blob: 81e37c205afb913b7f1f4be862734124f56858da [file] [log] [blame]
// Copyright 2017 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// This file implements the out of bounds trap handler for
// WebAssembly. Trap handlers are notoriously difficult to get
// right, and getting it wrong can lead to security
// vulnerabilities. In order to minimize this risk, here are some
// rules to follow.
// 1. Do not introduce any new external dependencies. This file needs
// to be self contained so it is easy to audit everything that a
// trap handler might do.
// 2. Any changes must be reviewed by someone from the crash reporting
// or security team. See OWNERS for suggested reviewers.
// For more information, see
// This file contains most of the code that actually runs in a trap handler
// context. Some additional code is used both inside and outside the trap
// handler. This code can be found in
#include "src/trap-handler/trap-handler-internal.h"
#include "src/trap-handler/trap-handler.h"
namespace v8 {
namespace internal {
namespace trap_handler {
// This function contains the platform independent portions of fault
// classification.
bool TryFindLandingPad(uintptr_t fault_addr, uintptr_t* landing_pad) {
// TODO(eholk): broad code range check
// Taking locks in the trap handler is risky because a fault in the trap
// handler itself could lead to a deadlock when attempting to acquire the
// lock again. We guard against this case with g_thread_in_wasm_code. The
// lock may only be taken when not executing Wasm code (an assert in
// MetadataLock's constructor ensures this). The trap handler will bail
// out before trying to take the lock if g_thread_in_wasm_code is not set.
MetadataLock lock_holder;
for (size_t i = 0; i < gNumCodeObjects; ++i) {
const CodeProtectionInfo* data = gCodeObjects[i].code_info;
if (data == nullptr) {
const Address base = data->base;
if (fault_addr >= base && fault_addr < base + data->size) {
// Hurray, we found the code object. Check for protected addresses.
const ptrdiff_t offset = fault_addr - base;
for (unsigned i = 0; i < data->num_protected_instructions; ++i) {
if (data->instructions[i].instr_offset == offset) {
// Hurray again, we found the actual instruction.
*landing_pad = data->instructions[i].landing_offset + base;
gRecoveredTrapCount.load(std::memory_order_relaxed) + 1,
return true;
return false;
} // namespace trap_handler
} // namespace internal
} // namespace v8