blob: 3b9e7402b6dcbf6e5b20a5b4700e92756844c8f3 [file] [log] [blame]
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <memory>
#include "src/api/api.h"
#include "src/ast/ast-traversal-visitor.h"
#include "src/ast/prettyprinter.h"
#include "src/builtins/builtins.h"
#include "src/common/message-template.h"
#include "src/debug/debug.h"
#include "src/execution/arguments-inl.h"
#include "src/execution/frames-inl.h"
#include "src/execution/isolate-inl.h"
#include "src/init/bootstrapper.h"
#include "src/logging/counters.h"
#include "src/numbers/conversions.h"
#include "src/objects/feedback-vector-inl.h"
#include "src/objects/js-array-inl.h"
#include "src/objects/template-objects-inl.h"
#include "src/parsing/parse-info.h"
#include "src/parsing/parsing.h"
#include "src/runtime/runtime-utils.h"
#include "src/snapshot/snapshot.h"
#include "src/strings/string-builder-inl.h"
#include "src/utils/ostreams.h"
namespace v8 {
namespace internal {
RUNTIME_FUNCTION(Runtime_AccessCheck) {
HandleScope scope(isolate);
DCHECK_EQ(1, args.length());
CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0);
if (!isolate->MayAccess(handle(isolate->context(), isolate), object)) {
isolate->ReportFailedAccessCheck(object);
RETURN_FAILURE_IF_SCHEDULED_EXCEPTION(isolate);
}
return ReadOnlyRoots(isolate).undefined_value();
}
RUNTIME_FUNCTION(Runtime_FatalProcessOutOfMemoryInAllocateRaw) {
HandleScope scope(isolate);
DCHECK_EQ(0, args.length());
isolate->heap()->FatalProcessOutOfMemory("CodeStubAssembler::AllocateRaw");
UNREACHABLE();
}
RUNTIME_FUNCTION(Runtime_FatalProcessOutOfMemoryInvalidArrayLength) {
HandleScope scope(isolate);
DCHECK_EQ(0, args.length());
isolate->heap()->FatalProcessOutOfMemory("invalid array length");
UNREACHABLE();
}
RUNTIME_FUNCTION(Runtime_Throw) {
HandleScope scope(isolate);
DCHECK_EQ(1, args.length());
return isolate->Throw(args[0]);
}
RUNTIME_FUNCTION(Runtime_ReThrow) {
HandleScope scope(isolate);
DCHECK_EQ(1, args.length());
return isolate->ReThrow(args[0]);
}
RUNTIME_FUNCTION(Runtime_ThrowStackOverflow) {
SealHandleScope shs(isolate);
DCHECK_LE(0, args.length());
return isolate->StackOverflow();
}
RUNTIME_FUNCTION(Runtime_ThrowSymbolAsyncIteratorInvalid) {
HandleScope scope(isolate);
DCHECK_EQ(0, args.length());
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewTypeError(MessageTemplate::kSymbolAsyncIteratorInvalid));
}
#define THROW_ERROR(isolate, args, call) \
HandleScope scope(isolate); \
DCHECK_LE(1, args.length()); \
CONVERT_SMI_ARG_CHECKED(message_id_smi, 0); \
\
Handle<Object> undefined = isolate->factory()->undefined_value(); \
Handle<Object> arg0 = (args.length() > 1) ? args.at(1) : undefined; \
Handle<Object> arg1 = (args.length() > 2) ? args.at(2) : undefined; \
Handle<Object> arg2 = (args.length() > 3) ? args.at(3) : undefined; \
\
MessageTemplate message_id = MessageTemplateFromInt(message_id_smi); \
\
THROW_NEW_ERROR_RETURN_FAILURE(isolate, call(message_id, arg0, arg1, arg2));
RUNTIME_FUNCTION(Runtime_ThrowRangeError) {
if (FLAG_correctness_fuzzer_suppressions) {
DCHECK_LE(1, args.length());
CONVERT_SMI_ARG_CHECKED(message_id_smi, 0);
// If the result of a BigInt computation is truncated to 64 bit, Turbofan
// can sometimes truncate intermediate results already, which can prevent
// those from exceeding the maximum length, effectively preventing a
// RangeError from being thrown. As this is a performance optimization, this
// behavior is accepted. To prevent the correctness fuzzer from detecting
// this difference, we crash the program.
if (MessageTemplateFromInt(message_id_smi) ==
MessageTemplate::kBigIntTooBig) {
FATAL("Aborting on invalid BigInt length");
}
}
THROW_ERROR(isolate, args, NewRangeError);
}
RUNTIME_FUNCTION(Runtime_ThrowTypeError) {
THROW_ERROR(isolate, args, NewTypeError);
}
RUNTIME_FUNCTION(Runtime_ThrowTypeErrorIfStrict) {
if (GetShouldThrow(isolate, Nothing<ShouldThrow>()) ==
ShouldThrow::kDontThrow)
return ReadOnlyRoots(isolate).undefined_value();
THROW_ERROR(isolate, args, NewTypeError);
}
#undef THROW_ERROR
namespace {
const char* ElementsKindToType(ElementsKind fixed_elements_kind) {
switch (fixed_elements_kind) {
#define ELEMENTS_KIND_CASE(Type, type, TYPE, ctype) \
case TYPE##_ELEMENTS: \
return #Type "Array";
TYPED_ARRAYS(ELEMENTS_KIND_CASE)
#undef ELEMENTS_KIND_CASE
default:
UNREACHABLE();
}
}
} // namespace
RUNTIME_FUNCTION(Runtime_ThrowInvalidTypedArrayAlignment) {
HandleScope scope(isolate);
DCHECK_EQ(2, args.length());
CONVERT_ARG_HANDLE_CHECKED(Map, map, 0);
CONVERT_ARG_HANDLE_CHECKED(String, problem_string, 1);
ElementsKind kind = map->elements_kind();
Handle<String> type =
isolate->factory()->NewStringFromAsciiChecked(ElementsKindToType(kind));
ExternalArrayType external_type;
size_t size;
Factory::TypeAndSizeForElementsKind(kind, &external_type, &size);
Handle<Object> element_size =
handle(Smi::FromInt(static_cast<int>(size)), isolate);
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewRangeError(MessageTemplate::kInvalidTypedArrayAlignment,
problem_string, type, element_size));
}
RUNTIME_FUNCTION(Runtime_UnwindAndFindExceptionHandler) {
SealHandleScope shs(isolate);
DCHECK_EQ(0, args.length());
return isolate->UnwindAndFindHandler();
}
RUNTIME_FUNCTION(Runtime_PromoteScheduledException) {
SealHandleScope shs(isolate);
DCHECK_EQ(0, args.length());
return isolate->PromoteScheduledException();
}
RUNTIME_FUNCTION(Runtime_ThrowReferenceError) {
HandleScope scope(isolate);
DCHECK_EQ(1, args.length());
CONVERT_ARG_HANDLE_CHECKED(Object, name, 0);
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewReferenceError(MessageTemplate::kNotDefined, name));
}
RUNTIME_FUNCTION(Runtime_ThrowAccessedUninitializedVariable) {
HandleScope scope(isolate);
DCHECK_EQ(1, args.length());
CONVERT_ARG_HANDLE_CHECKED(Object, name, 0);
THROW_NEW_ERROR_RETURN_FAILURE(
isolate,
NewReferenceError(MessageTemplate::kAccessedUninitializedVariable, name));
}
RUNTIME_FUNCTION(Runtime_NewTypeError) {
HandleScope scope(isolate);
DCHECK_EQ(2, args.length());
CONVERT_INT32_ARG_CHECKED(template_index, 0);
CONVERT_ARG_HANDLE_CHECKED(Object, arg0, 1);
MessageTemplate message_template = MessageTemplateFromInt(template_index);
return *isolate->factory()->NewTypeError(message_template, arg0);
}
RUNTIME_FUNCTION(Runtime_NewReferenceError) {
HandleScope scope(isolate);
DCHECK_EQ(2, args.length());
CONVERT_INT32_ARG_CHECKED(template_index, 0);
CONVERT_ARG_HANDLE_CHECKED(Object, arg0, 1);
MessageTemplate message_template = MessageTemplateFromInt(template_index);
return *isolate->factory()->NewReferenceError(message_template, arg0);
}
RUNTIME_FUNCTION(Runtime_NewSyntaxError) {
HandleScope scope(isolate);
DCHECK_EQ(2, args.length());
CONVERT_INT32_ARG_CHECKED(template_index, 0);
CONVERT_ARG_HANDLE_CHECKED(Object, arg0, 1);
MessageTemplate message_template = MessageTemplateFromInt(template_index);
return *isolate->factory()->NewSyntaxError(message_template, arg0);
}
RUNTIME_FUNCTION(Runtime_ThrowInvalidStringLength) {
HandleScope scope(isolate);
THROW_NEW_ERROR_RETURN_FAILURE(isolate, NewInvalidStringLengthError());
}
RUNTIME_FUNCTION(Runtime_ThrowIteratorResultNotAnObject) {
HandleScope scope(isolate);
DCHECK_EQ(1, args.length());
CONVERT_ARG_HANDLE_CHECKED(Object, value, 0);
THROW_NEW_ERROR_RETURN_FAILURE(
isolate,
NewTypeError(MessageTemplate::kIteratorResultNotAnObject, value));
}
RUNTIME_FUNCTION(Runtime_ThrowThrowMethodMissing) {
HandleScope scope(isolate);
DCHECK_EQ(0, args.length());
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewTypeError(MessageTemplate::kThrowMethodMissing));
}
RUNTIME_FUNCTION(Runtime_ThrowSymbolIteratorInvalid) {
HandleScope scope(isolate);
DCHECK_EQ(0, args.length());
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewTypeError(MessageTemplate::kSymbolIteratorInvalid));
}
RUNTIME_FUNCTION(Runtime_ThrowNotConstructor) {
HandleScope scope(isolate);
DCHECK_EQ(1, args.length());
CONVERT_ARG_HANDLE_CHECKED(Object, object, 0);
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewTypeError(MessageTemplate::kNotConstructor, object));
}
RUNTIME_FUNCTION(Runtime_ThrowApplyNonFunction) {
HandleScope scope(isolate);
DCHECK_EQ(1, args.length());
CONVERT_ARG_HANDLE_CHECKED(Object, object, 0);
Handle<String> type = Object::TypeOf(isolate, object);
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewTypeError(MessageTemplate::kApplyNonFunction, object, type));
}
RUNTIME_FUNCTION(Runtime_StackGuard) {
SealHandleScope shs(isolate);
DCHECK_EQ(0, args.length());
TRACE_EVENT0("v8.execute", "V8.StackGuard");
// First check if this is a real stack overflow.
StackLimitCheck check(isolate);
if (check.JsHasOverflowed()) {
return isolate->StackOverflow();
}
return isolate->stack_guard()->HandleInterrupts();
}
RUNTIME_FUNCTION(Runtime_BytecodeBudgetInterrupt) {
HandleScope scope(isolate);
DCHECK_EQ(1, args.length());
CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0);
function->raw_feedback_cell().set_interrupt_budget(FLAG_interrupt_budget);
if (!function->has_feedback_vector()) {
JSFunction::EnsureFeedbackVector(function);
// Also initialize the invocation count here. This is only really needed for
// OSR. When we OSR functions with lazy feedback allocation we want to have
// a non zero invocation count so we can inline functions.
function->feedback_vector().set_invocation_count(1);
return ReadOnlyRoots(isolate).undefined_value();
}
// Handle interrupts.
{
SealHandleScope shs(isolate);
return isolate->stack_guard()->HandleInterrupts();
}
}
RUNTIME_FUNCTION(Runtime_AllocateInYoungGeneration) {
HandleScope scope(isolate);
DCHECK_EQ(2, args.length());
CONVERT_SMI_ARG_CHECKED(size, 0);
CONVERT_SMI_ARG_CHECKED(flags, 1);
bool double_align = AllocateDoubleAlignFlag::decode(flags);
bool allow_large_object_allocation =
AllowLargeObjectAllocationFlag::decode(flags);
CHECK(IsAligned(size, kTaggedSize));
CHECK_GT(size, 0);
CHECK(FLAG_young_generation_large_objects ||
size <= kMaxRegularHeapObjectSize);
if (!allow_large_object_allocation) {
CHECK(size <= kMaxRegularHeapObjectSize);
}
// TODO(v8:9472): Until double-aligned allocation is fixed for new-space
// allocations, don't request it.
double_align = false;
return *isolate->factory()->NewFillerObject(size, double_align,
AllocationType::kYoung);
}
RUNTIME_FUNCTION(Runtime_AllocateInOldGeneration) {
HandleScope scope(isolate);
DCHECK_EQ(2, args.length());
CONVERT_SMI_ARG_CHECKED(size, 0);
CONVERT_SMI_ARG_CHECKED(flags, 1);
bool double_align = AllocateDoubleAlignFlag::decode(flags);
bool allow_large_object_allocation =
AllowLargeObjectAllocationFlag::decode(flags);
CHECK(IsAligned(size, kTaggedSize));
CHECK_GT(size, 0);
if (!allow_large_object_allocation) {
CHECK(size <= kMaxRegularHeapObjectSize);
}
return *isolate->factory()->NewFillerObject(size, double_align,
AllocationType::kOld);
}
RUNTIME_FUNCTION(Runtime_AllocateByteArray) {
HandleScope scope(isolate);
DCHECK_EQ(1, args.length());
CONVERT_SMI_ARG_CHECKED(length, 0);
DCHECK_LT(0, length);
return *isolate->factory()->NewByteArray(length);
}
RUNTIME_FUNCTION(Runtime_AllocateSeqOneByteString) {
HandleScope scope(isolate);
DCHECK_EQ(1, args.length());
CONVERT_SMI_ARG_CHECKED(length, 0);
if (length == 0) return ReadOnlyRoots(isolate).empty_string();
Handle<SeqOneByteString> result;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, result, isolate->factory()->NewRawOneByteString(length));
return *result;
}
RUNTIME_FUNCTION(Runtime_AllocateSeqTwoByteString) {
HandleScope scope(isolate);
DCHECK_EQ(1, args.length());
CONVERT_SMI_ARG_CHECKED(length, 0);
if (length == 0) return ReadOnlyRoots(isolate).empty_string();
Handle<SeqTwoByteString> result;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, result, isolate->factory()->NewRawTwoByteString(length));
return *result;
}
namespace {
bool ComputeLocation(Isolate* isolate, MessageLocation* target) {
JavaScriptFrameIterator it(isolate);
if (!it.done()) {
// Compute the location from the function and the relocation info of the
// baseline code. For optimized code this will use the deoptimization
// information to get canonical location information.
std::vector<FrameSummary> frames;
it.frame()->Summarize(&frames);
auto& summary = frames.back().AsJavaScript();
Handle<SharedFunctionInfo> shared(summary.function()->shared(), isolate);
Handle<Object> script(shared->script(), isolate);
SharedFunctionInfo::EnsureSourcePositionsAvailable(isolate, shared);
int pos = summary.abstract_code()->SourcePosition(summary.code_offset());
if (script->IsScript() &&
!(Handle<Script>::cast(script)->source().IsUndefined(isolate))) {
Handle<Script> casted_script = Handle<Script>::cast(script);
*target = MessageLocation(casted_script, pos, pos + 1, shared);
return true;
}
}
return false;
}
Handle<String> BuildDefaultCallSite(Isolate* isolate, Handle<Object> object) {
IncrementalStringBuilder builder(isolate);
builder.AppendString(Object::TypeOf(isolate, object));
if (object->IsString()) {
builder.AppendCString(" \"");
builder.AppendString(Handle<String>::cast(object));
builder.AppendCString("\"");
} else if (object->IsNull(isolate)) {
builder.AppendCString(" ");
builder.AppendString(isolate->factory()->null_string());
} else if (object->IsTrue(isolate)) {
builder.AppendCString(" ");
builder.AppendString(isolate->factory()->true_string());
} else if (object->IsFalse(isolate)) {
builder.AppendCString(" ");
builder.AppendString(isolate->factory()->false_string());
} else if (object->IsNumber()) {
builder.AppendCString(" ");
builder.AppendString(isolate->factory()->NumberToString(object));
}
return builder.Finish().ToHandleChecked();
}
Handle<String> RenderCallSite(Isolate* isolate, Handle<Object> object,
CallPrinter::ErrorHint* hint) {
MessageLocation location;
if (ComputeLocation(isolate, &location)) {
ParseInfo info(isolate, location.shared());
if (parsing::ParseAny(&info, location.shared(), isolate)) {
info.ast_value_factory()->Internalize(isolate);
CallPrinter printer(isolate, location.shared()->IsUserJavaScript());
Handle<String> str = printer.Print(info.literal(), location.start_pos());
*hint = printer.GetErrorHint();
if (str->length() > 0) return str;
} else {
isolate->clear_pending_exception();
}
}
return BuildDefaultCallSite(isolate, object);
}
MessageTemplate UpdateErrorTemplate(CallPrinter::ErrorHint hint,
MessageTemplate default_id) {
switch (hint) {
case CallPrinter::ErrorHint::kNormalIterator:
return MessageTemplate::kNotIterable;
case CallPrinter::ErrorHint::kCallAndNormalIterator:
return MessageTemplate::kNotCallableOrIterable;
case CallPrinter::ErrorHint::kAsyncIterator:
return MessageTemplate::kNotAsyncIterable;
case CallPrinter::ErrorHint::kCallAndAsyncIterator:
return MessageTemplate::kNotCallableOrAsyncIterable;
case CallPrinter::ErrorHint::kNone:
return default_id;
}
return default_id;
}
} // namespace
MaybeHandle<Object> Runtime::ThrowIteratorError(Isolate* isolate,
Handle<Object> object) {
CallPrinter::ErrorHint hint = CallPrinter::kNone;
Handle<String> callsite = RenderCallSite(isolate, object, &hint);
MessageTemplate id = MessageTemplate::kNotIterableNoSymbolLoad;
if (hint == CallPrinter::kNone) {
Handle<Symbol> iterator_symbol = isolate->factory()->iterator_symbol();
THROW_NEW_ERROR(isolate, NewTypeError(id, callsite, iterator_symbol),
Object);
}
id = UpdateErrorTemplate(hint, id);
THROW_NEW_ERROR(isolate, NewTypeError(id, callsite), Object);
}
RUNTIME_FUNCTION(Runtime_ThrowIteratorError) {
HandleScope scope(isolate);
DCHECK_EQ(1, args.length());
CONVERT_ARG_HANDLE_CHECKED(Object, object, 0);
RETURN_RESULT_OR_FAILURE(isolate,
Runtime::ThrowIteratorError(isolate, object));
}
RUNTIME_FUNCTION(Runtime_ThrowCalledNonCallable) {
HandleScope scope(isolate);
DCHECK_EQ(1, args.length());
CONVERT_ARG_HANDLE_CHECKED(Object, object, 0);
CallPrinter::ErrorHint hint = CallPrinter::kNone;
Handle<String> callsite = RenderCallSite(isolate, object, &hint);
MessageTemplate id = MessageTemplate::kCalledNonCallable;
id = UpdateErrorTemplate(hint, id);
THROW_NEW_ERROR_RETURN_FAILURE(isolate, NewTypeError(id, callsite));
}
RUNTIME_FUNCTION(Runtime_ThrowConstructedNonConstructable) {
HandleScope scope(isolate);
DCHECK_EQ(1, args.length());
CONVERT_ARG_HANDLE_CHECKED(Object, object, 0);
CallPrinter::ErrorHint hint = CallPrinter::kNone;
Handle<String> callsite = RenderCallSite(isolate, object, &hint);
MessageTemplate id = MessageTemplate::kNotConstructor;
THROW_NEW_ERROR_RETURN_FAILURE(isolate, NewTypeError(id, callsite));
}
namespace {
// Helper visitor for ThrowPatternAssignmentNonCoercible which finds an
// object literal (representing a destructuring assignment) at a given source
// position.
class PatternFinder final : public AstTraversalVisitor<PatternFinder> {
public:
PatternFinder(Isolate* isolate, Expression* root, int position)
: AstTraversalVisitor(isolate, root),
position_(position),
object_literal_(nullptr) {}
ObjectLiteral* object_literal() const { return object_literal_; }
private:
// This is required so that the overriden Visit* methods can be
// called by the base class (template).
friend class AstTraversalVisitor<PatternFinder>;
void VisitObjectLiteral(ObjectLiteral* lit) {
// TODO(leszeks): This could be smarter in only traversing object literals
// that are known to be a destructuring pattern. We could then also
// potentially find the corresponding assignment value and report that too.
if (lit->position() == position_) {
object_literal_ = lit;
return;
}
AstTraversalVisitor::VisitObjectLiteral(lit);
}
int position_;
ObjectLiteral* object_literal_;
};
} // namespace
RUNTIME_FUNCTION(Runtime_ThrowPatternAssignmentNonCoercible) {
HandleScope scope(isolate);
DCHECK_EQ(0, args.length());
// Find the object literal representing the destructuring assignment, so that
// we can try to attribute the error to a property name on it rather than to
// the literal itself.
MaybeHandle<String> maybe_property_name;
MessageLocation location;
if (ComputeLocation(isolate, &location)) {
ParseInfo info(isolate, location.shared());
if (parsing::ParseAny(&info, location.shared(), isolate)) {
info.ast_value_factory()->Internalize(isolate);
PatternFinder finder(isolate, info.literal(), location.start_pos());
finder.Run();
if (finder.object_literal()) {
for (ObjectLiteralProperty* pattern_property :
*finder.object_literal()->properties()) {
Expression* key = pattern_property->key();
if (key->IsPropertyName()) {
int pos = key->position();
maybe_property_name =
key->AsLiteral()->AsRawPropertyName()->string();
// Change the message location to point at the property name.
location = MessageLocation(location.script(), pos, pos + 1,
location.shared());
break;
}
}
}
} else {
isolate->clear_pending_exception();
}
}
// Create a "non-coercible" type error with a property name if one is
// available, otherwise create a generic one.
Handle<Object> error;
Handle<String> property_name;
if (maybe_property_name.ToHandle(&property_name)) {
error = isolate->factory()->NewTypeError(
MessageTemplate::kNonCoercibleWithProperty, property_name);
} else {
error = isolate->factory()->NewTypeError(MessageTemplate::kNonCoercible);
}
// Explicitly pass the calculated location, as we may have updated it to match
// the property name.
return isolate->Throw(*error, &location);
}
RUNTIME_FUNCTION(Runtime_ThrowConstructorReturnedNonObject) {
HandleScope scope(isolate);
DCHECK_EQ(0, args.length());
THROW_NEW_ERROR_RETURN_FAILURE(
isolate,
NewTypeError(MessageTemplate::kDerivedConstructorReturnedNonObject));
}
// ES6 section 7.3.17 CreateListFromArrayLike (obj)
RUNTIME_FUNCTION(Runtime_CreateListFromArrayLike) {
HandleScope scope(isolate);
DCHECK_EQ(1, args.length());
CONVERT_ARG_HANDLE_CHECKED(Object, object, 0);
RETURN_RESULT_OR_FAILURE(isolate, Object::CreateListFromArrayLike(
isolate, object, ElementTypes::kAll));
}
RUNTIME_FUNCTION(Runtime_IncrementUseCounter) {
HandleScope scope(isolate);
DCHECK_EQ(1, args.length());
CONVERT_SMI_ARG_CHECKED(counter, 0);
isolate->CountUsage(static_cast<v8::Isolate::UseCounterFeature>(counter));
return ReadOnlyRoots(isolate).undefined_value();
}
RUNTIME_FUNCTION(Runtime_GetAndResetRuntimeCallStats) {
HandleScope scope(isolate);
// Append any worker thread runtime call stats to the main table before
// printing.
isolate->counters()->worker_thread_runtime_call_stats()->AddToMainTable(
isolate->counters()->runtime_call_stats());
if (args.length() == 0) {
// Without arguments, the result is returned as a string.
DCHECK_EQ(0, args.length());
std::stringstream stats_stream;
isolate->counters()->runtime_call_stats()->Print(stats_stream);
Handle<String> result = isolate->factory()->NewStringFromAsciiChecked(
stats_stream.str().c_str());
isolate->counters()->runtime_call_stats()->Reset();
return *result;
} else {
#if V8_OS_STARBOARD
SB_NOTIMPLEMENTED();
return ReadOnlyRoots(isolate).undefined_value();
#else
DCHECK_LE(args.length(), 2);
std::FILE* f;
if (args[0].IsString()) {
// With a string argument, the results are appended to that file.
CONVERT_ARG_HANDLE_CHECKED(String, arg0, 0);
DisallowHeapAllocation no_gc;
String::FlatContent flat = arg0->GetFlatContent(no_gc);
const char* filename =
reinterpret_cast<const char*>(&(flat.ToOneByteVector()[0]));
f = std::fopen(filename, "a");
DCHECK_NOT_NULL(f);
} else {
// With an integer argument, the results are written to stdout/stderr.
CONVERT_SMI_ARG_CHECKED(fd, 0);
DCHECK(fd == 1 || fd == 2);
f = fd == 1 ? stdout : stderr;
}
// The second argument (if any) is a message header to be printed.
if (args.length() >= 2) {
CONVERT_ARG_HANDLE_CHECKED(String, arg1, 1);
arg1->PrintOn(f);
std::fputc('\n', f);
std::fflush(f);
}
OFStream stats_stream(f);
isolate->counters()->runtime_call_stats()->Print(stats_stream);
isolate->counters()->runtime_call_stats()->Reset();
if (args[0].IsString())
std::fclose(f);
else
std::fflush(f);
return ReadOnlyRoots(isolate).undefined_value();
#endif
}
}
RUNTIME_FUNCTION(Runtime_OrdinaryHasInstance) {
HandleScope scope(isolate);
DCHECK_EQ(2, args.length());
CONVERT_ARG_HANDLE_CHECKED(Object, callable, 0);
CONVERT_ARG_HANDLE_CHECKED(Object, object, 1);
RETURN_RESULT_OR_FAILURE(
isolate, Object::OrdinaryHasInstance(isolate, callable, object));
}
RUNTIME_FUNCTION(Runtime_Typeof) {
HandleScope scope(isolate);
DCHECK_EQ(1, args.length());
CONVERT_ARG_HANDLE_CHECKED(Object, object, 0);
return *Object::TypeOf(isolate, object);
}
RUNTIME_FUNCTION(Runtime_AllowDynamicFunction) {
HandleScope scope(isolate);
DCHECK_EQ(1, args.length());
CONVERT_ARG_HANDLE_CHECKED(JSFunction, target, 0);
Handle<JSObject> global_proxy(target->global_proxy(), isolate);
return *isolate->factory()->ToBoolean(
Builtins::AllowDynamicFunction(isolate, target, global_proxy));
}
RUNTIME_FUNCTION(Runtime_CreateAsyncFromSyncIterator) {
HandleScope scope(isolate);
DCHECK_EQ(1, args.length());
CONVERT_ARG_HANDLE_CHECKED(Object, sync_iterator, 0);
if (!sync_iterator->IsJSReceiver()) {
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewTypeError(MessageTemplate::kSymbolIteratorInvalid));
}
Handle<Object> next;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, next,
Object::GetProperty(isolate, sync_iterator,
isolate->factory()->next_string()));
return *isolate->factory()->NewJSAsyncFromSyncIterator(
Handle<JSReceiver>::cast(sync_iterator), next);
}
RUNTIME_FUNCTION(Runtime_GetTemplateObject) {
HandleScope scope(isolate);
DCHECK_EQ(3, args.length());
CONVERT_ARG_HANDLE_CHECKED(TemplateObjectDescription, description, 0);
CONVERT_ARG_HANDLE_CHECKED(SharedFunctionInfo, shared_info, 1);
CONVERT_SMI_ARG_CHECKED(slot_id, 2);
Handle<NativeContext> native_context(isolate->context().native_context(),
isolate);
return *TemplateObjectDescription::GetTemplateObject(
isolate, native_context, description, shared_info, slot_id);
}
RUNTIME_FUNCTION(Runtime_ReportMessage) {
// Helper to report messages and continue JS execution. This is intended to
// behave similarly to reporting exceptions which reach the top-level in
// Execution.cc, but allow the JS code to continue. This is useful for
// implementing algorithms such as RunMicrotasks in JS.
HandleScope scope(isolate);
DCHECK_EQ(1, args.length());
CONVERT_ARG_HANDLE_CHECKED(Object, message_obj, 0);
DCHECK(!isolate->has_pending_exception());
isolate->set_pending_exception(*message_obj);
isolate->ReportPendingMessagesFromJavaScript();
isolate->clear_pending_exception();
return ReadOnlyRoots(isolate).undefined_value();
}
RUNTIME_FUNCTION(Runtime_GetInitializerFunction) {
HandleScope scope(isolate);
DCHECK_EQ(1, args.length());
CONVERT_ARG_HANDLE_CHECKED(JSReceiver, constructor, 0);
Handle<Symbol> key = isolate->factory()->class_fields_symbol();
Handle<Object> initializer = JSReceiver::GetDataProperty(constructor, key);
return *initializer;
}
} // namespace internal
} // namespace v8