) {
os << '[' << i->start() << ", " << i->end() << ')' << std::endl;
}
os << "}" << std::endl;
}
RegisterAllocationData::PhiMapValue::PhiMapValue(PhiInstruction* phi,
const InstructionBlock* block,
Zone* zone)
: phi_(phi),
block_(block),
incoming_operands_(zone),
assigned_register_(kUnassignedRegister) {
incoming_operands_.reserve(phi->operands().size());
}
void RegisterAllocationData::PhiMapValue::AddOperand(
InstructionOperand* operand) {
incoming_operands_.push_back(operand);
}
void RegisterAllocationData::PhiMapValue::CommitAssignment(
const InstructionOperand& assigned) {
for (InstructionOperand* operand : incoming_operands_) {
InstructionOperand::ReplaceWith(operand, &assigned);
}
}
RegisterAllocationData::RegisterAllocationData(
const RegisterConfiguration* config, Zone* zone, Frame* frame,
InstructionSequence* code, RegisterAllocationFlags flags,
TickCounter* tick_counter, const char* debug_name)
: allocation_zone_(zone),
frame_(frame),
code_(code),
debug_name_(debug_name),
config_(config),
phi_map_(allocation_zone()),
live_in_sets_(code->InstructionBlockCount(), nullptr, allocation_zone()),
live_out_sets_(code->InstructionBlockCount(), nullptr, allocation_zone()),
live_ranges_(code->VirtualRegisterCount() * 2, nullptr,
allocation_zone()),
fixed_live_ranges_(kNumberOfFixedRangesPerRegister *
this->config()->num_general_registers(),
nullptr, allocation_zone()),
fixed_float_live_ranges_(allocation_zone()),
fixed_double_live_ranges_(kNumberOfFixedRangesPerRegister *
this->config()->num_double_registers(),
nullptr, allocation_zone()),
fixed_simd128_live_ranges_(allocation_zone()),
spill_ranges_(code->VirtualRegisterCount(), nullptr, allocation_zone()),
delayed_references_(allocation_zone()),
assigned_registers_(nullptr),
assigned_double_registers_(nullptr),
virtual_register_count_(code->VirtualRegisterCount()),
preassigned_slot_ranges_(zone),
spill_state_(code->InstructionBlockCount(), ZoneVector<LiveRange*>(zone),
zone),
flags_(flags),
tick_counter_(tick_counter) {
if (!kSimpleFPAliasing) {
fixed_float_live_ranges_.resize(
kNumberOfFixedRangesPerRegister * this->config()->num_float_registers(),
nullptr);
fixed_simd128_live_ranges_.resize(
kNumberOfFixedRangesPerRegister *
this->config()->num_simd128_registers(),
nullptr);
}
assigned_registers_ = new (code_zone())
BitVector(this->config()->num_general_registers(), code_zone());
assigned_double_registers_ = new (code_zone())
BitVector(this->config()->num_double_registers(), code_zone());
fixed_register_use_ = new (code_zone())
BitVector(this->config()->num_general_registers(), code_zone());
fixed_fp_register_use_ = new (code_zone())
BitVector(this->config()->num_double_registers(), code_zone());
this->frame()->SetAllocatedRegisters(assigned_registers_);
this->frame()->SetAllocatedDoubleRegisters(assigned_double_registers_);
}
MoveOperands* RegisterAllocationData::AddGapMove(
int index, Instruction::GapPosition position,
const InstructionOperand& from, const InstructionOperand& to) {
Instruction* instr = code()->InstructionAt(index);
ParallelMove* moves = instr->GetOrCreateParallelMove(position, code_zone());
return moves->AddMove(from, to);
}
MachineRepresentation RegisterAllocationData::RepresentationFor(
int virtual_register) {
DCHECK_LT(virtual_register, code()->VirtualRegisterCount());
return code()->GetRepresentation(virtual_register);
}
TopLevelLiveRange* RegisterAllocationData::GetOrCreateLiveRangeFor(int index) {
if (index >= static_cast<int>(live_ranges().size())) {
live_ranges().resize(index + 1, nullptr);
}
TopLevelLiveRange* result = live_ranges()[index];
if (result == nullptr) {
result = NewLiveRange(index, RepresentationFor(index));
live_ranges()[index] = result;
}
return result;
}
TopLevelLiveRange* RegisterAllocationData::NewLiveRange(
int index, MachineRepresentation rep) {
return new (allocation_zone()) TopLevelLiveRange(index, rep);
}
int RegisterAllocationData::GetNextLiveRangeId() {
int vreg = virtual_register_count_++;
if (vreg >= static_cast<int>(live_ranges().size())) {
live_ranges().resize(vreg + 1, nullptr);
}
return vreg;
}
TopLevelLiveRange* RegisterAllocationData::NextLiveRange(
MachineRepresentation rep) {
int vreg = GetNextLiveRangeId();
TopLevelLiveRange* ret = NewLiveRange(vreg, rep);
return ret;
}
RegisterAllocationData::PhiMapValue* RegisterAllocationData::InitializePhiMap(
const InstructionBlock* block, PhiInstruction* phi) {
RegisterAllocationData::PhiMapValue* map_value = new (allocation_zone())
RegisterAllocationData::PhiMapValue(phi, block, allocation_zone());
auto res =
phi_map_.insert(std::make_pair(phi->virtual_register(), map_value));
DCHECK(res.second);
USE(res);
return map_value;
}
RegisterAllocationData::PhiMapValue* RegisterAllocationData::GetPhiMapValueFor(
int virtual_register) {
auto it = phi_map_.find(virtual_register);
DCHECK(it != phi_map_.end());
return it->second;
}
RegisterAllocationData::PhiMapValue* RegisterAllocationData::GetPhiMapValueFor(
TopLevelLiveRange* top_range) {
return GetPhiMapValueFor(top_range->vreg());
}
bool RegisterAllocationData::ExistsUseWithoutDefinition() {
bool found = false;
BitVector::Iterator iterator(live_in_sets()[0]);
while (!iterator.Done()) {
found = true;
int operand_index = iterator.Current();
PrintF("Register allocator error: live v%d reached first block.\n",
operand_index);
LiveRange* range = GetOrCreateLiveRangeFor(operand_index);
PrintF(" (first use is at %d)\n", range->first_pos()->pos().value());
if (debug_name() == nullptr) {
PrintF("\n");
} else {
PrintF(" (function: %s)\n", debug_name());
}
iterator.Advance();
}
return found;
}
// If a range is defined in a deferred block, we can expect all the range
// to only cover positions in deferred blocks. Otherwise, a block on the
// hot path would be dominated by a deferred block, meaning it is unreachable
// without passing through the deferred block, which is contradictory.
// In particular, when such a range contributes a result back on the hot
// path, it will be as one of the inputs of a phi. In that case, the value
// will be transferred via a move in the Gap::END's of the last instruction
// of a deferred block.
bool RegisterAllocationData::RangesDefinedInDeferredStayInDeferred() {
const size_t live_ranges_size = live_ranges().size();
for (const TopLevelLiveRange* range : live_ranges()) {
CHECK_EQ(live_ranges_size,
live_ranges().size()); // TODO(neis): crbug.com/831822
if (range == nullptr || range->IsEmpty() ||
!code()
->GetInstructionBlock(range->Start().ToInstructionIndex())
->IsDeferred()) {
continue;
}
for (const UseInterval* i = range->first_interval(); i != nullptr;
i = i->next()) {
int first = i->FirstGapIndex();
int last = i->LastGapIndex();
for (int instr = first; instr <= last;) {
const InstructionBlock* block = code()->GetInstructionBlock(instr);
if (!block->IsDeferred()) return false;
instr = block->last_instruction_index() + 1;
}
}
}
return true;
}
SpillRange* RegisterAllocationData::AssignSpillRangeToLiveRange(
TopLevelLiveRange* range, SpillMode spill_mode) {
using SpillType = TopLevelLiveRange::SpillType;
DCHECK(!range->HasSpillOperand());
SpillRange* spill_range = range->GetAllocatedSpillRange();
if (spill_range == nullptr) {
DCHECK(!range->IsSplinter());
spill_range = new (allocation_zone()) SpillRange(range, allocation_zone());
}
if (spill_mode == SpillMode::kSpillDeferred &&
(range->spill_type() != SpillType::kSpillRange)) {
DCHECK(is_turbo_control_flow_aware_allocation());
range->set_spill_type(SpillType::kDeferredSpillRange);
} else {
range->set_spill_type(SpillType::kSpillRange);
}
int spill_range_index =
range->IsSplinter() ? range->splintered_from()->vreg() : range->vreg();
spill_ranges()[spill_range_index] = spill_range;
return spill_range;
}
SpillRange* RegisterAllocationData::CreateSpillRangeForLiveRange(
TopLevelLiveRange* range) {
DCHECK(is_turbo_preprocess_ranges());
DCHECK(!range->HasSpillOperand());
DCHECK(!range->IsSplinter());
SpillRange* spill_range =
new (allocation_zone()) SpillRange(range, allocation_zone());
return spill_range;
}
void RegisterAllocationData::MarkFixedUse(MachineRepresentation rep,
int index) {
switch (rep) {
case MachineRepresentation::kFloat32:
case MachineRepresentation::kSimd128:
if (kSimpleFPAliasing) {
fixed_fp_register_use_->Add(index);
} else {
int alias_base_index = -1;
int aliases = config()->GetAliases(
rep, index, MachineRepresentation::kFloat64, &alias_base_index);
DCHECK(aliases > 0 || (aliases == 0 && alias_base_index == -1));
while (aliases--) {
int aliased_reg = alias_base_index + aliases;
fixed_fp_register_use_->Add(aliased_reg);
}
}
break;
case MachineRepresentation::kFloat64:
fixed_fp_register_use_->Add(index);
break;
default:
DCHECK(!IsFloatingPoint(rep));
fixed_register_use_->Add(index);
break;
}
}
bool RegisterAllocationData::HasFixedUse(MachineRepresentation rep, int index) {
switch (rep) {
case MachineRepresentation::kFloat32:
case MachineRepresentation::kSimd128:
if (kSimpleFPAliasing) {
return fixed_fp_register_use_->Contains(index);
} else {
int alias_base_index = -1;
int aliases = config()->GetAliases(
rep, index, MachineRepresentation::kFloat64, &alias_base_index);
DCHECK(aliases > 0 || (aliases == 0 && alias_base_index == -1));
bool result = false;
while (aliases-- && !result) {
int aliased_reg = alias_base_index + aliases;
result |= fixed_fp_register_use_->Contains(aliased_reg);
}
return result;
}
break;
case MachineRepresentation::kFloat64:
return fixed_fp_register_use_->Contains(index);
break;
default:
DCHECK(!IsFloatingPoint(rep));
return fixed_register_use_->Contains(index);
break;
}
}
void RegisterAllocationData::MarkAllocated(MachineRepresentation rep,
int index) {
switch (rep) {
case MachineRepresentation::kFloat32:
case MachineRepresentation::kSimd128:
if (kSimpleFPAliasing) {
assigned_double_registers_->Add(index);
} else {
int alias_base_index = -1;
int aliases = config()->GetAliases(
rep, index, MachineRepresentation::kFloat64, &alias_base_index);
DCHECK(aliases > 0 || (aliases == 0 && alias_base_index == -1));
while (aliases--) {
int aliased_reg = alias_base_index + aliases;
assigned_double_registers_->Add(aliased_reg);
}
}
break;
case MachineRepresentation::kFloat64:
assigned_double_registers_->Add(index);
break;
default:
DCHECK(!IsFloatingPoint(rep));
assigned_registers_->Add(index);
break;
}
}
bool RegisterAllocationData::IsBlockBoundary(LifetimePosition pos) const {
return pos.IsFullStart() &&
code()->GetInstructionBlock(pos.ToInstructionIndex())->code_start() ==
pos.ToInstructionIndex();
}
ConstraintBuilder::ConstraintBuilder(RegisterAllocationData* data)
: data_(data) {}
InstructionOperand* ConstraintBuilder::AllocateFixed(
UnallocatedOperand* operand, int pos, bool is_tagged, bool is_input) {
TRACE("Allocating fixed reg for op %d\n", operand->virtual_register());
DCHECK(operand->HasFixedPolicy());
InstructionOperand allocated;
MachineRepresentation rep = InstructionSequence::DefaultRepresentation();
int virtual_register = operand->virtual_register();
if (virtual_register != InstructionOperand::kInvalidVirtualRegister) {
rep = data()->RepresentationFor(virtual_register);
}
if (operand->HasFixedSlotPolicy()) {
allocated = AllocatedOperand(AllocatedOperand::STACK_SLOT, rep,
operand->fixed_slot_index());
} else if (operand->HasFixedRegisterPolicy()) {
DCHECK(!IsFloatingPoint(rep));
DCHECK(data()->config()->IsAllocatableGeneralCode(
operand->fixed_register_index()));
allocated = AllocatedOperand(AllocatedOperand::REGISTER, rep,
operand->fixed_register_index());
} else if (operand->HasFixedFPRegisterPolicy()) {
DCHECK(IsFloatingPoint(rep));
DCHECK_NE(InstructionOperand::kInvalidVirtualRegister, virtual_register);
allocated = AllocatedOperand(AllocatedOperand::REGISTER, rep,
operand->fixed_register_index());
} else {
UNREACHABLE();
}
if (is_input && allocated.IsAnyRegister()) {
data()->MarkFixedUse(rep, operand->fixed_register_index());
}
InstructionOperand::ReplaceWith(operand, &allocated);
if (is_tagged) {
TRACE("Fixed reg is tagged at %d\n", pos);
Instruction* instr = code()->InstructionAt(pos);
if (instr->HasReferenceMap()) {
instr->reference_map()->RecordReference(*AllocatedOperand::cast(operand));
}
}
return operand;
}
void ConstraintBuilder::MeetRegisterConstraints() {
for (InstructionBlock* block : code()->instruction_blocks()) {
data_->tick_counter()->DoTick();
MeetRegisterConstraints(block);
}
}
void ConstraintBuilder::MeetRegisterConstraints(const InstructionBlock* block) {
int start = block->first_instruction_index();
int end = block->last_instruction_index();
DCHECK_NE(-1, start);
for (int i = start; i <= end; ++i) {
MeetConstraintsBefore(i);
if (i != end) MeetConstraintsAfter(i);
}
// Meet register constraints for the instruction in the end.
MeetRegisterConstraintsForLastInstructionInBlock(block);
}
void ConstraintBuilder::MeetRegisterConstraintsForLastInstructionInBlock(
const InstructionBlock* block) {
int end = block->last_instruction_index();
Instruction* last_instruction = code()->InstructionAt(end);
for (size_t i = 0; i < last_instruction->OutputCount(); i++) {
InstructionOperand* output_operand = last_instruction->OutputAt(i);
DCHECK(!output_operand->IsConstant());
UnallocatedOperand* output = UnallocatedOperand::cast(output_operand);
int output_vreg = output->virtual_register();
TopLevelLiveRange* range = data()->GetOrCreateLiveRangeFor(output_vreg);
bool assigned = false;
if (output->HasFixedPolicy()) {
AllocateFixed(output, -1, false, false);
// This value is produced on the stack, we never need to spill it.
if (output->IsStackSlot()) {
DCHECK(LocationOperand::cast(output)->index() <
data()->frame()->GetSpillSlotCount());
range->SetSpillOperand(LocationOperand::cast(output));
range->SetSpillStartIndex(end);
assigned = true;
}
for (const RpoNumber& succ : block->successors()) {
const InstructionBlock* successor = code()->InstructionBlockAt(succ);
DCHECK_EQ(1, successor->PredecessorCount());
int gap_index = successor->first_instruction_index();
// Create an unconstrained operand for the same virtual register
// and insert a gap move from the fixed output to the operand.
UnallocatedOperand output_copy(UnallocatedOperand::REGISTER_OR_SLOT,
output_vreg);
data()->AddGapMove(gap_index, Instruction::START, *output, output_copy);
}
}
if (!assigned) {
for (const RpoNumber& succ : block->successors()) {
const InstructionBlock* successor = code()->InstructionBlockAt(succ);
DCHECK_EQ(1, successor->PredecessorCount());
int gap_index = successor->first_instruction_index();
range->RecordSpillLocation(allocation_zone(), gap_index, output);
range->SetSpillStartIndex(gap_index);
}
}
}
}
void ConstraintBuilder::MeetConstraintsAfter(int instr_index) {
Instruction* first = code()->InstructionAt(instr_index);
// Handle fixed temporaries.
for (size_t i = 0; i < first->TempCount(); i++) {
UnallocatedOperand* temp = UnallocatedOperand::cast(first->TempAt(i));
if (temp->HasFixedPolicy()) AllocateFixed(temp, instr_index, false, false);
}
// Handle constant/fixed output operands.
for (size_t i = 0; i < first->OutputCount(); i++) {
InstructionOperand* output = first->OutputAt(i);
if (output->IsConstant()) {
int output_vreg = ConstantOperand::cast(output)->virtual_register();
TopLevelLiveRange* range = data()->GetOrCreateLiveRangeFor(output_vreg);
range->SetSpillStartIndex(instr_index + 1);
range->SetSpillOperand(output);
continue;
}
UnallocatedOperand* first_output = UnallocatedOperand::cast(output);
TopLevelLiveRange* range =
data()->GetOrCreateLiveRangeFor(first_output->virtual_register());
bool assigned = false;
if (first_output->HasFixedPolicy()) {
int output_vreg = first_output->virtual_register();
UnallocatedOperand output_copy(UnallocatedOperand::REGISTER_OR_SLOT,
output_vreg);
bool is_tagged = code()->IsReference(output_vreg);
if (first_output->HasSecondaryStorage()) {
range->MarkHasPreassignedSlot();
data()->preassigned_slot_ranges().push_back(
std::make_pair(range, first_output->GetSecondaryStorage()));
}
AllocateFixed(first_output, instr_index, is_tagged, false);
// This value is produced on the stack, we never need to spill it.
if (first_output->IsStackSlot()) {
DCHECK(LocationOperand::cast(first_output)->index() <
data()->frame()->GetTotalFrameSlotCount());
range->SetSpillOperand(LocationOperand::cast(first_output));
range->SetSpillStartIndex(instr_index + 1);
assigned = true;
}
data()->AddGapMove(instr_index + 1, Instruction::START, *first_output,
output_copy);
}
// Make sure we add a gap move for spilling (if we have not done
// so already).
if (!assigned) {
range->RecordSpillLocation(allocation_zone(), instr_index + 1,
first_output);
range->SetSpillStartIndex(instr_index + 1);
}
}
}
void ConstraintBuilder::MeetConstraintsBefore(int instr_index) {
Instruction* second = code()->InstructionAt(instr_index);
// Handle fixed input operands of second instruction.
for (size_t i = 0; i < second->InputCount(); i++) {
InstructionOperand* input = second->InputAt(i);
if (input->IsImmediate() || input->IsExplicit()) {
continue; // Ignore immediates and explicitly reserved registers.
}
UnallocatedOperand* cur_input = UnallocatedOperand::cast(input);
if (cur_input->HasFixedPolicy()) {
int input_vreg = cur_input->virtual_register();
UnallocatedOperand input_copy(UnallocatedOperand::REGISTER_OR_SLOT,
input_vreg);
bool is_tagged = code()->IsReference(input_vreg);
AllocateFixed(cur_input, instr_index, is_tagged, true);
data()->AddGapMove(instr_index, Instruction::END, input_copy, *cur_input);
}
}
// Handle "output same as input" for second instruction.
for (size_t i = 0; i < second->OutputCount(); i++) {
InstructionOperand* output = second->OutputAt(i);
if (!output->IsUnallocated()) continue;
UnallocatedOperand* second_output = UnallocatedOperand::cast(output);
if (!second_output->HasSameAsInputPolicy()) continue;
DCHECK_EQ(0, i); // Only valid for first output.
UnallocatedOperand* cur_input =
UnallocatedOperand::cast(second->InputAt(0));
int output_vreg = second_output->virtual_register();
int input_vreg = cur_input->virtual_register();
UnallocatedOperand input_copy(UnallocatedOperand::REGISTER_OR_SLOT,
input_vreg);
*cur_input =
UnallocatedOperand(*cur_input, second_output->virtual_register());
MoveOperands* gap_move = data()->AddGapMove(instr_index, Instruction::END,
input_copy, *cur_input);
DCHECK_NOT_NULL(gap_move);
if (code()->IsReference(input_vreg) && !code()->IsReference(output_vreg)) {
if (second->HasReferenceMap()) {
RegisterAllocationData::DelayedReference delayed_reference = {
second->reference_map(), &gap_move->source()};
data()->delayed_references().push_back(delayed_reference);
}
}
}
}
void ConstraintBuilder::ResolvePhis() {
// Process the blocks in reverse order.
for (InstructionBlock* block : base::Reversed(code()->instruction_blocks())) {
data_->tick_counter()->DoTick();
ResolvePhis(block);
}
}
void ConstraintBuilder::ResolvePhis(const InstructionBlock* block) {
for (PhiInstruction* phi : block->phis()) {
int phi_vreg = phi->virtual_register();
RegisterAllocationData::PhiMapValue* map_value =
data()->InitializePhiMap(block, phi);
InstructionOperand& output = phi->output();
// Map the destination operands, so the commitment phase can find them.
for (size_t i = 0; i < phi->operands().size(); ++i) {
InstructionBlock* cur_block =
code()->InstructionBlockAt(block->predecessors()[i]);
UnallocatedOperand input(UnallocatedOperand::REGISTER_OR_SLOT,
phi->operands()[i]);
MoveOperands* move = data()->AddGapMove(
cur_block->last_instruction_index(), Instruction::END, input, output);
map_value->AddOperand(&move->destination());
DCHECK(!code()
->InstructionAt(cur_block->last_instruction_index())
->HasReferenceMap());
}
TopLevelLiveRange* live_range = data()->GetOrCreateLiveRangeFor(phi_vreg);
int gap_index = block->first_instruction_index();
live_range->RecordSpillLocation(allocation_zone(), gap_index, &output);
live_range->SetSpillStartIndex(gap_index);
// We use the phi-ness of some nodes in some later heuristics.
live_range->set_is_phi(true);
live_range->set_is_non_loop_phi(!block->IsLoopHeader());
}
}
LiveRangeBuilder::LiveRangeBuilder(RegisterAllocationData* data,
Zone* local_zone)
: data_(data), phi_hints_(local_zone) {}
BitVector* LiveRangeBuilder::ComputeLiveOut(const InstructionBlock* block,
RegisterAllocationData* data) {
size_t block_index = block->rpo_number().ToSize();
BitVector* live_out = data->live_out_sets()[block_index];
if (live_out == nullptr) {
// Compute live out for the given block, except not including backward
// successor edges.
Zone* zone = data->allocation_zone();
const InstructionSequence* code = data->code();
live_out = new (zone) BitVector(code->VirtualRegisterCount(), zone);
// Process all successor blocks.
for (const RpoNumber& succ : block->successors()) {
// Add values live on entry to the successor.
if (succ <= block->rpo_number()) continue;
BitVector* live_in = data->live_in_sets()[succ.ToSize()];
if (live_in != nullptr) live_out->Union(*live_in);
// All phi input operands corresponding to this successor edge are live
// out from this block.
const InstructionBlock* successor = code->InstructionBlockAt(succ);
size_t index = successor->PredecessorIndexOf(block->rpo_number());
DCHECK(index < successor->PredecessorCount());
for (PhiInstruction* phi : successor->phis()) {
live_out->Add(phi->operands()[index]);
}
}
data->live_out_sets()[block_index] = live_out;
}
return live_out;
}
void LiveRangeBuilder::AddInitialIntervals(const InstructionBlock* block,
BitVector* live_out) {
// Add an interval that includes the entire block to the live range for
// each live_out value.
LifetimePosition start = LifetimePosition::GapFromInstructionIndex(
block->first_instruction_index());
LifetimePosition end = LifetimePosition::InstructionFromInstructionIndex(
block->last_instruction_index())
.NextStart();
BitVector::Iterator iterator(live_out);
while (!iterator.Done()) {
int operand_index = iterator.Current();
TopLevelLiveRange* range = data()->GetOrCreateLiveRangeFor(operand_index);
range->AddUseInterval(start, end, allocation_zone(),
data()->is_trace_alloc());
iterator.Advance();
}
}
int LiveRangeBuilder::FixedFPLiveRangeID(int index, MachineRepresentation rep) {
int result = -index - 1;
switch (rep) {
case MachineRepresentation::kSimd128:
result -=
kNumberOfFixedRangesPerRegister * config()->num_float_registers();
V8_FALLTHROUGH;
case MachineRepresentation::kFloat32:
result -=
kNumberOfFixedRangesPerRegister * config()->num_double_registers();
V8_FALLTHROUGH;
case MachineRepresentation::kFloat64:
result -=
kNumberOfFixedRangesPerRegister * config()->num_general_registers();
break;
default:
UNREACHABLE();
}
return result;
}
TopLevelLiveRange* LiveRangeBuilder::FixedLiveRangeFor(int index,
SpillMode spill_mode) {
int offset = spill_mode == SpillMode::kSpillAtDefinition
? 0
: config()->num_general_registers();
DCHECK(index < config()->num_general_registers());
TopLevelLiveRange* result = data()->fixed_live_ranges()[offset + index];
if (result == nullptr) {
MachineRepresentation rep = InstructionSequence::DefaultRepresentation();
result = data()->NewLiveRange(FixedLiveRangeID(offset + index), rep);
DCHECK(result->IsFixed());
result->set_assigned_register(index);
data()->MarkAllocated(rep, index);
if (spill_mode == SpillMode::kSpillDeferred) {
result->set_deferred_fixed();
}
data()->fixed_live_ranges()[offset + index] = result;
}
return result;
}
TopLevelLiveRange* LiveRangeBuilder::FixedFPLiveRangeFor(
int index, MachineRepresentation rep, SpillMode spill_mode) {
int num_regs = config()->num_double_registers();
ZoneVector<TopLevelLiveRange*>* live_ranges =
&data()->fixed_double_live_ranges();
if (!kSimpleFPAliasing) {
switch (rep) {
case MachineRepresentation::kFloat32:
num_regs = config()->num_float_registers();
live_ranges = &data()->fixed_float_live_ranges();
break;
case MachineRepresentation::kSimd128:
num_regs = config()->num_simd128_registers();
live_ranges = &data()->fixed_simd128_live_ranges();
break;
default:
break;
}
}
int offset = spill_mode == SpillMode::kSpillAtDefinition ? 0 : num_regs;
DCHECK(index < num_regs);
USE(num_regs);
TopLevelLiveRange* result = (*live_ranges)[offset + index];
if (result == nullptr) {
result = data()->NewLiveRange(FixedFPLiveRangeID(offset + index, rep), rep);
DCHECK(result->IsFixed());
result->set_assigned_register(index);
data()->MarkAllocated(rep, index);
if (spill_mode == SpillMode::kSpillDeferred) {
result->set_deferred_fixed();
}
(*live_ranges)[offset + index] = result;
}
return result;
}
TopLevelLiveRange* LiveRangeBuilder::LiveRangeFor(InstructionOperand* operand,
SpillMode spill_mode) {
if (operand->IsUnallocated()) {
return data()->GetOrCreateLiveRangeFor(
UnallocatedOperand::cast(operand)->virtual_register());
} else if (operand->IsConstant()) {
return data()->GetOrCreateLiveRangeFor(
ConstantOperand::cast(operand)->virtual_register());
} else if (operand->IsRegister()) {
return FixedLiveRangeFor(
LocationOperand::cast(operand)->GetRegister().code(), spill_mode);
} else if (operand->IsFPRegister()) {
LocationOperand* op = LocationOperand::cast(operand);
return FixedFPLiveRangeFor(op->register_code(), op->representation(),
spill_mode);
} else {
return nullptr;
}
}
UsePosition* LiveRangeBuilder::NewUsePosition(LifetimePosition pos,
InstructionOperand* operand,
void* hint,
UsePositionHintType hint_type) {
return new (allocation_zone()) UsePosition(pos, operand, hint, hint_type);
}
UsePosition* LiveRangeBuilder::Define(LifetimePosition position,
InstructionOperand* operand, void* hint,
UsePositionHintType hint_type,
SpillMode spill_mode) {
TopLevelLiveRange* range = LiveRangeFor(operand, spill_mode);
if (range == nullptr) return nullptr;
if (range->IsEmpty() || range->Start() > position) {
// Can happen if there is a definition without use.
range->AddUseInterval(position, position.NextStart(), allocation_zone(),
data()->is_trace_alloc());
range->AddUsePosition(NewUsePosition(position.NextStart()),
data()->is_trace_alloc());
} else {
range->ShortenTo(position, data()->is_trace_alloc());
}
if (!operand->IsUnallocated()) return nullptr;
UnallocatedOperand* unalloc_operand = UnallocatedOperand::cast(operand);
UsePosition* use_pos =
NewUsePosition(position, unalloc_operand, hint, hint_type);
range->AddUsePosition(use_pos, data()->is_trace_alloc());
return use_pos;
}
UsePosition* LiveRangeBuilder::Use(LifetimePosition block_start,
LifetimePosition position,
InstructionOperand* operand, void* hint,
UsePositionHintType hint_type,
SpillMode spill_mode) {
TopLevelLiveRange* range = LiveRangeFor(operand, spill_mode);
if (range == nullptr) return nullptr;
UsePosition* use_pos = nullptr;
if (operand->IsUnallocated()) {
UnallocatedOperand* unalloc_operand = UnallocatedOperand::cast(operand);
use_pos = NewUsePosition(position, unalloc_operand, hint, hint_type);
range->AddUsePosition(use_pos, data()->is_trace_alloc());
}
range->AddUseInterval(block_start, position, allocation_zone(),
data()->is_trace_alloc());
return use_pos;
}
void LiveRangeBuilder::ProcessInstructions(const InstructionBlock* block,
BitVector* live) {
int block_start = block->first_instruction_index();
LifetimePosition block_start_position =
LifetimePosition::GapFromInstructionIndex(block_start);
bool fixed_float_live_ranges = false;
bool fixed_simd128_live_ranges = false;
if (!kSimpleFPAliasing) {
int mask = data()->code()->representation_mask();
fixed_float_live_ranges = (mask & kFloat32Bit) != 0;
fixed_simd128_live_ranges = (mask & kSimd128Bit) != 0;
}
SpillMode spill_mode = SpillModeForBlock(block);
for (int index = block->last_instruction_index(); index >= block_start;
index--) {
LifetimePosition curr_position =
LifetimePosition::InstructionFromInstructionIndex(index);
Instruction* instr = code()->InstructionAt(index);
DCHECK_NOT_NULL(instr);
DCHECK(curr_position.IsInstructionPosition());
// Process output, inputs, and temps of this instruction.
for (size_t i = 0; i < instr->OutputCount(); i++) {
InstructionOperand* output = instr->OutputAt(i);
if (output->IsUnallocated()) {
// Unsupported.
DCHECK(!UnallocatedOperand::cast(output)->HasSlotPolicy());
int out_vreg = UnallocatedOperand::cast(output)->virtual_register();
live->Remove(out_vreg);
} else if (output->IsConstant()) {
int out_vreg = ConstantOperand::cast(output)->virtual_register();
live->Remove(out_vreg);
}
if (block->IsHandler() && index == block_start && output->IsAllocated() &&
output->IsRegister() &&
AllocatedOperand::cast(output)->GetRegister() ==
v8::internal::kReturnRegister0) {
// The register defined here is blocked from gap start - it is the
// exception value.
// TODO(mtrofin): should we explore an explicit opcode for
// the first instruction in the handler?
Define(LifetimePosition::GapFromInstructionIndex(index), output,
spill_mode);
} else {
Define(curr_position, output, spill_mode);
}
}
if (instr->ClobbersRegisters()) {
for (int i = 0; i < config()->num_allocatable_general_registers(); ++i) {
// Create a UseInterval at this instruction for all fixed registers,
// (including the instruction outputs). Adding another UseInterval here
// is OK because AddUseInterval will just merge it with the existing
// one at the end of the range.
int code = config()->GetAllocatableGeneralCode(i);
TopLevelLiveRange* range = FixedLiveRangeFor(code, spill_mode);
range->AddUseInterval(curr_position, curr_position.End(),
allocation_zone(), data()->is_trace_alloc());
}
}
if (instr->ClobbersDoubleRegisters()) {
for (int i = 0; i < config()->num_allocatable_double_registers(); ++i) {
// Add a UseInterval for all DoubleRegisters. See comment above for
// general registers.
int code = config()->GetAllocatableDoubleCode(i);
TopLevelLiveRange* range = FixedFPLiveRangeFor(
code, MachineRepresentation::kFloat64, spill_mode);
range->AddUseInterval(curr_position, curr_position.End(),
allocation_zone(), data()->is_trace_alloc());
}
// Clobber fixed float registers on archs with non-simple aliasing.
if (!kSimpleFPAliasing) {
if (fixed_float_live_ranges) {
for (int i = 0; i < config()->num_allocatable_float_registers();
++i) {
// Add a UseInterval for all FloatRegisters. See comment above for
// general registers.
int code = config()->GetAllocatableFloatCode(i);
TopLevelLiveRange* range = FixedFPLiveRangeFor(
code, MachineRepresentation::kFloat32, spill_mode);
range->AddUseInterval(curr_position, curr_position.End(),
allocation_zone(), data()->is_trace_alloc());
}
}
if (fixed_simd128_live_ranges) {
for (int i = 0; i < config()->num_allocatable_simd128_registers();
++i) {
int code = config()->GetAllocatableSimd128Code(i);
TopLevelLiveRange* range = FixedFPLiveRangeFor(
code, MachineRepresentation::kSimd128, spill_mode);
range->AddUseInterval(curr_position, curr_position.End(),
allocation_zone(), data()->is_trace_alloc());
}
}
}
}
for (size_t i = 0; i < instr->InputCount(); i++) {
InstructionOperand* input = instr->InputAt(i);
if (input->IsImmediate() || input->IsExplicit()) {
continue; // Ignore immediates and explicitly reserved registers.
}
LifetimePosition use_pos;
if (input->IsUnallocated() &&
UnallocatedOperand::cast(input)->IsUsedAtStart()) {
use_pos = curr_position;
} else {
use_pos = curr_position.End();
}
if (input->IsUnallocated()) {
UnallocatedOperand* unalloc = UnallocatedOperand::cast(input);
int vreg = unalloc->virtual_register();
live->Add(vreg);
if (unalloc->HasSlotPolicy()) {
if (data()->is_turbo_control_flow_aware_allocation()) {
data()->GetOrCreateLiveRangeFor(vreg)->register_slot_use(
block->IsDeferred()
? TopLevelLiveRange::SlotUseKind::kDeferredSlotUse
: TopLevelLiveRange::SlotUseKind::kGeneralSlotUse);
} else {
data()->GetOrCreateLiveRangeFor(vreg)->register_slot_use(
TopLevelLiveRange::SlotUseKind::kGeneralSlotUse);
}
}
}
Use(block_start_position, use_pos, input, spill_mode);
}
for (size_t i = 0; i < instr->TempCount(); i++) {
InstructionOperand* temp = instr->TempAt(i);
// Unsupported.
DCHECK_IMPLIES(temp->IsUnallocated(),
!UnallocatedOperand::cast(temp)->HasSlotPolicy());
if (instr->ClobbersTemps()) {
if (temp->IsRegister()) continue;
if (temp->IsUnallocated()) {
UnallocatedOperand* temp_unalloc = UnallocatedOperand::cast(temp);
if (temp_unalloc->HasFixedPolicy()) {
continue;
}
}
}
Use(block_start_position, curr_position.End(), temp, spill_mode);
Define(curr_position, temp, spill_mode);
}
// Process the moves of the instruction's gaps, making their sources live.
const Instruction::GapPosition kPositions[] = {Instruction::END,
Instruction::START};
curr_position = curr_position.PrevStart();
DCHECK(curr_position.IsGapPosition());
for (const Instruction::GapPosition& position : kPositions) {
ParallelMove* move = instr->GetParallelMove(position);
if (move == nullptr) continue;
if (position == Instruction::END) {
curr_position = curr_position.End();
} else {
curr_position = curr_position.Start();
}
for (MoveOperands* cur : *move) {
InstructionOperand& from = cur->source();
InstructionOperand& to = cur->destination();
void* hint = &to;
UsePositionHintType hint_type = UsePosition::HintTypeForOperand(to);
UsePosition* to_use = nullptr;
int phi_vreg = -1;
if (to.IsUnallocated()) {
int to_vreg = UnallocatedOperand::cast(to).virtual_register();
TopLevelLiveRange* to_range =
data()->GetOrCreateLiveRangeFor(to_vreg);
if (to_range->is_phi()) {
phi_vreg = to_vreg;
if (to_range->is_non_loop_phi()) {
hint = to_range->current_hint_position();
hint_type = hint == nullptr ? UsePositionHintType::kNone
: UsePositionHintType::kUsePos;
} else {
hint_type = UsePositionHintType::kPhi;
hint = data()->GetPhiMapValueFor(to_vreg);
}
} else {
if (live->Contains(to_vreg)) {
to_use =
Define(curr_position, &to, &from,
UsePosition::HintTypeForOperand(from), spill_mode);
live->Remove(to_vreg);
} else {
cur->Eliminate();
continue;
}
}
} else {
Define(curr_position, &to, spill_mode);
}
UsePosition* from_use = Use(block_start_position, curr_position, &from,
hint, hint_type, spill_mode);
// Mark range live.
if (from.IsUnallocated()) {
live->Add(UnallocatedOperand::cast(from).virtual_register());
}
// Resolve use position hints just created.
if (to_use != nullptr && from_use != nullptr) {
to_use->ResolveHint(from_use);
from_use->ResolveHint(to_use);
}
DCHECK_IMPLIES(to_use != nullptr, to_use->IsResolved());
DCHECK_IMPLIES(from_use != nullptr, from_use->IsResolved());
// Potentially resolve phi hint.
if (phi_vreg != -1) ResolvePhiHint(&from, from_use);
}
}
}
}
void LiveRangeBuilder::ProcessPhis(const InstructionBlock* block,
BitVector* live) {
for (PhiInstruction* phi : block->phis()) {
// The live range interval already ends at the first instruction of the
// block.
int phi_vreg = phi->virtual_register();
live->Remove(phi_vreg);
// Select a hint from a predecessor block that precedes this block in the
// rpo order. In order of priority:
// - Avoid hints from deferred blocks.
// - Prefer hints from allocated (or explicit) operands.
// - Prefer hints from empty blocks (containing just parallel moves and a
// jump). In these cases, if we can elide the moves, the jump threader
// is likely to be able to elide the jump.
// The enforcement of hinting in rpo order is required because hint
// resolution that happens later in the compiler pipeline visits
// instructions in reverse rpo order, relying on the fact that phis are
// encountered before their hints.
InstructionOperand* hint = nullptr;
int hint_preference = 0;
// The cost of hinting increases with the number of predecessors. At the
// same time, the typical benefit decreases, since this hinting only
// optimises the execution path through one predecessor. A limit of 2 is
// sufficient to hit the common if/else pattern.
int predecessor_limit = 2;
for (RpoNumber predecessor : block->predecessors()) {
const InstructionBlock* predecessor_block =
code()->InstructionBlockAt(predecessor);
DCHECK_EQ(predecessor_block->rpo_number(), predecessor);
// Only take hints from earlier rpo numbers.
if (predecessor >= block->rpo_number()) continue;
// Look up the predecessor instruction.
const Instruction* predecessor_instr =
GetLastInstruction(code(), predecessor_block);
InstructionOperand* predecessor_hint = nullptr;
// Phis are assigned in the END position of the last instruction in each
// predecessor block.
for (MoveOperands* move :
*predecessor_instr->GetParallelMove(Instruction::END)) {
InstructionOperand& to = move->destination();
if (to.IsUnallocated() &&
UnallocatedOperand::cast(to).virtual_register() == phi_vreg) {
predecessor_hint = &move->source();
break;
}
}
DCHECK_NOT_NULL(predecessor_hint);
// For each predecessor, generate a score according to the priorities
// described above, and pick the best one. Flags in higher-order bits have
// a higher priority than those in lower-order bits.
int predecessor_hint_preference = 0;
const int kNotDeferredBlockPreference = (1 << 2);
const int kMoveIsAllocatedPreference = (1 << 1);
const int kBlockIsEmptyPreference = (1 << 0);
// - Avoid hints from deferred blocks.
if (!predecessor_block->IsDeferred()) {
predecessor_hint_preference |= kNotDeferredBlockPreference;
}
// - Prefer hints from allocated (or explicit) operands.
//
// Already-allocated or explicit operands are typically assigned using
// the parallel moves on the last instruction. For example:
//
// gap (v101 = [x0|R|w32]) (v100 = v101)
// ArchJmp
// ...
// phi: v100 = v101 v102
//
// We have already found the END move, so look for a matching START move
// from an allocated (or explicit) operand.
//
// Note that we cannot simply look up data()->live_ranges()[vreg] here
// because the live ranges are still being built when this function is
// called.
// TODO(v8): Find a way to separate hinting from live range analysis in
// BuildLiveRanges so that we can use the O(1) live-range look-up.
auto moves = predecessor_instr->GetParallelMove(Instruction::START);
if (moves != nullptr) {
for (MoveOperands* move : *moves) {
InstructionOperand& to = move->destination();
if (predecessor_hint->Equals(to)) {
if (move->source().IsAllocated() || move->source().IsExplicit()) {
predecessor_hint_preference |= kMoveIsAllocatedPreference;
}
break;
}
}
}
// - Prefer hints from empty blocks.
if (predecessor_block->last_instruction_index() ==
predecessor_block->first_instruction_index()) {
predecessor_hint_preference |= kBlockIsEmptyPreference;
}
if ((hint == nullptr) ||
(predecessor_hint_preference > hint_preference)) {
// Take the hint from this predecessor.
hint = predecessor_hint;
hint_preference = predecessor_hint_preference;
}
if (--predecessor_limit <= 0) break;
}
DCHECK_NOT_NULL(hint);
LifetimePosition block_start = LifetimePosition::GapFromInstructionIndex(
block->first_instruction_index());
UsePosition* use_pos = Define(block_start, &phi->output(), hint,
UsePosition::HintTypeForOperand(*hint),
SpillModeForBlock(block));
MapPhiHint(hint, use_pos);
}
}
void LiveRangeBuilder::ProcessLoopHeader(const InstructionBlock* block,
BitVector* live) {
DCHECK(block->IsLoopHeader());
// Add a live range stretching from the first loop instruction to the last
// for each value live on entry to the header.
BitVector::Iterator iterator(live);
LifetimePosition start = LifetimePosition::GapFromInstructionIndex(
block->first_instruction_index());
LifetimePosition end = LifetimePosition::GapFromInstructionIndex(
code()->LastLoopInstructionIndex(block))
.NextFullStart();
while (!iterator.Done()) {
int operand_index = iterator.Current();
TopLevelLiveRange* range = data()->GetOrCreateLiveRangeFor(operand_index);
range->EnsureInterval(start, end, allocation_zone(),
data()->is_trace_alloc());
iterator.Advance();
}
// Insert all values into the live in sets of all blocks in the loop.
for (int i = block->rpo_number().ToInt() + 1; i < block->loop_end().ToInt();
++i) {
live_in_sets()[i]->Union(*live);
}
}
void LiveRangeBuilder::BuildLiveRanges() {
// Process the blocks in reverse order.
for (int block_id = code()->InstructionBlockCount() - 1; block_id >= 0;
--block_id) {
data_->tick_counter()->DoTick();
InstructionBlock* block =
code()->InstructionBlockAt(RpoNumber::FromInt(block_id));
BitVector* live = ComputeLiveOut(block, data());
// Initially consider all live_out values live for the entire block. We
// will shorten these intervals if necessary.
AddInitialIntervals(block, live);
// Process the instructions in reverse order, generating and killing
// live values.
ProcessInstructions(block, live);
// All phi output operands are killed by this block.
ProcessPhis(block, live);
// Now live is live_in for this block except not including values live
// out on backward successor edges.
if (block->IsLoopHeader()) ProcessLoopHeader(block, live);
live_in_sets()[block_id] = live;
}
// Postprocess the ranges.
const size_t live_ranges_size = data()->live_ranges().size();
for (TopLevelLiveRange* range : data()->live_ranges()) {
data_->tick_counter()->DoTick();
CHECK_EQ(live_ranges_size,
data()->live_ranges().size()); // TODO(neis): crbug.com/831822
if (range == nullptr) continue;
// Give slots to all ranges with a non fixed slot use.
if (range->has_slot_use() && range->HasNoSpillType()) {
SpillMode spill_mode =
range->slot_use_kind() ==
TopLevelLiveRange::SlotUseKind::kDeferredSlotUse
? SpillMode::kSpillDeferred
: SpillMode::kSpillAtDefinition;
data()->AssignSpillRangeToLiveRange(range, spill_mode);
}
// TODO(bmeurer): This is a horrible hack to make sure that for constant
// live ranges, every use requires the constant to be in a register.
// Without this hack, all uses with "any" policy would get the constant
// operand assigned.
if (range->HasSpillOperand() && range->GetSpillOperand()->IsConstant()) {
for (UsePosition* pos = range->first_pos(); pos != nullptr;
pos = pos->next()) {
if (pos->type() == UsePositionType::kRequiresSlot ||
pos->type() == UsePositionType::kRegisterOrSlotOrConstant) {
continue;
}
UsePositionType new_type = UsePositionType::kRegisterOrSlot;
// Can't mark phis as needing a register.
if (!pos->pos().IsGapPosition()) {
new_type = UsePositionType::kRequiresRegister;
}
pos->set_type(new_type, true);
}
}
}
for (auto preassigned : data()->preassigned_slot_ranges()) {
TopLevelLiveRange* range = preassigned.first;
int slot_id = preassigned.second;
SpillRange* spill = range->HasSpillRange()
? range->GetSpillRange()
: data()->AssignSpillRangeToLiveRange(
range, SpillMode::kSpillAtDefinition);
spill->set_assigned_slot(slot_id);
}
#ifdef DEBUG
Verify();
#endif
}
void LiveRangeBuilder::MapPhiHint(InstructionOperand* operand,
UsePosition* use_pos) {
DCHECK(!use_pos->IsResolved());
auto res = phi_hints_.insert(std::make_pair(operand, use_pos));
DCHECK(res.second);
USE(res);
}
void LiveRangeBuilder::ResolvePhiHint(InstructionOperand* operand,
UsePosition* use_pos) {
auto it = phi_hints_.find(operand);
if (it == phi_hints_.end()) return;
DCHECK(!it->second->IsResolved());
it->second->ResolveHint(use_pos);
}
void LiveRangeBuilder::Verify() const {
for (auto& hint : phi_hints_) {
CHECK(hint.second->IsResolved());
}
for (const TopLevelLiveRange* current : data()->live_ranges()) {
if (current != nullptr && !current->IsEmpty()) {
// New LiveRanges should not be split.
CHECK_NULL(current->next());
// General integrity check.
current->Verify();
const UseInterval* first = current->first_interval();
if (first->next() == nullptr) continue;
// Consecutive intervals should not end and start in the same block,
// otherwise the intervals should have been joined, because the
// variable is live throughout that block.
CHECK(NextIntervalStartsInDifferentBlocks(first));
for (const UseInterval* i = first->next(); i != nullptr; i = i->next()) {
// Except for the first interval, the other intevals must start at
// a block boundary, otherwise data wouldn't flow to them.
CHECK(IntervalStartsAtBlockBoundary(i));
// The last instruction of the predecessors of the block the interval
// starts must be covered by the range.
CHECK(IntervalPredecessorsCoveredByRange(i, current));
if (i->next() != nullptr) {
// Check the consecutive intervals property, except for the last
// interval, where it doesn't apply.
CHECK(NextIntervalStartsInDifferentBlocks(i));
}
}
}
}
}
bool LiveRangeBuilder::IntervalStartsAtBlockBoundary(
const UseInterval* interval) const {
LifetimePosition start = interval->start();
if (!start.IsFullStart()) return false;
int instruction_index = start.ToInstructionIndex();
const InstructionBlock* block =
data()->code()->GetInstructionBlock(instruction_index);
return block->first_instruction_index() == instruction_index;
}
bool LiveRangeBuilder::IntervalPredecessorsCoveredByRange(
const UseInterval* interval, const TopLevelLiveRange* range) const {
LifetimePosition start = interval->start();
int instruction_index = start.ToInstructionIndex();
const InstructionBlock* block =
data()->code()->GetInstructionBlock(instruction_index);
for (RpoNumber pred_index : block->predecessors()) {
const InstructionBlock* predecessor =
data()->code()->InstructionBlockAt(pred_index);
LifetimePosition last_pos = LifetimePosition::GapFromInstructionIndex(
predecessor->last_instruction_index());
last_pos = last_pos.NextStart().End();
if (!range->Covers(last_pos)) return false;
}
return true;
}
bool LiveRangeBuilder::NextIntervalStartsInDifferentBlocks(
const UseInterval* interval) const {
DCHECK_NOT_NULL(interval->next());
LifetimePosition end = interval->end();
LifetimePosition next_start = interval->next()->start();
// Since end is not covered, but the previous position is, move back a
// position
end = end.IsStart() ? end.PrevStart().End() : end.Start();
int last_covered_index = end.ToInstructionIndex();
const InstructionBlock* block =
data()->code()->GetInstructionBlock(last_covered_index);
const InstructionBlock* next_block =
data()->code()->GetInstructionBlock(next_start.ToInstructionIndex());
return block->rpo_number() < next_block->rpo_number();
}
void BundleBuilder::BuildBundles() {
TRACE("Build bundles\n");
// Process the blocks in reverse order.
for (int block_id = code()->InstructionBlockCount() - 1; block_id >= 0;
--block_id) {
InstructionBlock* block =
code()->InstructionBlockAt(RpoNumber::FromInt(block_id));
TRACE("Block B%d\n", block_id);
for (auto phi : block->phis()) {
LiveRange* out_range =
data()->GetOrCreateLiveRangeFor(phi->virtual_register());
LiveRangeBundle* out = out_range->get_bundle();
if (out == nullptr) {
out = new (data()->allocation_zone())
LiveRangeBundle(data()->allocation_zone(), next_bundle_id_++);
out->TryAddRange(out_range);
}
TRACE("Processing phi for v%d with %d:%d\n", phi->virtual_register(),
out_range->TopLevel()->vreg(), out_range->relative_id());
for (auto input : phi->operands()) {
LiveRange* input_range = data()->GetOrCreateLiveRangeFor(input);
TRACE("Input value v%d with range %d:%d\n", input,
input_range->TopLevel()->vreg(), input_range->relative_id());
LiveRangeBundle* input_bundle = input_range->get_bundle();
if (input_bundle != nullptr) {
TRACE("Merge\n");
if (out->TryMerge(input_bundle, data()->is_trace_alloc()))
TRACE("Merged %d and %d to %d\n", phi->virtual_register(), input,
out->id());
} else {
TRACE("Add\n");
if (out->TryAddRange(input_range))
TRACE("Added %d and %d to %d\n", phi->virtual_register(), input,
out->id());
}
}
}
TRACE("Done block B%d\n", block_id);
}
}
bool LiveRangeBundle::TryAddRange(LiveRange* range) {
DCHECK_NULL(range->get_bundle());
// We may only add a new live range if its use intervals do not
// overlap with existing intervals in the bundle.
if (UsesOverlap(range->first_interval())) return false;
ranges_.insert(range);
range->set_bundle(this);
InsertUses(range->first_interval());
return true;
}
bool LiveRangeBundle::TryMerge(LiveRangeBundle* other, bool trace_alloc) {
if (other == this) return true;
auto iter1 = uses_.begin();
auto iter2 = other->uses_.begin();
while (iter1 != uses_.end() && iter2 != other->uses_.end()) {
if (iter1->start > iter2->end) {
++iter2;
} else if (iter2->start > iter1->end) {
++iter1;
} else {
TRACE_COND(trace_alloc, "No merge %d:%d %d:%d\n", iter1->start,
iter1->end, iter2->start, iter2->end);
return false;
}
}
// Uses are disjoint, merging is possible.
for (auto it = other->ranges_.begin(); it != other->ranges_.end(); ++it) {
(*it)->set_bundle(this);
InsertUses((*it)->first_interval());
}
ranges_.insert(other->ranges_.begin(), other->ranges_.end());
other->ranges_.clear();
return true;
}
void LiveRangeBundle::MergeSpillRanges() {
SpillRange* target = nullptr;
for (auto range : ranges_) {
if (range->TopLevel()->HasSpillRange()) {
SpillRange* current = range->TopLevel()->GetSpillRange();
if (target == nullptr) {
target = current;
} else if (target != current) {
target->TryMerge(current);
}
}
}
}
RegisterAllocator::RegisterAllocator(RegisterAllocationData* data,
RegisterKind kind)
: data_(data),
mode_(kind),
num_registers_(GetRegisterCount(data->config(), kind)),
num_allocatable_registers_(
GetAllocatableRegisterCount(data->config(), kind)),
allocatable_register_codes_(
GetAllocatableRegisterCodes(data->config(), kind)),
check_fp_aliasing_(false) {
if (!kSimpleFPAliasing && kind == FP_REGISTERS) {
check_fp_aliasing_ = (data->code()->representation_mask() &
(kFloat32Bit | kSimd128Bit)) != 0;
}
}
LifetimePosition RegisterAllocator::GetSplitPositionForInstruction(
const LiveRange* range, int instruction_index) {
LifetimePosition ret = LifetimePosition::Invalid();
ret = LifetimePosition::GapFromInstructionIndex(instruction_index);
if (range->Start() >= ret || ret >= range->End()) {
return LifetimePosition::Invalid();
}
return ret;
}
void RegisterAllocator::SplitAndSpillRangesDefinedByMemoryOperand() {
size_t initial_range_count = data()->live_ranges().size();
for (size_t i = 0; i < initial_range_count; ++i) {
CHECK_EQ(initial_range_count,
data()->live_ranges().size()); // TODO(neis): crbug.com/831822
TopLevelLiveRange* range = data()->live_ranges()[i];
if (!CanProcessRange(range)) continue;
// Only assume defined by memory operand if we are guaranteed to spill it or
// it has a spill operand.
if (range->HasNoSpillType() ||
(range->HasSpillRange() && !range->has_non_deferred_slot_use())) {
continue;
}
LifetimePosition start = range->Start();
TRACE("Live range %d:%d is defined by a spill operand.\n",
range->TopLevel()->vreg(), range->relative_id());
LifetimePosition next_pos = start;
if (next_pos.IsGapPosition()) {
next_pos = next_pos.NextStart();
}
// With splinters, we can be more strict and skip over positions
// not strictly needing registers.
UsePosition* pos =
range->IsSplinter()
? range->NextRegisterPosition(next_pos)
: range->NextUsePositionRegisterIsBeneficial(next_pos);
// If the range already has a spill operand and it doesn't need a
// register immediately, split it and spill the first part of the range.
if (pos == nullptr) {
Spill(range, SpillMode::kSpillAtDefinition);
} else if (pos->pos() > range->Start().NextStart()) {
// Do not spill live range eagerly if use position that can benefit from
// the register is too close to the start of live range.
LifetimePosition split_pos = GetSplitPositionForInstruction(
range, pos->pos().ToInstructionIndex());
// There is no place to split, so we can't split and spill.
if (!split_pos.IsValid()) continue;
split_pos =
FindOptimalSplitPos(range->Start().NextFullStart(), split_pos);
SplitRangeAt(range, split_pos);
Spill(range, SpillMode::kSpillAtDefinition);
}
}
}
LiveRange* RegisterAllocator::SplitRangeAt(LiveRange* range,
LifetimePosition pos) {
DCHECK(!range->TopLevel()->IsFixed());
TRACE("Splitting live range %d:%d at %d\n", range->TopLevel()->vreg(),
range->relative_id(), pos.value());
if (pos <= range->Start()) return range;
// We can't properly connect liveranges if splitting occurred at the end
// a block.
DCHECK(pos.IsStart() || pos.IsGapPosition() ||
(GetInstructionBlock(code(), pos)->last_instruction_index() !=
pos.ToInstructionIndex()));
LiveRange* result = range->SplitAt(pos, allocation_zone());
return result;
}
LiveRange* RegisterAllocator::SplitBetween(LiveRange* range,
LifetimePosition start,
LifetimePosition end) {
DCHECK(!range->TopLevel()->IsFixed());
TRACE("Splitting live range %d:%d in position between [%d, %d]\n",
range->TopLevel()->vreg(), range->relative_id(), start.value(),
end.value());
LifetimePosition split_pos = FindOptimalSplitPos(start, end);
DCHECK(split_pos >= start);
return SplitRangeAt(range, split_pos);
}
LifetimePosition RegisterAllocator::FindOptimalSplitPos(LifetimePosition start,
LifetimePosition end) {
int start_instr = start.ToInstructionIndex();
int end_instr = end.ToInstructionIndex();
DCHECK_LE(start_instr, end_instr);
// We have no choice
if (start_instr == end_instr) return end;
const InstructionBlock* start_block = GetInstructionBlock(code(), start);
const InstructionBlock* end_block = GetInstructionBlock(code(), end);
if (end_block == start_block) {
// The interval is split in the same basic block. Split at the latest
// possible position.
return end;
}
const InstructionBlock* block = end_block;
// Find header of outermost loop.
do {
const InstructionBlock* loop = GetContainingLoop(code(), block);
if (loop == nullptr ||
loop->rpo_number().ToInt() <= start_block->rpo_number().ToInt()) {
// No more loops or loop starts before the lifetime start.
break;
}
block = loop;
} while (true);
// We did not find any suitable outer loop. Split at the latest possible
// position unless end_block is a loop header itself.
if (block == end_block && !end_block->IsLoopHeader()) return end;
return LifetimePosition::GapFromInstructionIndex(
block->first_instruction_index());
}
LifetimePosition RegisterAllocator::FindOptimalSpillingPos(
LiveRange* range, LifetimePosition pos) {
const InstructionBlock* block = GetInstructionBlock(code(), pos.Start());
const InstructionBlock* loop_header =
block->IsLoopHeader() ? block : GetContainingLoop(code(), block);
if (loop_header == nullptr) return pos;
const UsePosition* prev_use =
range->PreviousUsePositionRegisterIsBeneficial(pos);
while (loop_header != nullptr) {
// We are going to spill live range inside the loop.
// If possible try to move spilling position backwards to loop header.
// This will reduce number of memory moves on the back edge.
LifetimePosition loop_start = LifetimePosition::GapFromInstructionIndex(
loop_header->first_instruction_index());
if (range->Covers(loop_start)) {
if (prev_use == nullptr || prev_use->pos() < loop_start) {
// No register beneficial use inside the loop before the pos.
pos = loop_start;
}
}
// Try hoisting out to an outer loop.
loop_header = GetContainingLoop(code(), loop_header);
}
return pos;
}
void RegisterAllocator::Spill(LiveRange* range, SpillMode spill_mode) {
DCHECK(!range->spilled());
DCHECK(spill_mode == SpillMode::kSpillAtDefinition ||
GetInstructionBlock(code(), range->Start())->IsDeferred());
TopLevelLiveRange* first = range->TopLevel();
TRACE("Spilling live range %d:%d mode %d\n", first->vreg(),
range->relative_id(), spill_mode);
TRACE("Starting spill type is %d\n", static_cast<int>(first->spill_type()));
if (first->HasNoSpillType()) {
TRACE("New spill range needed");
data()->AssignSpillRangeToLiveRange(first, spill_mode);
}
// Upgrade the spillmode, in case this was only spilled in deferred code so
// far.
if ((spill_mode == SpillMode::kSpillAtDefinition) &&
(first->spill_type() ==
TopLevelLiveRange::SpillType::kDeferredSpillRange)) {
TRACE("Upgrading\n");
first->set_spill_type(TopLevelLiveRange::SpillType::kSpillRange);
}
TRACE("Final spill type is %d\n", static_cast<int>(first->spill_type()));
range->Spill();
}
const char* RegisterAllocator::RegisterName(int register_code) const {
if (register_code == kUnassignedRegister) return "unassigned";
return mode() == GENERAL_REGISTERS
? i::RegisterName(Register::from_code(register_code))
: i::RegisterName(DoubleRegister::from_code(register_code));
}
LinearScanAllocator::LinearScanAllocator(RegisterAllocationData* data,
RegisterKind kind, Zone* local_zone)
: RegisterAllocator(data, kind),
unhandled_live_ranges_(local_zone),
active_live_ranges_(local_zone),
inactive_live_ranges_(local_zone),
next_active_ranges_change_(LifetimePosition::Invalid()),
next_inactive_ranges_change_(LifetimePosition::Invalid()) {
active_live_ranges().reserve(8);
inactive_live_ranges().reserve(8);
}
void LinearScanAllocator::MaybeUndoPreviousSplit(LiveRange* range) {
if (range->next() != nullptr && range->next()->ShouldRecombine()) {
LiveRange* to_remove = range->next();
TRACE("Recombining %d:%d with %d\n", range->TopLevel()->vreg(),
range->relative_id(), to_remove->relative_id());
// Remove the range from unhandled, as attaching it will change its
// state and hence ordering in the unhandled set.
auto removed_cnt = unhandled_live_ranges().erase(to_remove);
DCHECK_EQ(removed_cnt, 1);
USE(removed_cnt);
range->AttachToNext();
} else if (range->next() != nullptr) {
TRACE("No recombine for %d:%d to %d\n", range->TopLevel()->vreg(),
range->relative_id(), range->next()->relative_id());
}
}
void LinearScanAllocator::SpillNotLiveRanges(RangeWithRegisterSet& to_be_live,
LifetimePosition position,
SpillMode spill_mode) {
for (auto it = active_live_ranges().begin();
it != active_live_ranges().end();) {
LiveRange* active_range = *it;
TopLevelLiveRange* toplevel = (*it)->TopLevel();
auto found = to_be_live.find({toplevel, kUnassignedRegister});
if (found == to_be_live.end()) {
// Is not contained in {to_be_live}, spill it.
// Fixed registers are exempt from this. They might have been
// added from inactive at the block boundary but we know that
// they cannot conflict as they are built before register
// allocation starts. It would be algorithmically fine to split
// them and reschedule but the code does not allow to do this.
if (toplevel->IsFixed()) {
TRACE("Keeping reactivated fixed range for %s\n",
RegisterName(toplevel->assigned_register()));
++it;
} else {
// When spilling a previously spilled/reloaded range, we add back the
// tail that we might have split off when we reloaded/spilled it
// previously. Otherwise we might keep generating small split-offs.
MaybeUndoPreviousSplit(active_range);
TRACE("Putting back %d:%d\n", toplevel->vreg(),
active_range->relative_id());
LiveRange* split = SplitRangeAt(active_range, position);
DCHECK_NE(split, active_range);
// Make sure we revisit this range once it has a use that requires
// a register.
UsePosition* next_use = split->NextRegisterPosition(position);
if (next_use != nullptr) {
// Move to the start of the gap before use so that we have a space
// to perform the potential reload. Otherwise, do not spill but add
// to unhandled for reallocation.
LifetimePosition revisit_at = next_use->pos().FullStart();
TRACE("Next use at %d\n", revisit_at.value());
if (!data()->IsBlockBoundary(revisit_at)) {
// Leave some space so we have enough gap room.
revisit_at = revisit_at.PrevStart().FullStart();
}
// If this range became life right at the block boundary that we are
// currently processing, we do not need to split it. Instead move it
// to unhandled right away.
if (position < revisit_at) {
LiveRange* third_part = SplitRangeAt(split, revisit_at);
DCHECK_NE(split, third_part);
Spill(split, spill_mode);
TRACE("Marking %d:%d to recombine\n", toplevel->vreg(),
third_part->relative_id());
third_part->SetRecombine();
AddToUnhandled(third_part);
} else {
AddToUnhandled(split);
}
} else {
Spill(split, spill_mode);
}
it = ActiveToHandled(it);
}
} else {
// This range is contained in {to_be_live}, so we can keep it.
int expected_register = (*found).expected_register;
to_be_live.erase(found);
if (expected_register == active_range->assigned_register()) {
// Was life and in correct register, simply pass through.
TRACE("Keeping %d:%d in %s\n", toplevel->vreg(),
active_range->relative_id(),
RegisterName(active_range->assigned_register()));
++it;
} else {
// Was life but wrong register. Split and schedule for
// allocation.
TRACE("Scheduling %d:%d\n", toplevel->vreg(),
active_range->relative_id());
LiveRange* split = SplitRangeAt(active_range, position);
split->set_controlflow_hint(expected_register);
AddToUnhandled(split);
it = ActiveToHandled(it);
}
}
}
}
LiveRange* LinearScanAllocator::AssignRegisterOnReload(LiveRange* range,
int reg) {
// We know the register is currently free but it might be in
// use by a currently inactive range. So we might not be able
// to reload for the full distance. In such case, split here.
// TODO(herhut):
// It might be better if we could use the normal unhandled queue and
// give reloading registers pecedence. That way we would compute the
// intersection for the entire future.
LifetimePosition new_end = range->End();
for (const auto inactive : inactive_live_ranges()) {
if (kSimpleFPAliasing || !check_fp_aliasing()) {
if (inactive->assigned_register() != reg) continue;
} else {
bool conflict = inactive->assigned_register() == reg;
if (!conflict) {
int alias_base_index = -1;
int aliases = data()->config()->GetAliases(range->representation(), reg,
inactive->representation(),
&alias_base_index);
DCHECK(aliases > 0 || (aliases == 0 && alias_base_index == -1));
while (aliases-- && !conflict) {
int aliased_reg = alias_base_index + aliases;
if (aliased_reg == reg) {
conflict = true;
}
}
}
if (!conflict) continue;
}
for (auto interval = inactive->first_interval(); interval != nullptr;
interval = interval->next()) {
if (interval->start() > new_end) break;
if (interval->end() <= range->Start()) continue;
if (new_end > interval->start()) new_end = interval->start();
}
}
if (new_end != range->End()) {
TRACE("Found new end for %d:%d at %d\n", range->TopLevel()->vreg(),
range->relative_id(), new_end.value());
LiveRange* tail = SplitRangeAt(range, new_end);
AddToUnhandled(tail);
}
SetLiveRangeAssignedRegister(range, reg);
return range;
}
void LinearScanAllocator::ReloadLiveRanges(RangeWithRegisterSet& to_be_live,
LifetimePosition position) {
// Assumption: All ranges in {to_be_live} are currently spilled and there are
// no conflicting registers in the active ranges.
// The former is ensured by SpillNotLiveRanges, the latter is by construction
// of the to_be_live set.
for (RangeWithRegister range_with_register : to_be_live) {
TopLevelLiveRange* range = range_with_register.range;
int reg = range_with_register.expected_register;
LiveRange* to_resurrect = range->GetChildCovers(position);
if (to_resurrect == nullptr) {
// While the range was life until the end of the predecessor block, it is
// not live in this block. Either there is a lifetime gap or the range
// died.
TRACE("No candidate for %d at %d\n", range->vreg(), position.value());
} else {
// We might be resurrecting a range that we spilled until its next use
// before. In such cases, we have to unsplit it before processing as
// otherwise we might get register changes from one range to the other
// in the middle of blocks.
// If there is a gap between this range and the next, we can just keep
// it as a register change won't hurt.
MaybeUndoPreviousSplit(to_resurrect);
if (to_resurrect->Start() == position) {
// This range already starts at this block. It might have been spilled,
// so we have to unspill it. Otherwise, it is already in the unhandled
// queue waiting for processing.
DCHECK(!to_resurrect->HasRegisterAssigned());
TRACE("Reload %d:%d starting at %d itself\n", range->vreg(),
to_resurrect->relative_id(), position.value());
if (to_resurrect->spilled()) {
to_resurrect->Unspill();
to_resurrect->set_controlflow_hint(reg);
AddToUnhandled(to_resurrect);
} else {
// Assign the preassigned register if we know. Otherwise, nothing to
// do as already in unhandeled.
if (reg != kUnassignedRegister) {
auto erased_cnt = unhandled_live_ranges().erase(to_resurrect);
DCHECK_EQ(erased_cnt, 1);
USE(erased_cnt);
// We know that there is no conflict with active ranges, so just
// assign the register to the range.
to_resurrect = AssignRegisterOnReload(to_resurrect, reg);
AddToActive(to_resurrect);
}
}
} else {
// This range was spilled before. We have to split it and schedule the
// second part for allocation (or assign the register if we know).
DCHECK(to_resurrect->spilled());
LiveRange* split = SplitRangeAt(to_resurrect, position);
TRACE("Reload %d:%d starting at %d as %d\n", range->vreg(),
to_resurrect->relative_id(), split->Start().value(),
split->relative_id());
DCHECK_NE(split, to_resurrect);
if (reg != kUnassignedRegister) {
// We know that there is no conflict with active ranges, so just
// assign the register to the range.
split = AssignRegisterOnReload(split, reg);
AddToActive(split);
} else {
// Let normal register assignment find a suitable register.
split->set_controlflow_hint(reg);
AddToUnhandled(split);
}
}
}
}
}
RpoNumber LinearScanAllocator::ChooseOneOfTwoPredecessorStates(
InstructionBlock* current_block, LifetimePosition boundary) {
using SmallRangeVector =
base::SmallVector<TopLevelLiveRange*,
RegisterConfiguration::kMaxRegisters>;
// Pick the state that would generate the least spill/reloads.
// Compute vectors of ranges with imminent use for both sides.
// As GetChildCovers is cached, it is cheaper to repeatedly
// call is rather than compute a shared set first.
auto& left = data()->GetSpillState(current_block->predecessors()[0]);
auto& right = data()->GetSpillState(current_block->predecessors()[1]);
SmallRangeVector left_used;
for (const auto item : left) {
LiveRange* at_next_block = item->TopLevel()->GetChildCovers(boundary);
if (at_next_block != nullptr &&
at_next_block->NextUsePositionRegisterIsBeneficial(boundary) !=
nullptr) {
left_used.emplace_back(item->TopLevel());
}
}
SmallRangeVector right_used;
for (const auto item : right) {
LiveRange* at_next_block = item->TopLevel()->GetChildCovers(boundary);
if (at_next_block != nullptr &&
at_next_block->NextUsePositionRegisterIsBeneficial(boundary) !=
nullptr) {
right_used.emplace_back(item->TopLevel());
}
}
if (left_used.empty() && right_used.empty()) {
// There are no beneficial register uses. Look at any use at
// all. We do not account for all uses, like flowing into a phi.
// So we just look at ranges still being live.
TRACE("Looking at only uses\n");
for (const auto item : left) {
LiveRange* at_next_block = item->TopLevel()->GetChildCovers(boundary);
if (at_next_block != nullptr &&
at_next_block->NextUsePosition(boundary) != nullptr) {
left_used.emplace_back(item->TopLevel());
}
}
for (const auto item : right) {
LiveRange* at_next_block = item->TopLevel()->GetChildCovers(boundary);
if (at_next_block != nullptr &&
at_next_block->NextUsePosition(boundary) != nullptr) {
right_used.emplace_back(item->TopLevel());
}
}
}
// Now left_used and right_used contains those ranges that matter.
// Count which side matches this most.
TRACE("Vote went %zu vs %zu\n", left_used.size(), right_used.size());
return left_used.size() > right_used.size()
? current_block->predecessors()[0]
: current_block->predecessors()[1];
}
void LinearScanAllocator::ComputeStateFromManyPredecessors(
InstructionBlock* current_block, RangeWithRegisterSet* to_be_live) {
struct Vote {
size_t count;
int used_registers[RegisterConfiguration::kMaxRegisters];
};
struct TopLevelLiveRangeComparator {
bool operator()(const TopLevelLiveRange* lhs,
const TopLevelLiveRange* rhs) const {
return lhs->vreg() < rhs->vreg();
}
};
ZoneMap<TopLevelLiveRange*, Vote, TopLevelLiveRangeComparator> counts(
data()->allocation_zone());
int deferred_blocks = 0;
for (RpoNumber pred : current_block->predecessors()) {
if (!ConsiderBlockForControlFlow(current_block, pred)) {
// Back edges of a loop count as deferred here too.
deferred_blocks++;
continue;
}
const auto& pred_state = data()->GetSpillState(pred);
for (LiveRange* range : pred_state) {
// We might have spilled the register backwards, so the range we
// stored might have lost its register. Ignore those.
if (!range->HasRegisterAssigned()) continue;
TopLevelLiveRange* toplevel = range->TopLevel();
auto previous = counts.find(toplevel);
if (previous == counts.end()) {
auto result = counts.emplace(std::make_pair(toplevel, Vote{1, {0}}));
CHECK(result.second);
result.first->second.used_registers[range->assigned_register()]++;
} else {
previous->second.count++;
previous->second.used_registers[range->assigned_register()]++;
}
}
}
// Choose the live ranges from the majority.
const size_t majority =
(current_block->PredecessorCount() + 2 - deferred_blocks) / 2;
bool taken_registers[RegisterConfiguration::kMaxRegisters] = {0};
auto assign_to_live = [this, counts, majority](
std::function<bool(TopLevelLiveRange*)> filter,
RangeWithRegisterSet* to_be_live,
bool* taken_registers) {
for (const auto& val : counts) {
if (!filter(val.first)) continue;
if (val.second.count >= majority) {
int register_max = 0;
int reg = kUnassignedRegister;
for (int idx = 0; idx < RegisterConfiguration::kMaxRegisters; idx++) {
int uses = val.second.used_registers[idx];
if (uses == 0) continue;
if (uses > register_max) {
reg = idx;
register_max = val.second.used_registers[idx];
} else if (taken_registers[reg] && uses == register_max) {
reg = idx;
}
}
if (taken_registers[reg]) {
reg = kUnassignedRegister;
} else {
taken_registers[reg] = true;
}
to_be_live->emplace(val.first, reg);
TRACE("Reset %d as live due vote %zu in %s\n",
val.first->TopLevel()->vreg(), val.second.count,
RegisterName(reg));
}
}
};
// First round, process fixed registers, as these have precedence.
// There is only one fixed range per register, so we cannot have
// conflicts.
assign_to_live([](TopLevelLiveRange* r) { return r->IsFixed(); }, to_be_live,
taken_registers);
// Second round, process the rest.
assign_to_live([](TopLevelLiveRange* r) { return !r->IsFixed(); }, to_be_live,
taken_registers);
}
bool LinearScanAllocator::ConsiderBlockForControlFlow(
InstructionBlock* current_block, RpoNumber predecessor) {
// We ignore predecessors on back edges when looking for control flow effects,
// as those lie in the future of allocation and we have no data yet. Also,
// deferred bocks are ignored on deferred to non-deferred boundaries, as we do
// not want them to influence allocation of non deferred code.
return (predecessor < current_block->rpo_number()) &&
(current_block->IsDeferred() ||
!code()->InstructionBlockAt(predecessor)->IsDeferred());
}
void LinearScanAllocator::UpdateDeferredFixedRanges(SpillMode spill_mode,
InstructionBlock* block) {
if (spill_mode == SpillMode::kSpillDeferred) {
LifetimePosition max = LifetimePosition::InstructionFromInstructionIndex(
LastDeferredInstructionIndex(block));
// Adds range back to inactive, resolving resulting conflicts.
auto add_to_inactive = [this, max](LiveRange* range) {
AddToInactive(range);
// Splits other if it conflicts with range. Other is placed in unhandled
// for later reallocation.
auto split_conflicting = [this, max](LiveRange* range, LiveRange* other,
std::function<void(LiveRange*)>
update_caches) {
if (other->TopLevel()->IsFixed()) return;
int reg = range->assigned_register();
if (kSimpleFPAliasing || !check_fp_aliasing()) {
if (other->assigned_register() != reg) {
return;
}
} else {
if (!data()->config()->AreAliases(range->representation(), reg,
other->representation(),
other->assigned_register())) {
return;
}
}
// The inactive range might conflict, so check whether we need to
// split and spill. We can look for the first intersection, as there
// cannot be any intersections in the past, as those would have been a
// conflict then.
LifetimePosition next_start = range->FirstIntersection(other);
if (!next_start.IsValid() || (next_start > max)) {
// There is no conflict or the conflict is outside of the current
// stretch of deferred code. In either case we can ignore the
// inactive range.
return;
}
// They overlap. So we need to split active and reschedule it
// for allocation.
TRACE("Resolving conflict of %d with deferred fixed for register %s\n",
other->TopLevel()->vreg(),
RegisterName(other->assigned_register()));
LiveRange* split_off =
other->SplitAt(next_start, data()->allocation_zone());
// Try to get the same register after the deferred block.
split_off->set_controlflow_hint(other->assigned_register());
DCHECK_NE(split_off, other);
AddToUnhandled(split_off);
update_caches(other);
};
// Now check for conflicts in active and inactive ranges. We might have
// conflicts in inactive, as we do not do this check on every block
// boundary but only on deferred/non-deferred changes but inactive
// live ranges might become live on any block boundary.
for (auto active : active_live_ranges()) {
split_conflicting(range, active, [this](LiveRange* updated) {
next_active_ranges_change_ =
Min(updated->End(), next_active_ranges_change_);
});
}
for (auto inactive : inactive_live_ranges()) {
split_conflicting(range, inactive, [this](LiveRange* updated) {
next_inactive_ranges_change_ =
Min(updated->End(), next_inactive_ranges_change_);
});
}
};
if (mode() == GENERAL_REGISTERS) {
for (TopLevelLiveRange* current : data()->fixed_live_ranges()) {
if (current != nullptr) {
if (current->IsDeferredFixed()) {
add_to_inactive(current);
}
}
}
} else {
for (TopLevelLiveRange* current : data()->fixed_double_live_ranges()) {
if (current != nullptr) {
if (current->IsDeferredFixed()) {
add_to_inactive(current);
}
}
}
if (!kSimpleFPAliasing && check_fp_aliasing()) {
for (TopLevelLiveRange* current : data()->fixed_float_live_ranges()) {
if (current != nullptr) {
if (current->IsDeferredFixed()) {
add_to_inactive(current);
}
}
}
for (TopLevelLiveRange* current : data()->fixed_simd128_live_ranges()) {
if (current != nullptr) {
if (current->IsDeferredFixed()) {
add_to_inactive(current);
}
}
}
}
}
} else {
// Remove all ranges.
for (auto it = inactive_live_ranges().begin();
it != inactive_live_ranges().end();) {
if ((*it)->TopLevel()->IsDeferredFixed()) {
it = inactive_live_ranges().erase(it);
} else {
++it;
}
}
}
}
bool LinearScanAllocator::BlockIsDeferredOrImmediatePredecessorIsNotDeferred(
const InstructionBlock* block) {
if (block->IsDeferred()) return true;
if (block->PredecessorCount() == 0) return true;
bool pred_is_deferred = false;
for (auto pred : block->predecessors()) {
if (pred.IsNext(block->rpo_number())) {
pred_is_deferred = code()->InstructionBlockAt(pred)->IsDeferred();
break;
}
}
return !pred_is_deferred;
}
bool LinearScanAllocator::HasNonDeferredPredecessor(InstructionBlock* block) {
for (auto pred : block->predecessors()) {
InstructionBlock* pred_block = code()->InstructionBlockAt(pred);
if (!pred_block->IsDeferred()) return true;
}
return false;
}
void LinearScanAllocator::AllocateRegisters() {
DCHECK(unhandled_live_ranges().empty());
DCHECK(active_live_ranges().empty());
DCHECK(inactive_live_ranges().empty());
SplitAndSpillRangesDefinedByMemoryOperand();
data()->ResetSpillState();
if (data()->is_trace_alloc()) {
PrintRangeOverview(std::cout);
}
const size_t live_ranges_size = data()->live_ranges().size();
for (TopLevelLiveRange* range : data()->live_ranges()) {
CHECK_EQ(live_ranges_size,
data()->live_ranges().size()); // TODO(neis): crbug.com/831822
if (!CanProcessRange(range)) continue;
for (LiveRange* to_add = range; to_add != nullptr;
to_add = to_add->next()) {
if (!to_add->spilled()) {
AddToUnhandled(to_add);
}
}
}
if (mode() == GENERAL_REGISTERS) {
for (TopLevelLiveRange* current : data()->fixed_live_ranges()) {
if (current != nullptr) {
if (current->IsDeferredFixed()) continue;
AddToInactive(current);
}
}
} else {
for (TopLevelLiveRange* current : data()->fixed_double_live_ranges()) {
if (current != nullptr) {
if (current->IsDeferredFixed()) continue;
AddToInactive(current);
}
}
if (!kSimpleFPAliasing && check_fp_aliasing()) {
for (TopLevelLiveRange* current : data()->fixed_float_live_ranges()) {
if (current != nullptr) {
if (current->IsDeferredFixed()) continue;
AddToInactive(current);
}
}
for (TopLevelLiveRange* current : data()->fixed_simd128_live_ranges()) {
if (current != nullptr) {
if (current->IsDeferredFixed()) continue;
AddToInactive(current);
}
}
}
}
RpoNumber last_block = RpoNumber::FromInt(0);
RpoNumber max_blocks =
RpoNumber::FromInt(code()->InstructionBlockCount() - 1);
LifetimePosition next_block_boundary =
LifetimePosition::InstructionFromInstructionIndex(
data()
->code()
->InstructionBlockAt(last_block)
->last_instruction_index())
.NextFullStart();
SpillMode spill_mode = SpillMode::kSpillAtDefinition;
// Process all ranges. We also need to ensure that we have seen all block
// boundaries. Linear scan might have assigned and spilled ranges before
// reaching the last block and hence we would ignore control flow effects for
// those. Not only does this produce a potentially bad assignment, it also
// breaks with the invariant that we undo spills that happen in deferred code
// when crossing a deferred/non-deferred boundary.
while (!unhandled_live_ranges().empty() ||
(data()->is_turbo_control_flow_aware_allocation() &&
last_block < max_blocks)) {
data()->tick_counter()->DoTick();
LiveRange* current = unhandled_live_ranges().empty()
? nullptr
: *unhandled_live_ranges().begin();
LifetimePosition position =
current ? current->Start() : next_block_boundary;
#ifdef DEBUG
allocation_finger_ = position;
#endif
if (data()->is_turbo_control_flow_aware_allocation()) {
// Splintering is not supported.
CHECK(!data()->is_turbo_preprocess_ranges());
// Check whether we just moved across a block boundary. This will trigger
// for the first range that is past the current boundary.
if (position >= next_block_boundary) {
TRACE("Processing boundary at %d leaving %d\n",
next_block_boundary.value(), last_block.ToInt());
// Forward state to before block boundary
LifetimePosition end_of_block = next_block_boundary.PrevStart().End();
ForwardStateTo(end_of_block);
// Remember this state.
InstructionBlock* current_block = data()->code()->GetInstructionBlock(
next_block_boundary.ToInstructionIndex());
// Store current spill state (as the state at end of block). For
// simplicity, we store the active ranges, e.g., the live ranges that
// are not spilled.
data()->RememberSpillState(last_block, active_live_ranges());
// Only reset the state if this was not a direct fallthrough. Otherwise
// control flow resolution will get confused (it does not expect changes
// across fallthrough edges.).
bool fallthrough = (current_block->PredecessorCount() == 1) &&
current_block->predecessors()[0].IsNext(
current_block->rpo_number());
// When crossing a deferred/non-deferred boundary, we have to load or
// remove the deferred fixed ranges from inactive.
if ((spill_mode == SpillMode::kSpillDeferred) !=
current_block->IsDeferred()) {
// Update spill mode.
spill_mode = current_block->IsDeferred()
? SpillMode::kSpillDeferred
: SpillMode::kSpillAtDefinition;
ForwardStateTo(next_block_boundary);
#ifdef DEBUG
// Allow allocation at current position.
allocation_finger_ = next_block_boundary;
#endif
UpdateDeferredFixedRanges(spill_mode, current_block);
}
// Allocation relies on the fact that each non-deferred block has at
// least one non-deferred predecessor. Check this invariant here.
DCHECK_IMPLIES(!current_block->IsDeferred(),
HasNonDeferredPredecessor(current_block));
if (!fallthrough) {
#ifdef DEBUG
// Allow allocation at current position.
allocation_finger_ = next_block_boundary;
#endif
// We are currently at next_block_boundary - 1. Move the state to the
// actual block boundary position. In particular, we have to
// reactivate inactive ranges so that they get rescheduled for
// allocation if they were not live at the predecessors.
ForwardStateTo(next_block_boundary);
RangeWithRegisterSet to_be_live(data()->allocation_zone());
// If we end up deciding to use the state of the immediate
// predecessor, it is better not to perform a change. It would lead to
// the same outcome anyway.
// This may never happen on boundaries between deferred and
// non-deferred code, as we rely on explicit respill to ensure we
// spill at definition.
bool no_change_required = false;
auto pick_state_from = [this, current_block](
RpoNumber pred,
RangeWithRegisterSet* to_be_live) -> bool {
TRACE("Using information from B%d\n", pred.ToInt());
// If this is a fall-through that is not across a deferred
// boundary, there is nothing to do.
bool is_noop = pred.IsNext(current_block->rpo_number());
if (!is_noop) {
auto& spill_state = data()->GetSpillState(pred);
TRACE("Not a fallthrough. Adding %zu elements...\n",
spill_state.size());
for (const auto range : spill_state) {
// Filter out ranges that had their register stolen by backwards
// working spill heuristics. These have been spilled after the
// fact, so ignore them.
if (!range->HasRegisterAssigned()) continue;
to_be_live->emplace(range);
}
}
return is_noop;
};
// Multiple cases here:
// 1) We have a single predecessor => this is a control flow split, so
// just restore the predecessor state.
// 2) We have two predecessors => this is a conditional, so break ties
// based on what to do based on forward uses, trying to benefit
// the same branch if in doubt (make one path fast).
// 3) We have many predecessors => this is a switch. Compute union
// based on majority, break ties by looking forward.
if (current_block->PredecessorCount() == 1) {
TRACE("Single predecessor for B%d\n",
current_block->rpo_number().ToInt());
no_change_required =
pick_state_from(current_block->predecessors()[0], &to_be_live);
} else if (current_block->PredecessorCount() == 2) {
TRACE("Two predecessors for B%d\n",
current_block->rpo_number().ToInt());
// If one of the branches does not contribute any information,
// e.g. because it is deferred or a back edge, we can short cut
// here right away.
RpoNumber chosen_predecessor = RpoNumber::Invalid();
if (!ConsiderBlockForControlFlow(
current_block, current_block->predecessors()[0])) {
chosen_predecessor = current_block->predecessors()[1];
} else if (!ConsiderBlockForControlFlow(
current_block, current_block->predecessors()[1])) {
chosen_predecessor = current_block->predecessors()[0];
} else {
chosen_predecessor = ChooseOneOfTwoPredecessorStates(
current_block, next_block_boundary);
}
no_change_required =
pick_state_from(chosen_predecessor, &to_be_live);
} else {
// Merge at the end of, e.g., a switch.
ComputeStateFromManyPredecessors(current_block, &to_be_live);
}
if (!no_change_required) {
SpillNotLiveRanges(to_be_live, next_block_boundary, spill_mode);
ReloadLiveRanges(to_be_live, next_block_boundary);
}
// TODO(herhut) Check removal.
// Now forward to current position
ForwardStateTo(next_block_boundary);
}
// Update block information
last_block = current_block->rpo_number();
next_block_boundary = LifetimePosition::InstructionFromInstructionIndex(
current_block->last_instruction_index())
.NextFullStart();
// We might have created new unhandled live ranges, so cycle around the
// loop to make sure we pick the top most range in unhandled for
// processing.
continue;
}
}
DCHECK_NOT_NULL(current);
TRACE("Processing interval %d:%d start=%d\n", current->TopLevel()->vreg(),
current->relative_id(), position.value());
// Now we can erase current, as we are sure to process it.
unhandled_live_ranges().erase(unhandled_live_ranges().begin());
if (current->IsTopLevel() && TryReuseSpillForPhi(current->TopLevel()))
continue;
ForwardStateTo(position);
DCHECK(!current->HasRegisterAssigned() && !current->spilled());
ProcessCurrentRange(current, spill_mode);
}
if (data()->is_trace_alloc()) {
PrintRangeOverview(std::cout);
}
}
bool LinearScanAllocator::TrySplitAndSpillSplinter(LiveRange* range) {
DCHECK(!data()->is_turbo_control_flow_aware_allocation());
DCHECK(range->TopLevel()->IsSplinter());
// If we can spill the whole range, great. Otherwise, split above the
// first use needing a register and spill the top part.
const UsePosition* next_reg = range->NextRegisterPosition(range->Start());
if (next_reg == nullptr) {
Spill(range, SpillMode::kSpillAtDefinition);
return true;
} else if (range->FirstHintPosition() == nullptr) {
// If there was no hint, but we have a use position requiring a
// register, apply the hot path heuristics.
return false;
} else if (next_reg->pos().PrevStart() > range->Start()) {
LiveRange* tail = SplitRangeAt(range, next_reg->pos().PrevStart());
AddToUnhandled(tail);
Spill(range, SpillMode::kSpillAtDefinition);
return true;
}
return false;
}
void LinearScanAllocator::SetLiveRangeAssignedRegister(LiveRange* range,
int reg) {
data()->MarkAllocated(range->representation(), reg);
range->set_assigned_register(reg);
range->SetUseHints(reg);
range->UpdateBundleRegister(reg);
if (range->IsTopLevel() && range->TopLevel()->is_phi()) {
data()->GetPhiMapValueFor(range->TopLevel())->set_assigned_register(reg);
}
}
void LinearScanAllocator::AddToActive(LiveRange* range) {
TRACE("Add live range %d:%d in %s to active\n", range->TopLevel()->vreg(),
range->relative_id(), RegisterName(range->assigned_register()));
active_live_ranges().push_back(range);
next_active_ranges_change_ =
std::min(next_active_ranges_change_, range->NextEndAfter(range->Start()));
}
void LinearScanAllocator::AddToInactive(LiveRange* range) {
TRACE("Add live range %d:%d to inactive\n", range->TopLevel()->vreg(),
range->relative_id());
inactive_live_ranges().push_back(range);
next_inactive_ranges_change_ = std::min(
next_inactive_ranges_change_, range->NextStartAfter(range->Start()));
}
void LinearScanAllocator::AddToUnhandled(LiveRange* range) {
if (range == nullptr || range->IsEmpty()) return;
DCHECK(!range->HasRegisterAssigned() && !range->spilled());
DCHECK(allocation_finger_ <= range->Start());
TRACE("Add live range %d:%d to unhandled\n", range->TopLevel()->vreg(),
range->relative_id());
unhandled_live_ranges().insert(range);
}
ZoneVector<LiveRange*>::iterator LinearScanAllocator::ActiveToHandled(
const ZoneVector<LiveRange*>::iterator it) {
TRACE("Moving live range %d:%d from active to handled\n",
(*it)->TopLevel()->vreg(), (*it)->relative_id());
return active_live_ranges().erase(it);
}
ZoneVector<LiveRange*>::iterator LinearScanAllocator::ActiveToInactive(
const ZoneVector<LiveRange*>::iterator it, LifetimePosition position) {
LiveRange* range = *it;
inactive_live_ranges().push_back(range);
TRACE("Moving live range %d:%d from active to inactive\n",
(range)->TopLevel()->vreg(), range->relative_id());
next_inactive_ranges_change_ =
std::min(next_inactive_ranges_change_, range->NextStartAfter(position));
return active_live_ranges().erase(it);
}
ZoneVector<LiveRange*>::iterator LinearScanAllocator::InactiveToHandled(
ZoneVector<LiveRange*>::iterator it) {
TRACE("Moving live range %d:%d from inactive to handled\n",
(*it)->TopLevel()->vreg(), (*it)->relative_id());
return inactive_live_ranges().erase(it);
}
ZoneVector<LiveRange*>::iterator LinearScanAllocator::InactiveToActive(
ZoneVector<LiveRange*>::iterator it, LifetimePosition position) {
LiveRange* range = *it;
active_live_ranges().push_back(range);
TRACE("Moving live range %d:%d from inactive to active\n",
range->TopLevel()->vreg(), range->relative_id());
next_active_ranges_change_ =
std::min(next_active_ranges_change_, range->NextEndAfter(position));
return inactive_live_ranges().erase(it);
}
void LinearScanAllocator::ForwardStateTo(LifetimePosition position) {
if (position >= next_active_ranges_change_) {
next_active_ranges_change_ = LifetimePosition::MaxPosition();
for (auto it = active_live_ranges().begin();
it != active_live_ranges().end();) {
LiveRange* cur_active = *it;
if (cur_active->End() <= position) {
it = ActiveToHandled(it);
} else if (!cur_active->Covers(position)) {
it = ActiveToInactive(it, position);
} else {
next_active_ranges_change_ = std::min(
next_active_ranges_change_, cur_active->NextEndAfter(position));
++it;
}
}
}
if (position >= next_inactive_ranges_change_) {
next_inactive_ranges_change_ = LifetimePosition::MaxPosition();
for (auto it = inactive_live_ranges().begin();
it != inactive_live_ranges().end();) {
LiveRange* cur_inactive = *it;
if (cur_inactive->End() <= position) {
it = InactiveToHandled(it);
} else if (cur_inactive->Covers(position)) {
it = InactiveToActive(it, position);
} else {
next_inactive_ranges_change_ =
std::min(next_inactive_ranges_change_,
cur_inactive->NextStartAfter(position));
++it;
}
}
}
}
int LinearScanAllocator::LastDeferredInstructionIndex(InstructionBlock* start) {
DCHECK(start->IsDeferred());
RpoNumber last_block =
RpoNumber::FromInt(code()->InstructionBlockCount() - 1);
while ((start->rpo_number() < last_block)) {
InstructionBlock* next =
code()->InstructionBlockAt(start->rpo_number().Next());
if (!next->IsDeferred()) break;
start = next;
}
return start->last_instruction_index();
}
void LinearScanAllocator::GetFPRegisterSet(MachineRepresentation rep,
int* num_regs, int* num_codes,
const int** codes) const {
DCHECK(!kSimpleFPAliasing);
if (rep == MachineRepresentation::kFloat32) {
*num_regs = data()->config()->num_float_registers();
*num_codes = data()->config()->num_allocatable_float_registers();
*codes = data()->config()->allocatable_float_codes();
} else if (rep == MachineRepresentation::kSimd128) {
*num_regs = data()->config()->num_simd128_registers();
*num_codes = data()->config()->num_allocatable_simd128_registers();
*codes = data()->config()->allocatable_simd128_codes();
} else {
UNREACHABLE();
}
}
void LinearScanAllocator::FindFreeRegistersForRange(
LiveRange* range, Vector<LifetimePosition> positions) {
int num_regs = num_registers();
int num_codes = num_allocatable_registers();
const int* codes = allocatable_register_codes();
MachineRepresentation rep = range->representation();
if (!kSimpleFPAliasing && (rep == MachineRepresentation::kFloat32 ||
rep == MachineRepresentation::kSimd128))
GetFPRegisterSet(rep, &num_regs, &num_codes, &codes);
DCHECK_GE(positions.length(), num_regs);
for (int i = 0; i < num_regs; ++i) {
positions[i] = LifetimePosition::MaxPosition();
}
for (LiveRange* cur_active : active_live_ranges()) {
int cur_reg = cur_active->assigned_register();
if (kSimpleFPAliasing || !check_fp_aliasing()) {
positions[cur_reg] = LifetimePosition::GapFromInstructionIndex(0);
TRACE("Register %s is free until pos %d (1) due to %d\n",
RegisterName(cur_reg),
LifetimePosition::GapFromInstructionIndex(0).value(),
cur_active->TopLevel()->vreg());
} else {
int alias_base_index = -1;
int aliases = data()->config()->GetAliases(
cur_active->representation(), cur_reg, rep, &alias_base_index);
DCHECK(aliases > 0 || (aliases == 0 && alias_base_index == -1));
while (aliases--) {
int aliased_reg = alias_base_index + aliases;
positions[aliased_reg] = LifetimePosition::GapFromInstructionIndex(0);
}
}
}
for (LiveRange* cur_inactive : inactive_live_ranges()) {
DCHECK(cur_inactive->End() > range->Start());
int cur_reg = cur_inactive->assigned_register();
// No need to carry out intersections, when this register won't be
// interesting to this range anyway.
// TODO(mtrofin): extend to aliased ranges, too.
if ((kSimpleFPAliasing || !check_fp_aliasing()) &&
positions[cur_reg] < range->Start()) {
continue;
}
LifetimePosition next_intersection = cur_inactive->FirstIntersection(range);
if (!next_intersection.IsValid()) continue;
if (kSimpleFPAliasing || !check_fp_aliasing()) {
positions[cur_reg] = Min(positions[cur_reg], next_intersection);
TRACE("Register %s is free until pos %d (2)\n", RegisterName(cur_reg),
Min(positions[cur_reg], next_intersection).value());
} else {
int alias_base_index = -1;
int aliases = data()->config()->GetAliases(
cur_inactive->representation(), cur_reg, rep, &alias_base_index);
DCHECK(aliases > 0 || (aliases == 0 && alias_base_index == -1));
while (aliases--) {
int aliased_reg = alias_base_index + aliases;
positions[aliased_reg] = Min(positions[aliased_reg], next_intersection);
}
}
}
}
// High-level register allocation summary:
//
// For regular, or hot (i.e. not splinter) ranges, we attempt to first
// allocate first the preferred (hint) register. If that is not possible,
// we find a register that's free, and allocate that. If that's not possible,
// we search for a register to steal from a range that was allocated. The
// goal is to optimize for throughput by avoiding register-to-memory
// moves, which are expensive.
//
// For splinters, the goal is to minimize the number of moves. First we try
// to allocate the preferred register (more discussion follows). Failing that,
// we bail out and spill as far as we can, unless the first use is at start,
// case in which we apply the same behavior as we do for regular ranges.
// If there is no hint, we apply the hot-path behavior.
//
// For the splinter, the hint register may come from:
//
// - the hot path (we set it at splintering time with SetHint). In this case, if
// we cannot offer the hint register, spilling is better because it's at most
// 1 move, while trying to find and offer another register is at least 1 move.
//
// - a constraint. If we cannot offer that register, it's because there is some
// interference. So offering the hint register up to the interference would
// result
// in a move at the interference, plus a move to satisfy the constraint. This is
// also the number of moves if we spill, with the potential of the range being
// already spilled and thus saving a move (the spill).
// Note that this can only be an input constraint, if it were an output one,
// the range wouldn't be a splinter because it means it'd be defined in a
// deferred
// block, and we don't mark those as splinters (they live in deferred blocks
// only).
//
// - a phi. The same analysis as in the case of the input constraint applies.
//
void LinearScanAllocator::ProcessCurrentRange(LiveRange* current,
SpillMode spill_mode) {
EmbeddedVector<LifetimePosition, RegisterConfiguration::kMaxRegisters>
free_until_pos;
FindFreeRegistersForRange(current, free_until_pos);
if (!TryAllocatePreferredReg(current, free_until_pos)) {
if (current->TopLevel()->IsSplinter()) {
DCHECK(!data()->is_turbo_control_flow_aware_allocation());
if (TrySplitAndSpillSplinter(current)) return;
}
if (!TryAllocateFreeReg(current, free_until_pos)) {
AllocateBlockedReg(current, spill_mode);
}
}
if (current->HasRegisterAssigned()) {
AddToActive(current);
}
}
bool LinearScanAllocator::TryAllocatePreferredReg(
LiveRange* current, const Vector<LifetimePosition>& free_until_pos) {
int hint_register;
if (current->RegisterFromControlFlow(&hint_register) ||
current->FirstHintPosition(&hint_register) != nullptr ||
current->RegisterFromBundle(&hint_register)) {
TRACE(
"Found reg hint %s (free until [%d) for live range %d:%d (end %d[).\n",
RegisterName(hint_register), free_until_pos[hint_register].value(),
current->TopLevel()->vreg(), current->relative_id(),
current->End().value());
// The desired register is free until the end of the current live range.
if (free_until_pos[hint_register] >= current->End()) {
TRACE("Assigning preferred reg %s to live range %d:%d\n",
RegisterName(hint_register), current->TopLevel()->vreg(),
current->relative_id());
SetLiveRangeAssignedRegister(current, hint_register);
return true;
}
}
return false;
}
int LinearScanAllocator::PickRegisterThatIsAvailableLongest(
LiveRange* current, int hint_reg,
const Vector<LifetimePosition>& free_until_pos) {
int num_regs = 0; // used only for the call to GetFPRegisterSet.
int num_codes = num_allocatable_registers();
const int* codes = allocatable_register_codes();
MachineRepresentation rep = current->representation();
if (!kSimpleFPAliasing && (rep == MachineRepresentation::kFloat32 ||
rep == MachineRepresentation::kSimd128)) {
GetFPRegisterSet(rep, &num_regs, &num_codes, &codes);
}
DCHECK_GE(free_until_pos.length(), num_codes);
// Find the register which stays free for the longest time. Check for
// the hinted register first, as we might want to use that one. Only
// count full instructions for free ranges, as an instruction's internal
// positions do not help but might shadow a hinted register. This is
// typically the case for function calls, where all registered are
// cloberred after the call except for the argument registers, which are
// set before the call. Hence, the argument registers always get ignored,
// as their available time is shorter.
int reg = (hint_reg == kUnassignedRegister) ? codes[0] : hint_reg;
int current_free = -1;
for (int i = 0; i < num_codes; ++i) {
int code = codes[i];
// Prefer registers that have no fixed uses to avoid blocking later hints.
// We use the first register that has no fixed uses to ensure we use
// byte addressable registers in ia32 first.
int candidate_free = free_until_pos[code].ToInstructionIndex();
TRACE("Register %s in free until %d\n", RegisterName(code), candidate_free);
if ((candidate_free > current_free) ||
(candidate_free == current_free && reg != hint_reg &&
(data()->HasFixedUse(current->representation(), reg) &&
!data()->HasFixedUse(current->representation(), code)))) {
reg = code;
current_free = candidate_free;
}
}
return reg;
}
bool LinearScanAllocator::TryAllocateFreeReg(
LiveRange* current, const Vector<LifetimePosition>& free_until_pos) {
// Compute register hint, if such exists.
int hint_reg = kUnassignedRegister;
current->RegisterFromControlFlow(&hint_reg) ||
current->FirstHintPosition(&hint_reg) != nullptr ||
current->RegisterFromBundle(&hint_reg);
int reg =
PickRegisterThatIsAvailableLongest(current, hint_reg, free_until_pos);
LifetimePosition pos = free_until_pos[reg];
if (pos <= current->Start()) {
// All registers are blocked.
return false;
}
if (pos < current->End()) {
// Register reg is available at the range start but becomes blocked before
// the range end. Split current at position where it becomes blocked.
LiveRange* tail = SplitRangeAt(current, pos);
AddToUnhandled(tail);
// Try to allocate preferred register once more.
if (TryAllocatePreferredReg(current, free_until_pos)) return true;
}
// Register reg is available at the range start and is free until the range
// end.
DCHECK(pos >= current->End());
TRACE("Assigning free reg %s to live range %d:%d\n", RegisterName(reg),
current->TopLevel()->vreg(), current->relative_id());
SetLiveRangeAssignedRegister(current, reg);
return true;
}
void LinearScanAllocator::AllocateBlockedReg(LiveRange* current,
SpillMode spill_mode) {
UsePosition* register_use = current->NextRegisterPosition(current->Start());
if (register_use == nullptr) {
// There is no use in the current live range that requires a register.
// We can just spill it.
Spill(current, spill_mode);
return;
}
MachineRepresentation rep = current->representation();
// use_pos keeps track of positions a register/alias is used at.
// block_pos keeps track of positions where a register/alias is blocked
// from.
EmbeddedVector<LifetimePosition, RegisterConfiguration::kMaxRegisters>
use_pos(LifetimePosition::MaxPosition());
EmbeddedVector<LifetimePosition, RegisterConfiguration::kMaxRegisters>
block_pos(LifetimePosition::MaxPosition());
for (LiveRange* range : active_live_ranges()) {
int cur_reg = range->assigned_register();
bool is_fixed_or_cant_spill =
range->TopLevel()->IsFixed() || !range->CanBeSpilled(current->Start());
if (kSimpleFPAliasing || !check_fp_aliasing()) {
if (is_fixed_or_cant_spill) {
block_pos[cur_reg] = use_pos[cur_reg] =
LifetimePosition::GapFromInstructionIndex(0);
} else {
DCHECK_NE(LifetimePosition::GapFromInstructionIndex(0),
block_pos[cur_reg]);
use_pos[cur_reg] =
range->NextLifetimePositionRegisterIsBeneficial(current->Start());
}
} else {
int alias_base_index = -1;
int aliases = data()->config()->GetAliases(
range->representation(), cur_reg, rep, &alias_base_index);
DCHECK(aliases > 0 || (aliases == 0 && alias_base_index == -1));
while (aliases--) {
int aliased_reg = alias_base_index + aliases;
if (is_fixed_or_cant_spill) {
block_pos[aliased_reg] = use_pos[aliased_reg] =
LifetimePosition::GapFromInstructionIndex(0);
} else {
use_pos[aliased_reg] =
Min(block_pos[aliased_reg],
range->NextLifetimePositionRegisterIsBeneficial(
current->Start()));
}
}
}
}
for (LiveRange* range : inactive_live_ranges()) {
DCHECK(range->End() > current->Start());
int cur_reg = range->assigned_register();
bool is_fixed = range->TopLevel()->IsFixed();
// Don't perform costly intersections if they are guaranteed to not update
// block_pos or use_pos.
// TODO(mtrofin): extend to aliased ranges, too.
if ((kSimpleFPAliasing || !check_fp_aliasing())) {
if (is_fixed) {
if (block_pos[cur_reg] < range->Start()) continue;
} else {
if (use_pos[cur_reg] < range->Start()) continue;
}
}
LifetimePosition next_intersection = range->FirstIntersection(current);
if (!next_intersection.IsValid()) continue;
if (kSimpleFPAliasing || !check_fp_aliasing()) {
if (is_fixed) {
block_pos[cur_reg] = Min(block_pos[cur_reg], next_intersection);
use_pos[cur_reg] = Min(block_pos[cur_reg], use_pos[cur_reg]);
} else {
use_pos[cur_reg] = Min(use_pos[cur_reg], next_intersection);
}
} else {
int alias_base_index = -1;
int aliases = data()->config()->GetAliases(
range->representation(), cur_reg, rep, &alias_base_index);
DCHECK(aliases > 0 || (aliases == 0 && alias_base_index == -1));
while (aliases--) {
int aliased_reg = alias_base_index + aliases;
if (is_fixed) {
block_pos[aliased_reg] =
Min(block_pos[aliased_reg], next_intersection);
use_pos[aliased_reg] =
Min(block_pos[aliased_reg], use_pos[aliased_reg]);
} else {
use_pos[aliased_reg] = Min(use_pos[aliased_reg], next_intersection);
}
}
}
}
// Compute register hint if it exists.
int hint_reg = kUnassignedRegister;
current->RegisterFromControlFlow(&hint_reg) ||
register_use->HintRegister(&hint_reg) ||
current->RegisterFromBundle(&hint_reg);
int reg = PickRegisterThatIsAvailableLongest(current, hint_reg, use_pos);
if (use_pos[reg] < register_use->pos()) {
// If there is a gap position before the next register use, we can
// spill until there. The gap position will then fit the fill move.
if (LifetimePosition::ExistsGapPositionBetween(current->Start(),
register_use->pos())) {
SpillBetween(current, current->Start(), register_use->pos(), spill_mode);
return;
}
}
// When in deferred spilling mode avoid stealing registers beyond the current
// deferred region. This is required as we otherwise might spill an inactive
// range with a start outside of deferred code and that would not be reloaded.
LifetimePosition new_end = current->End();
if (spill_mode == SpillMode::kSpillDeferred) {
InstructionBlock* deferred_block =
code()->GetInstructionBlock(current->Start().ToInstructionIndex());
new_end = Min(new_end, LifetimePosition::GapFromInstructionIndex(
LastDeferredInstructionIndex(deferred_block)));
}
// We couldn't spill until the next register use. Split before the register
// is blocked, if applicable.
if (block_pos[reg] < new_end) {
// Register becomes blocked before the current range end. Split before that
// position.
new_end = block_pos[reg].Start();
}
// If there is no register available at all, we can only spill this range.
// Happens for instance on entry to deferred code where registers might
// become blocked yet we aim to reload ranges.
if (new_end == current->Start()) {
SpillBetween(current, new_end, register_use->pos(), spill_mode);
return;
}
// Split at the new end if we found one.
if (new_end != current->End()) {
LiveRange* tail = SplitBetween(current, current->Start(), new_end);
AddToUnhandled(tail);
}
// Register reg is not blocked for the whole range.
DCHECK(block_pos[reg] >= current->End());
TRACE("Assigning blocked reg %s to live range %d:%d\n", RegisterName(reg),
current->TopLevel()->vreg(), current->relative_id());
SetLiveRangeAssignedRegister(current, reg);
// This register was not free. Thus we need to find and spill
// parts of active and inactive live regions that use the same register
// at the same lifetime positions as current.
SplitAndSpillIntersecting(current, spill_mode);
}
void LinearScanAllocator::SplitAndSpillIntersecting(LiveRange* current,
SpillMode spill_mode) {
DCHECK(current->HasRegisterAssigned());
int reg = current->assigned_register();
LifetimePosition split_pos = current->Start();
for (auto it = active_live_ranges().begin();
it != active_live_ranges().end();) {
LiveRange* range = *it;
if (kSimpleFPAliasing || !check_fp_aliasing()) {
if (range->assigned_register() != reg) {
++it;
continue;
}
} else {
if (!data()->config()->AreAliases(current->representation(), reg,
range->representation(),
range->assigned_register())) {
++it;
continue;
}
}
UsePosition* next_pos = range->NextRegisterPosition(current->Start());
// TODO(herhut): Be more clever here as long as we do not move split_pos
// out of deferred code.
LifetimePosition spill_pos = spill_mode == SpillMode::kSpillDeferred
? split_pos
: FindOptimalSpillingPos(range, split_pos);
if (next_pos == nullptr) {
SpillAfter(range, spill_pos, spill_mode);
} else {
// When spilling between spill_pos and next_pos ensure that the range
// remains spilled at least until the start of the current live range.
// This guarantees that we will not introduce new unhandled ranges that
// start before the current range as this violates allocation invariants
// and will lead to an inconsistent state of active and inactive
// live-ranges: ranges are allocated in order of their start positions,
// ranges are retired from active/inactive when the start of the
// current live-range is larger than their end.
DCHECK(LifetimePosition::ExistsGapPositionBetween(current->Start(),
next_pos->pos()));
SpillBetweenUntil(range, spill_pos, current->Start(), next_pos->pos(),
spill_mode);
}
it = ActiveToHandled(it);
}
for (auto it = inactive_live_ranges().begin();
it != inactive_live_ranges().end();) {
LiveRange* range = *it;
DCHECK(range->End() > current->Start());
if (range->TopLevel()->IsFixed()) {
++it;
continue;
}
if (kSimpleFPAliasing || !check_fp_aliasing()) {
if (range->assigned_register() != reg) {
++it;
continue;
}
} else {
if (!data()->config()->AreAliases(current->representation(), reg,
range->representation(),
range->assigned_register())) {
++it;
continue;
}
}
LifetimePosition next_intersection = range->FirstIntersection(current);
if (next_intersection.IsValid()) {
UsePosition* next_pos = range->NextRegisterPosition(current->Start());
if (next_pos == nullptr) {
SpillAfter(range, split_pos, spill_mode);
} else {
next_intersection = Min(next_intersection, next_pos->pos());
SpillBetween(range, split_pos, next_intersection, spill_mode);
}
it = InactiveToHandled(it);
} else {
++it;
}
}
}
bool LinearScanAllocator::TryReuseSpillForPhi(TopLevelLiveRange* range) {
if (!range->is_phi()) return false;
DCHECK(!range->HasSpillOperand());
// Check how many operands belong to the same bundle as the output.
LiveRangeBundle* out_bundle = range->get_bundle();
RegisterAllocationData::PhiMapValue* phi_map_value =
data()->GetPhiMapValueFor(range);
const PhiInstruction* phi = phi_map_value->phi();
const InstructionBlock* block = phi_map_value->block();
// Count the number of spilled operands.
size_t spilled_count = 0;
for (size_t i = 0; i < phi->operands().size(); i++) {
int op = phi->operands()[i];
LiveRange* op_range = data()->GetOrCreateLiveRangeFor(op);
if (!op_range->TopLevel()->HasSpillRange()) continue;
const InstructionBlock* pred =
code()->InstructionBlockAt(block->predecessors()[i]);
LifetimePosition pred_end =
LifetimePosition::InstructionFromInstructionIndex(
pred->last_instruction_index());
while (op_range != nullptr && !op_range->CanCover(pred_end)) {
op_range = op_range->next();
}
if (op_range != nullptr && op_range->spilled() &&
op_range->get_bundle() == out_bundle) {
spilled_count++;
}
}
// Only continue if more than half of the operands are spilled to the same
// slot (because part of same bundle).
if (spilled_count * 2 <= phi->operands().size()) {
return false;
}
// If the range does not need register soon, spill it to the merged
// spill range.
LifetimePosition next_pos = range->Start();
if (next_pos.IsGapPosition()) next_pos = next_pos.NextStart();
UsePosition* pos = range->NextUsePositionRegisterIsBeneficial(next_pos);
if (pos == nullptr) {
Spill(range, SpillMode::kSpillAtDefinition);
return true;
} else if (pos->pos() > range->Start().NextStart()) {
SpillBetween(range, range->Start(), pos->pos(),
SpillMode::kSpillAtDefinition);
return true;
}
return false;
}
void LinearScanAllocator::SpillAfter(LiveRange* range, LifetimePosition pos,
SpillMode spill_mode) {
LiveRange* second_part = SplitRangeAt(range, pos);
Spill(second_part, spill_mode);
}
void LinearScanAllocator::SpillBetween(LiveRange* range, LifetimePosition start,
LifetimePosition end,
SpillMode spill_mode) {
SpillBetweenUntil(range, start, start, end, spill_mode);
}
void LinearScanAllocator::SpillBetweenUntil(LiveRange* range,
LifetimePosition start,
LifetimePosition until,
LifetimePosition end,
SpillMode spill_mode) {
CHECK(start < end);
LiveRange* second_part = SplitRangeAt(range, start);
if (second_part->Start() < end) {
// The split result intersects with [start, end[.
// Split it at position between ]start+1, end[, spill the middle part
// and put the rest to unhandled.
// Make sure that the third part always starts after the start of the
// second part, as that likely is the current position of the register
// allocator and we cannot add ranges to unhandled that start before
// the current position.
LifetimePosition split_start = Max(second_part->Start().End(), until);
// If end is an actual use (which it typically is) we have to split
// so that there is a gap before so that we have space for moving the
// value into its position.
// However, if we have no choice, split right where asked.
LifetimePosition third_part_end = Max(split_start, end.PrevStart().End());
// Instead of spliting right after or even before the block boundary,
// split on the boumndary to avoid extra moves.
if (data()->IsBlockBoundary(end.Start())) {
third_part_end = Max(split_start, end.Start());
}
LiveRange* third_part =
SplitBetween(second_part, split_start, third_part_end);
if (GetInstructionBlock(data()->code(), second_part->Start())
->IsDeferred()) {
// Try to use the same register as before.
TRACE("Setting control flow hint for %d:%d to %s\n",
third_part->TopLevel()->vreg(), third_part->relative_id(),
RegisterName(range->controlflow_hint()));
third_part->set_controlflow_hint(range->controlflow_hint());
}
AddToUnhandled(third_part);
// This can happen, even if we checked for start < end above, as we fiddle
// with the end location. However, we are guaranteed to be after or at
// until, so this is fine.
if (third_part != second_part) {
Spill(second_part, spill_mode);
}
} else {
// The split result does not intersect with [start, end[.
// Nothing to spill. Just put it to unhandled as whole.
AddToUnhandled(second_part);
}
}
SpillSlotLocator::SpillSlotLocator(RegisterAllocationData* data)
: data_(data) {}
void SpillSlotLocator::LocateSpillSlots() {
const InstructionSequence* code = data()->code();
const size_t live_ranges_size = data()->live_ranges().size();
for (TopLevelLiveRange* range : data()->live_ranges()) {
CHECK_EQ(live_ranges_size,
data()->live_ranges().size()); // TODO(neis): crbug.com/831822
if (range == nullptr || range->IsEmpty()) continue;
// We care only about ranges which spill in the frame.
if (!range->HasSpillRange() ||
range->IsSpilledOnlyInDeferredBlocks(data())) {
continue;
}
TopLevelLiveRange::SpillMoveInsertionList* spills =
range->GetSpillMoveInsertionLocations(data());
DCHECK_NOT_NULL(spills);
for (; spills != nullptr; spills = spills->next) {
code->GetInstructionBlock(spills->gap_index)->mark_needs_frame();
}
}
}
OperandAssigner::OperandAssigner(RegisterAllocationData* data) : data_(data) {}
void OperandAssigner::DecideSpillingMode() {
if (data()->is_turbo_control_flow_aware_allocation()) {
for (auto range : data()->live_ranges()) {
data()->tick_counter()->DoTick();
int max_blocks = data()->code()->InstructionBlockCount();
if (range != nullptr && range->IsSpilledOnlyInDeferredBlocks(data())) {
// If the range is spilled only in deferred blocks and starts in
// a non-deferred block, we transition its representation here so
// that the LiveRangeConnector processes them correctly. If,
// however, they start in a deferred block, we uograde them to
// spill at definition, as that definition is in a deferred block
// anyway. While this is an optimization, the code in LiveRangeConnector
// relies on it!
if (GetInstructionBlock(data()->code(), range->Start())->IsDeferred()) {
TRACE("Live range %d is spilled and alive in deferred code only\n",
range->vreg());
range->TransitionRangeToSpillAtDefinition();
} else {
TRACE(
"Live range %d is spilled deferred code only but alive outside\n",
range->vreg());
DCHECK(data()->is_turbo_control_flow_aware_allocation());
range->TransitionRangeToDeferredSpill(data()->allocation_zone(),
max_blocks);
}
}
}
}
}
void OperandAssigner::AssignSpillSlots() {
for (auto range : data()->live_ranges()) {
data()->tick_counter()->DoTick();
if (range != nullptr && range->get_bundle() != nullptr) {
range->get_bundle()->MergeSpillRanges();
}
}
ZoneVector<SpillRange*>& spill_ranges = data()->spill_ranges();
// Merge disjoint spill ranges
for (size_t i = 0; i < spill_ranges.size(); ++i) {
data()->tick_counter()->DoTick();
SpillRange* range = spill_ranges[i];
if (range == nullptr) continue;
if (range->IsEmpty()) continue;
for (size_t j = i + 1; j < spill_ranges.size(); ++j) {
SpillRange* other = spill_ranges[j];
if (other != nullptr && !other->IsEmpty()) {
range->TryMerge(other);
}
}
}
// Allocate slots for the merged spill ranges.
for (SpillRange* range : spill_ranges) {
data()->tick_counter()->DoTick();
if (range == nullptr || range->IsEmpty()) continue;
// Allocate a new operand referring to the spill slot.
if (!range->HasSlot()) {
int index = data()->frame()->AllocateSpillSlot(range->byte_width());
range->set_assigned_slot(index);
}
}
}
void OperandAssigner::CommitAssignment() {
const size_t live_ranges_size = data()->live_ranges().size();
for (TopLevelLiveRange* top_range : data()->live_ranges()) {
data()->tick_counter()->DoTick();
CHECK_EQ(live_ranges_size,
data()->live_ranges().size()); // TODO(neis): crbug.com/831822
if (top_range == nullptr || top_range->IsEmpty()) continue;
InstructionOperand spill_operand;
if (top_range->HasSpillOperand()) {
spill_operand = *top_range->TopLevel()->GetSpillOperand();
} else if (top_range->TopLevel()->HasSpillRange()) {
spill_operand = top_range->TopLevel()->GetSpillRangeOperand();
}
if (top_range->is_phi()) {
data()->GetPhiMapValueFor(top_range)->CommitAssignment(
top_range->GetAssignedOperand());
}
for (LiveRange* range = top_range; range != nullptr;
range = range->next()) {
InstructionOperand assigned = range->GetAssignedOperand();
DCHECK(!assigned.IsUnallocated());
range->ConvertUsesToOperand(assigned, spill_operand);
}
if (!spill_operand.IsInvalid()) {
// If this top level range has a child spilled in a deferred block, we use
// the range and control flow connection mechanism instead of spilling at
// definition. Refer to the ConnectLiveRanges and ResolveControlFlow
// phases. Normally, when we spill at definition, we do not insert a
// connecting move when a successor child range is spilled - because the
// spilled range picks up its value from the slot which was assigned at
// definition. For ranges that are determined to spill only in deferred
// blocks, we let ConnectLiveRanges and ResolveControlFlow find the blocks
// where a spill operand is expected, and then finalize by inserting the
// spills in the deferred blocks dominators.
if (!top_range->IsSpilledOnlyInDeferredBlocks(data())) {
// Spill at definition if the range isn't spilled only in deferred
// blocks.
top_range->CommitSpillMoves(
data(), spill_operand,
top_range->has_slot_use() || top_range->spilled());
}
}
}
}
ReferenceMapPopulator::ReferenceMapPopulator(RegisterAllocationData* data)
: data_(data) {}
bool ReferenceMapPopulator::SafePointsAreInOrder() const {
int safe_point = 0;
for (ReferenceMap* map : *data()->code()->reference_maps()) {
if (safe_point > map->instruction_position()) return false;
safe_point = map->instruction_position();
}
return true;
}
void ReferenceMapPopulator::PopulateReferenceMaps() {
DCHECK(SafePointsAreInOrder());
// Map all delayed references.
for (RegisterAllocationData::DelayedReference& delayed_reference :
data()->delayed_references()) {
delayed_reference.map->RecordReference(
AllocatedOperand::cast(*delayed_reference.operand));
}
// Iterate over all safe point positions and record a pointer
// for all spilled live ranges at this point.
int last_range_start = 0;
const ReferenceMapDeque* reference_maps = data()->code()->reference_maps();
ReferenceMapDeque::const_iterator first_it = reference_maps->begin();
const size_t live_ranges_size = data()->live_ranges().size();
for (TopLevelLiveRange* range : data()->live_ranges()) {
CHECK_EQ(live_ranges_size,
data()->live_ranges().size()); // TODO(neis): crbug.com/831822
if (range == nullptr) continue;
// Skip non-reference values.
if (!data()->code()->IsReference(range->vreg())) continue;
// Skip empty live ranges.
if (range->IsEmpty()) continue;
if (range->has_preassigned_slot()) continue;
// Find the extent of the range and its children.
int start = range->Start().ToInstructionIndex();
int end = 0;
for (LiveRange* cur = range; cur != nullptr; cur = cur->next()) {
LifetimePosition this_end = cur->End();
if (this_end.ToInstructionIndex() > end)
end = this_end.ToInstructionIndex();
DCHECK(cur->Start().ToInstructionIndex() >= start);
}
// Most of the ranges are in order, but not all. Keep an eye on when they
// step backwards and reset the first_it so we don't miss any safe points.
if (start < last_range_start) first_it = reference_maps->begin();
last_range_start = start;
// Step across all the safe points that are before the start of this range,
// recording how far we step in order to save doing this for the next range.
for (; first_it != reference_maps->end(); ++first_it) {
ReferenceMap* map = *first_it;
if (map->instruction_position() >= start) break;
}
InstructionOperand spill_operand;
if (((range->HasSpillOperand() &&
!range->GetSpillOperand()->IsConstant()) ||
range->HasSpillRange())) {
if (range->HasSpillOperand()) {
spill_operand = *range->GetSpillOperand();
} else {
spill_operand = range->GetSpillRangeOperand();
}
DCHECK(spill_operand.IsStackSlot());
DCHECK(CanBeTaggedOrCompressedPointer(
AllocatedOperand::cast(spill_operand).representation()));
}
LiveRange* cur = range;
// Step through the safe points to see whether they are in the range.
for (auto it = first_it; it != reference_maps->end(); ++it) {
ReferenceMap* map = *it;
int safe_point = map->instruction_position();
// The safe points are sorted so we can stop searching here.
if (safe_point - 1 > end) break;
// Advance to the next active range that covers the current
// safe point position.
LifetimePosition safe_point_pos =
LifetimePosition::InstructionFromInstructionIndex(safe_point);
// Search for the child range (cur) that covers safe_point_pos. If we
// don't find it before the children pass safe_point_pos, keep cur at
// the last child, because the next safe_point_pos may be covered by cur.
// This may happen if cur has more than one interval, and the current
// safe_point_pos is in between intervals.
// For that reason, cur may be at most the last child.
DCHECK_NOT_NULL(cur);
DCHECK(safe_point_pos >= cur->Start() || range == cur);
bool found = false;
while (!found) {
if (cur->Covers(safe_point_pos)) {
found = true;
} else {
LiveRange* next = cur->next();
if (next == nullptr || next->Start() > safe_point_pos) {
break;
}
cur = next;
}
}
if (!found) {
continue;
}
// Check if the live range is spilled and the safe point is after
// the spill position.
int spill_index = range->IsSpilledOnlyInDeferredBlocks(data())
? cur->Start().ToInstructionIndex()
: range->spill_start_index();
if (!spill_operand.IsInvalid() && safe_point >= spill_index) {
TRACE("Pointer for range %d (spilled at %d) at safe point %d\n",
range->vreg(), spill_index, safe_point);
map->RecordReference(AllocatedOperand::cast(spill_operand));
}
if (!cur->spilled()) {
TRACE(
"Pointer in register for range %d:%d (start at %d) "
"at safe point %d\n",
range->vreg(), cur->relative_id(), cur->Start().value(),
safe_point);
InstructionOperand operand = cur->GetAssignedOperand();
DCHECK(!operand.IsStackSlot());
DCHECK(CanBeTaggedOrCompressedPointer(
AllocatedOperand::cast(operand).representation()));
map->RecordReference(AllocatedOperand::cast(operand));
}
}
}
}
LiveRangeConnector::LiveRangeConnector(RegisterAllocationData* data)
: data_(data) {}
bool LiveRangeConnector::CanEagerlyResolveControlFlow(
const InstructionBlock* block) const {
if (block->PredecessorCount() != 1) return false;
return block->predecessors()[0].IsNext(block->rpo_number());
}
void LiveRangeConnector::ResolveControlFlow(Zone* local_zone) {
// Lazily linearize live ranges in memory for fast lookup.
LiveRangeFinder finder(data(), local_zone);
ZoneVector<BitVector*>& live_in_sets = data()->live_in_sets();
for (const InstructionBlock* block : code()->instruction_blocks()) {
if (CanEagerlyResolveControlFlow(block)) continue;
BitVector* live = live_in_sets[block->rpo_number().ToInt()];
BitVector::Iterator iterator(live);
while (!iterator.Done()) {
data()->tick_counter()->DoTick();
int vreg = iterator.Current();
LiveRangeBoundArray* array = finder.ArrayFor(vreg);
for (const RpoNumber& pred : block->predecessors()) {
FindResult result;
const InstructionBlock* pred_block = code()->InstructionBlockAt(pred);
if (!array->FindConnectableSubranges(block, pred_block, &result)) {
continue;
}
InstructionOperand pred_op = result.pred_cover_->GetAssignedOperand();
InstructionOperand cur_op = result.cur_cover_->GetAssignedOperand();
if (pred_op.Equals(cur_op)) continue;
if (!pred_op.IsAnyRegister() && cur_op.IsAnyRegister()) {
// We're doing a reload.
// We don't need to, if:
// 1) there's no register use in this block, and
// 2) the range ends before the block does, and
// 3) we don't have a successor, or the successor is spilled.
LifetimePosition block_start =
LifetimePosition::GapFromInstructionIndex(block->code_start());
LifetimePosition block_end =
LifetimePosition::GapFromInstructionIndex(block->code_end());
const LiveRange* current = result.cur_cover_;
// TODO(herhut): This is not the successor if we have control flow!
const LiveRange* successor = current->next();
if (current->End() < block_end &&
(successor == nullptr || successor->spilled())) {
// verify point 1: no register use. We can go to the end of the
// range, since it's all within the block.
bool uses_reg = false;
for (const UsePosition* use = current->NextUsePosition(block_start);
use != nullptr; use = use->next()) {
if (use->operand()->IsAnyRegister()) {
uses_reg = true;
break;
}
}
if (!uses_reg) continue;
}
if (current->TopLevel()->IsSpilledOnlyInDeferredBlocks(data()) &&
pred_block->IsDeferred()) {
// The spill location should be defined in pred_block, so add
// pred_block to the list of blocks requiring a spill operand.
TRACE("Adding B%d to list of spill blocks for %d\n",
pred_block->rpo_number().ToInt(),
current->TopLevel()->vreg());
current->TopLevel()
->GetListOfBlocksRequiringSpillOperands(data())
->Add(pred_block->rpo_number().ToInt());
}
}
int move_loc = ResolveControlFlow(block, cur_op, pred_block, pred_op);
USE(move_loc);
DCHECK_IMPLIES(
result.cur_cover_->TopLevel()->IsSpilledOnlyInDeferredBlocks(
data()) &&
!(pred_op.IsAnyRegister() && cur_op.IsAnyRegister()),
code()->GetInstructionBlock(move_loc)->IsDeferred());
}
iterator.Advance();
}
}
// At this stage, we collected blocks needing a spill operand from
// ConnectRanges and from ResolveControlFlow. Time to commit the spills for
// deferred blocks.
const size_t live_ranges_size = data()->live_ranges().size();
for (TopLevelLiveRange* top : data()->live_ranges()) {
CHECK_EQ(live_ranges_size,
data()->live_ranges().size()); // TODO(neis): crbug.com/831822
if (top == nullptr || top->IsEmpty() ||
!top->IsSpilledOnlyInDeferredBlocks(data()))
continue;
CommitSpillsInDeferredBlocks(top, finder.ArrayFor(top->vreg()), local_zone);
}
}
int LiveRangeConnector::ResolveControlFlow(const InstructionBlock* block,
const InstructionOperand& cur_op,
const InstructionBlock* pred,
const InstructionOperand& pred_op) {
DCHECK(!pred_op.Equals(cur_op));
int gap_index;
Instruction::GapPosition position;
if (block->PredecessorCount() == 1) {
gap_index = block->first_instruction_index();
position = Instruction::START;
} else {
DCHECK_EQ(1, pred->SuccessorCount());
DCHECK(!code()
->InstructionAt(pred->last_instruction_index())
->HasReferenceMap());
gap_index = pred->last_instruction_index();
position = Instruction::END;
}
data()->AddGapMove(gap_index, position, pred_op, cur_op);
return gap_index;
}
void LiveRangeConnector::ConnectRanges(Zone* local_zone) {
DelayedInsertionMap delayed_insertion_map(local_zone);
const size_t live_ranges_size = data()->live_ranges().size();
for (TopLevelLiveRange* top_range : data()->live_ranges()) {
CHECK_EQ(live_ranges_size,
data()->live_ranges().size()); // TODO(neis): crbug.com/831822
if (top_range == nullptr) continue;
bool connect_spilled = top_range->IsSpilledOnlyInDeferredBlocks(data());
LiveRange* first_range = top_range;
for (LiveRange *second_range = first_range->next(); second_range != nullptr;
first_range = second_range, second_range = second_range->next()) {
LifetimePosition pos = second_range->Start();
// Add gap move if the two live ranges touch and there is no block
// boundary.
if (second_range->spilled()) continue;
if (first_range->End() != pos) continue;
if (data()->IsBlockBoundary(pos) &&
!CanEagerlyResolveControlFlow(GetInstructionBlock(code(), pos))) {
continue;
}
InstructionOperand prev_operand = first_range->GetAssignedOperand();
InstructionOperand cur_operand = second_range->GetAssignedOperand();
if (prev_operand.Equals(cur_operand)) continue;
bool delay_insertion = false;
Instruction::GapPosition gap_pos;
int gap_index = pos.ToInstructionIndex();
if (connect_spilled && !prev_operand.IsAnyRegister() &&
cur_operand.IsAnyRegister()) {
const InstructionBlock* block = code()->GetInstructionBlock(gap_index);
DCHECK(block->IsDeferred());
// Performing a reload in this block, meaning the spill operand must
// be defined here.
top_range->GetListOfBlocksRequiringSpillOperands(data())->Add(
block->rpo_number().ToInt());
}
if (pos.IsGapPosition()) {
gap_pos = pos.IsStart() ? Instruction::START : Instruction::END;
} else {
if (pos.IsStart()) {
delay_insertion = true;
} else {
gap_index++;
}
gap_pos = delay_insertion ? Instruction::END : Instruction::START;
}
// Reloads or spills for spilled in deferred blocks ranges must happen
// only in deferred blocks.
DCHECK_IMPLIES(connect_spilled && !(prev_operand.IsAnyRegister() &&
cur_operand.IsAnyRegister()),
code()->GetInstructionBlock(gap_index)->IsDeferred());
ParallelMove* move =
code()->InstructionAt(gap_index)->GetOrCreateParallelMove(
gap_pos, code_zone());
if (!delay_insertion) {
move->AddMove(prev_operand, cur_operand);
} else {
delayed_insertion_map.insert(
std::make_pair(std::make_pair(move, prev_operand), cur_operand));
}
}
}
if (delayed_insertion_map.empty()) return;
// Insert all the moves which should occur after the stored move.
ZoneVector<MoveOperands*> to_insert(local_zone);
ZoneVector<MoveOperands*> to_eliminate(local_zone);
to_insert.reserve(4);
to_eliminate.reserve(4);
ParallelMove* moves = delayed_insertion_map.begin()->first.first;
for (auto it = delayed_insertion_map.begin();; ++it) {
bool done = it == delayed_insertion_map.end();
if (done || it->first.first != moves) {
// Commit the MoveOperands for current ParallelMove.
for (MoveOperands* move : to_eliminate) {
move->Eliminate();
}
for (MoveOperands* move : to_insert) {
moves->push_back(move);
}
if (done) break;
// Reset state.
to_eliminate.clear();
to_insert.clear();
moves = it->first.first;
}
// Gather all MoveOperands for a single ParallelMove.
MoveOperands* move =
new (code_zone()) MoveOperands(it->first.second, it->second);
moves->PrepareInsertAfter(move, &to_eliminate);
to_insert.push_back(move);
}
}
void LiveRangeConnector::CommitSpillsInDeferredBlocks(
TopLevelLiveRange* range, LiveRangeBoundArray* array, Zone* temp_zone) {
DCHECK(range->IsSpilledOnlyInDeferredBlocks(data()));
DCHECK(!range->spilled());
InstructionSequence* code = data()->code();
InstructionOperand spill_operand = range->GetSpillRangeOperand();
TRACE("Live Range %d will be spilled only in deferred blocks.\n",
range->vreg());
// If we have ranges that aren't spilled but require the operand on the stack,
// make sure we insert the spill.
for (const LiveRange* child = range; child != nullptr;
child = child->next()) {
for (const UsePosition* pos = child->first_pos(); pos != nullptr;
pos = pos->next()) {
if (pos->type() != UsePositionType::kRequiresSlot && !child->spilled())
continue;
range->AddBlockRequiringSpillOperand(
code->GetInstructionBlock(pos->pos().ToInstructionIndex())
->rpo_number(),
data());
}
}
ZoneQueue<int> worklist(temp_zone);
for (BitVector::Iterator iterator(
range->GetListOfBlocksRequiringSpillOperands(data()));
!iterator.Done(); iterator.Advance()) {
worklist.push(iterator.Current());
}
ZoneSet<std::pair<RpoNumber, int>> done_moves(temp_zone);
// Seek the deferred blocks that dominate locations requiring spill operands,
// and spill there. We only need to spill at the start of such blocks.
BitVector done_blocks(
range->GetListOfBlocksRequiringSpillOperands(data())->length(),
temp_zone);
while (!worklist.empty()) {
int block_id = worklist.front();
worklist.pop();
if (done_blocks.Contains(block_id)) continue;
done_blocks.Add(block_id);
InstructionBlock* spill_block =
code->InstructionBlockAt(RpoNumber::FromInt(block_id));
for (const RpoNumber& pred : spill_block->predecessors()) {
const InstructionBlock* pred_block = code->InstructionBlockAt(pred);
if (pred_block->IsDeferred()) {
worklist.push(pred_block->rpo_number().ToInt());
} else {
LifetimePosition pred_end =
LifetimePosition::InstructionFromInstructionIndex(
pred_block->last_instruction_index());
LiveRangeBound* bound = array->Find(pred_end);
InstructionOperand pred_op = bound->range_->GetAssignedOperand();
RpoNumber spill_block_number = spill_block->rpo_number();
if (done_moves.find(std::make_pair(
spill_block_number, range->vreg())) == done_moves.end()) {
TRACE("Spilling deferred spill for range %d at B%d\n", range->vreg(),
spill_block_number.ToInt());
data()->AddGapMove(spill_block->first_instruction_index(),
Instruction::GapPosition::START, pred_op,
spill_operand);
done_moves.insert(std::make_pair(spill_block_number, range->vreg()));
spill_block->mark_needs_frame();
}
}
}
}
}
#undef TRACE
#undef TRACE_COND
} // namespace compiler
} // namespace internal
} // namespace v8