blob: 7f38a4c6ebf179e76c82e1e23cdcbf3735fe8a19 [file] [log] [blame]
// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <unordered_map>
#include "src/base/optional.h"
#include "src/codegen/assembler-inl.h"
#include "src/common/assert-scope.h"
#include "src/compiler/wasm-compiler.h"
#include "src/debug/debug-scopes.h"
#include "src/debug/debug.h"
#include "src/execution/frames-inl.h"
#include "src/execution/isolate.h"
#include "src/heap/factory.h"
#include "src/utils/identity-map.h"
#include "src/wasm/module-decoder.h"
#include "src/wasm/wasm-code-manager.h"
#include "src/wasm/wasm-interpreter.h"
#include "src/wasm/wasm-limits.h"
#include "src/wasm/wasm-module.h"
#include "src/wasm/wasm-objects-inl.h"
#include "src/zone/accounting-allocator.h"
namespace v8 {
namespace internal {
namespace wasm {
namespace {
template <bool internal, typename... Args>
Handle<String> PrintFToOneByteString(Isolate* isolate, const char* format,
Args... args) {
// Maximum length of a formatted value name ("arg#%d", "local#%d",
// "global#%d", i32 constants, i64 constants), including null character.
static constexpr int kMaxStrLen = 21;
EmbeddedVector<char, kMaxStrLen> value;
int len = SNPrintF(value, format, args...);
CHECK(len > 0 && len < value.length());
Vector<const uint8_t> name =
Vector<const uint8_t>::cast(value.SubVector(0, len));
return internal
? isolate->factory()->InternalizeString(name)
: isolate->factory()->NewStringFromOneByte(name).ToHandleChecked();
}
Handle<Object> WasmValueToValueObject(Isolate* isolate, WasmValue value) {
switch (value.type()) {
case kWasmI32:
if (Smi::IsValid(value.to<int32_t>()))
return handle(Smi::FromInt(value.to<int32_t>()), isolate);
return PrintFToOneByteString<false>(isolate, "%d", value.to<int32_t>());
case kWasmI64: {
int64_t i64 = value.to<int64_t>();
int32_t i32 = static_cast<int32_t>(i64);
if (i32 == i64 && Smi::IsValid(i32))
return handle(Smi::FromIntptr(i32), isolate);
return PrintFToOneByteString<false>(isolate, "%" PRId64, i64);
}
case kWasmF32:
return isolate->factory()->NewNumber(value.to<float>());
case kWasmF64:
return isolate->factory()->NewNumber(value.to<double>());
case kWasmAnyRef:
return value.to_anyref();
default:
UNIMPLEMENTED();
return isolate->factory()->undefined_value();
}
}
MaybeHandle<String> GetLocalName(Isolate* isolate,
Handle<WasmDebugInfo> debug_info,
int func_index, int local_index) {
DCHECK_LE(0, func_index);
DCHECK_LE(0, local_index);
if (!debug_info->has_locals_names()) {
Handle<WasmModuleObject> module_object(
debug_info->wasm_instance().module_object(), isolate);
Handle<FixedArray> locals_names = DecodeLocalNames(isolate, module_object);
debug_info->set_locals_names(*locals_names);
}
Handle<FixedArray> locals_names(debug_info->locals_names(), isolate);
if (func_index >= locals_names->length() ||
locals_names->get(func_index).IsUndefined(isolate)) {
return {};
}
Handle<FixedArray> func_locals_names(
FixedArray::cast(locals_names->get(func_index)), isolate);
if (local_index >= func_locals_names->length() ||
func_locals_names->get(local_index).IsUndefined(isolate)) {
return {};
}
return handle(String::cast(func_locals_names->get(local_index)), isolate);
}
class InterpreterHandle {
// This was causing cascading build errors when compiling v8 for the older
// clang compilers.Some private variables of this class have their move
// constructor implicitly deleted. Trying to fix that causes a chain of
// deleting the move constructor for multiple classes.
#if !defined(V8_OS_STARBOARD)
MOVE_ONLY_NO_DEFAULT_CONSTRUCTOR(InterpreterHandle);
#endif
Isolate* isolate_;
const WasmModule* module_;
WasmInterpreter interpreter_;
StepAction next_step_action_ = StepNone;
int last_step_stack_depth_ = 0;
std::unordered_map<Address, uint32_t> activations_;
uint32_t StartActivation(Address frame_pointer) {
WasmInterpreter::Thread* thread = interpreter_.GetThread(0);
uint32_t activation_id = thread->StartActivation();
DCHECK_EQ(0, activations_.count(frame_pointer));
activations_.insert(std::make_pair(frame_pointer, activation_id));
return activation_id;
}
void FinishActivation(Address frame_pointer, uint32_t activation_id) {
WasmInterpreter::Thread* thread = interpreter_.GetThread(0);
thread->FinishActivation(activation_id);
DCHECK_EQ(1, activations_.count(frame_pointer));
activations_.erase(frame_pointer);
}
std::pair<uint32_t, uint32_t> GetActivationFrameRange(
WasmInterpreter::Thread* thread, Address frame_pointer) {
DCHECK_EQ(1, activations_.count(frame_pointer));
uint32_t activation_id = activations_.find(frame_pointer)->second;
uint32_t num_activations = static_cast<uint32_t>(activations_.size() - 1);
uint32_t frame_base = thread->ActivationFrameBase(activation_id);
uint32_t frame_limit = activation_id == num_activations
? thread->GetFrameCount()
: thread->ActivationFrameBase(activation_id + 1);
DCHECK_LE(frame_base, frame_limit);
DCHECK_LE(frame_limit, thread->GetFrameCount());
return {frame_base, frame_limit};
}
static ModuleWireBytes GetBytes(WasmDebugInfo debug_info) {
// Return raw pointer into heap. The WasmInterpreter will make its own copy
// of this data anyway, and there is no heap allocation in-between.
NativeModule* native_module =
debug_info.wasm_instance().module_object().native_module();
return ModuleWireBytes{native_module->wire_bytes()};
}
public:
InterpreterHandle(Isolate* isolate, Handle<WasmDebugInfo> debug_info)
: isolate_(isolate),
module_(debug_info->wasm_instance().module_object().module()),
interpreter_(isolate, module_, GetBytes(*debug_info),
handle(debug_info->wasm_instance(), isolate)) {}
WasmInterpreter* interpreter() { return &interpreter_; }
const WasmModule* module() const { return module_; }
void PrepareStep(StepAction step_action) {
next_step_action_ = step_action;
last_step_stack_depth_ = CurrentStackDepth();
}
void ClearStepping() { next_step_action_ = StepNone; }
int CurrentStackDepth() {
DCHECK_EQ(1, interpreter()->GetThreadCount());
return interpreter()->GetThread(0)->GetFrameCount();
}
// Returns true if exited regularly, false if a trap/exception occurred and
// was not handled inside this activation. In the latter case, a pending
// exception will have been set on the isolate.
bool Execute(Handle<WasmInstanceObject> instance_object,
Address frame_pointer, uint32_t func_index,
Vector<WasmValue> argument_values,
Vector<WasmValue> return_values) {
DCHECK_GE(module()->functions.size(), func_index);
FunctionSig* sig = module()->functions[func_index].sig;
DCHECK_EQ(sig->parameter_count(), argument_values.size());
DCHECK_EQ(sig->return_count(), return_values.size());
uint32_t activation_id = StartActivation(frame_pointer);
WasmCodeRefScope code_ref_scope;
WasmInterpreter::Thread* thread = interpreter_.GetThread(0);
thread->InitFrame(&module()->functions[func_index],
argument_values.begin());
bool finished = false;
while (!finished) {
// TODO(clemensh): Add occasional StackChecks.
WasmInterpreter::State state = ContinueExecution(thread);
switch (state) {
case WasmInterpreter::State::PAUSED:
NotifyDebugEventListeners(thread);
break;
case WasmInterpreter::State::FINISHED:
// Perfect, just break the switch and exit the loop.
finished = true;
break;
case WasmInterpreter::State::TRAPPED: {
MessageTemplate message_id =
WasmOpcodes::TrapReasonToMessageId(thread->GetTrapReason());
Handle<Object> exception =
isolate_->factory()->NewWasmRuntimeError(message_id);
auto result = thread->RaiseException(isolate_, exception);
if (result == WasmInterpreter::Thread::HANDLED) break;
// If no local handler was found, we fall-thru to {STOPPED}.
DCHECK_EQ(WasmInterpreter::State::STOPPED, thread->state());
V8_FALLTHROUGH;
}
case WasmInterpreter::State::STOPPED:
// An exception happened, and the current activation was unwound
// without hitting a local exception handler. All that remains to be
// done is finish the activation and let the exception propagate.
DCHECK_EQ(thread->ActivationFrameBase(activation_id),
thread->GetFrameCount());
DCHECK(isolate_->has_pending_exception());
FinishActivation(frame_pointer, activation_id);
return false;
// RUNNING should never occur here.
case WasmInterpreter::State::RUNNING:
default:
UNREACHABLE();
}
}
// Copy back the return value.
DCHECK_GE(kV8MaxWasmFunctionReturns, sig->return_count());
// TODO(wasm): Handle multi-value returns.
DCHECK_EQ(1, kV8MaxWasmFunctionReturns);
if (sig->return_count()) {
return_values[0] = thread->GetReturnValue(0);
}
FinishActivation(frame_pointer, activation_id);
return true;
}
WasmInterpreter::State ContinueExecution(WasmInterpreter::Thread* thread) {
switch (next_step_action_) {
case StepNone:
return thread->Run();
case StepIn:
return thread->Step();
case StepOut:
thread->AddBreakFlags(WasmInterpreter::BreakFlag::AfterReturn);
return thread->Run();
case StepNext: {
int stack_depth = thread->GetFrameCount();
if (stack_depth == last_step_stack_depth_) return thread->Step();
thread->AddBreakFlags(stack_depth > last_step_stack_depth_
? WasmInterpreter::BreakFlag::AfterReturn
: WasmInterpreter::BreakFlag::AfterCall);
return thread->Run();
}
default:
UNREACHABLE();
}
}
Handle<WasmInstanceObject> GetInstanceObject() {
StackTraceFrameIterator it(isolate_);
WasmInterpreterEntryFrame* frame =
WasmInterpreterEntryFrame::cast(it.frame());
Handle<WasmInstanceObject> instance_obj(frame->wasm_instance(), isolate_);
// Check that this is indeed the instance which is connected to this
// interpreter.
DCHECK_EQ(this, Managed<InterpreterHandle>::cast(
instance_obj->debug_info().interpreter_handle())
.raw());
return instance_obj;
}
void NotifyDebugEventListeners(WasmInterpreter::Thread* thread) {
// Enter the debugger.
DebugScope debug_scope(isolate_->debug());
// Check whether we hit a breakpoint.
if (isolate_->debug()->break_points_active()) {
Handle<WasmModuleObject> module_object(
GetInstanceObject()->module_object(), isolate_);
int position = GetTopPosition(module_object);
Handle<FixedArray> breakpoints;
if (WasmModuleObject::CheckBreakPoints(isolate_, module_object, position)
.ToHandle(&breakpoints)) {
// We hit one or several breakpoints. Clear stepping, notify the
// listeners and return.
ClearStepping();
isolate_->debug()->OnDebugBreak(breakpoints);
return;
}
}
// We did not hit a breakpoint, so maybe this pause is related to stepping.
bool hit_step = false;
switch (next_step_action_) {
case StepNone:
break;
case StepIn:
hit_step = true;
break;
case StepOut:
hit_step = thread->GetFrameCount() < last_step_stack_depth_;
break;
case StepNext: {
hit_step = thread->GetFrameCount() == last_step_stack_depth_;
break;
}
default:
UNREACHABLE();
}
if (!hit_step) return;
ClearStepping();
isolate_->debug()->OnDebugBreak(isolate_->factory()->empty_fixed_array());
}
int GetTopPosition(Handle<WasmModuleObject> module_object) {
DCHECK_EQ(1, interpreter()->GetThreadCount());
WasmInterpreter::Thread* thread = interpreter()->GetThread(0);
DCHECK_LT(0, thread->GetFrameCount());
auto frame = thread->GetFrame(thread->GetFrameCount() - 1);
return module_object->GetFunctionOffset(frame->function()->func_index) +
frame->pc();
}
std::vector<std::pair<uint32_t, int>> GetInterpretedStack(
Address frame_pointer) {
DCHECK_EQ(1, interpreter()->GetThreadCount());
WasmInterpreter::Thread* thread = interpreter()->GetThread(0);
std::pair<uint32_t, uint32_t> frame_range =
GetActivationFrameRange(thread, frame_pointer);
std::vector<std::pair<uint32_t, int>> stack;
stack.reserve(frame_range.second - frame_range.first);
for (uint32_t fp = frame_range.first; fp < frame_range.second; ++fp) {
auto frame = thread->GetFrame(fp);
stack.emplace_back(frame->function()->func_index, frame->pc());
}
return stack;
}
WasmInterpreter::FramePtr GetInterpretedFrame(Address frame_pointer,
int idx) {
DCHECK_EQ(1, interpreter()->GetThreadCount());
WasmInterpreter::Thread* thread = interpreter()->GetThread(0);
std::pair<uint32_t, uint32_t> frame_range =
GetActivationFrameRange(thread, frame_pointer);
DCHECK_LE(0, idx);
DCHECK_GT(frame_range.second - frame_range.first, idx);
return thread->GetFrame(frame_range.first + idx);
}
uint64_t NumInterpretedCalls() {
DCHECK_EQ(1, interpreter()->GetThreadCount());
return interpreter()->GetThread(0)->NumInterpretedCalls();
}
Handle<JSObject> GetGlobalScopeObject(InterpretedFrame* frame,
Handle<WasmDebugInfo> debug_info) {
Isolate* isolate = isolate_;
Handle<WasmInstanceObject> instance(debug_info->wasm_instance(), isolate);
Handle<JSObject> global_scope_object =
isolate_->factory()->NewJSObjectWithNullProto();
if (instance->has_memory_object()) {
Handle<String> name =
isolate_->factory()->InternalizeString(StaticCharVector("memory"));
Handle<JSArrayBuffer> memory_buffer(
instance->memory_object().array_buffer(), isolate_);
Handle<JSTypedArray> uint8_array = isolate_->factory()->NewJSTypedArray(
kExternalUint8Array, memory_buffer, 0, memory_buffer->byte_length());
JSObject::SetOwnPropertyIgnoreAttributes(global_scope_object, name,
uint8_array, NONE)
.Assert();
}
DCHECK_EQ(1, interpreter()->GetThreadCount());
WasmInterpreter::Thread* thread = interpreter()->GetThread(0);
uint32_t global_count = thread->GetGlobalCount();
if (global_count > 0) {
Handle<JSObject> globals_obj =
isolate_->factory()->NewJSObjectWithNullProto();
Handle<String> globals_name =
isolate_->factory()->InternalizeString(StaticCharVector("globals"));
JSObject::SetOwnPropertyIgnoreAttributes(global_scope_object,
globals_name, globals_obj, NONE)
.Assert();
for (uint32_t i = 0; i < global_count; ++i) {
const char* label = "global#%d";
Handle<String> name = PrintFToOneByteString<true>(isolate_, label, i);
WasmValue value = thread->GetGlobalValue(i);
Handle<Object> value_obj = WasmValueToValueObject(isolate_, value);
JSObject::SetOwnPropertyIgnoreAttributes(globals_obj, name, value_obj,
NONE)
.Assert();
}
}
return global_scope_object;
}
Handle<JSObject> GetLocalScopeObject(InterpretedFrame* frame,
Handle<WasmDebugInfo> debug_info) {
Isolate* isolate = isolate_;
Handle<JSObject> local_scope_object =
isolate_->factory()->NewJSObjectWithNullProto();
// Fill parameters and locals.
int num_params = frame->GetParameterCount();
int num_locals = frame->GetLocalCount();
DCHECK_LE(num_params, num_locals);
if (num_locals > 0) {
Handle<JSObject> locals_obj =
isolate_->factory()->NewJSObjectWithNullProto();
Handle<String> locals_name =
isolate_->factory()->InternalizeString(StaticCharVector("locals"));
JSObject::SetOwnPropertyIgnoreAttributes(local_scope_object, locals_name,
locals_obj, NONE)
.Assert();
for (int i = 0; i < num_locals; ++i) {
MaybeHandle<String> name =
GetLocalName(isolate, debug_info, frame->function()->func_index, i);
if (name.is_null()) {
// Parameters should come before locals in alphabetical ordering, so
// we name them "args" here.
const char* label = i < num_params ? "arg#%d" : "local#%d";
name = PrintFToOneByteString<true>(isolate_, label, i);
}
WasmValue value = frame->GetLocalValue(i);
Handle<Object> value_obj = WasmValueToValueObject(isolate_, value);
JSObject::SetOwnPropertyIgnoreAttributes(
locals_obj, name.ToHandleChecked(), value_obj, NONE)
.Assert();
}
}
// Fill stack values.
int stack_count = frame->GetStackHeight();
// Use an object without prototype instead of an Array, for nicer displaying
// in DevTools. For Arrays, the length field and prototype is displayed,
// which does not make too much sense here.
Handle<JSObject> stack_obj =
isolate_->factory()->NewJSObjectWithNullProto();
Handle<String> stack_name =
isolate_->factory()->InternalizeString(StaticCharVector("stack"));
JSObject::SetOwnPropertyIgnoreAttributes(local_scope_object, stack_name,
stack_obj, NONE)
.Assert();
for (int i = 0; i < stack_count; ++i) {
WasmValue value = frame->GetStackValue(i);
Handle<Object> value_obj = WasmValueToValueObject(isolate_, value);
JSObject::SetOwnElementIgnoreAttributes(
stack_obj, static_cast<uint32_t>(i), value_obj, NONE)
.Assert();
}
return local_scope_object;
}
};
} // namespace
} // namespace wasm
namespace {
wasm::InterpreterHandle* GetOrCreateInterpreterHandle(
Isolate* isolate, Handle<WasmDebugInfo> debug_info) {
Handle<Object> handle(debug_info->interpreter_handle(), isolate);
if (handle->IsUndefined(isolate)) {
// Use the maximum stack size to estimate the maximum size of the
// interpreter. The interpreter keeps its own stack internally, and the size
// of the stack should dominate the overall size of the interpreter. We
// multiply by '2' to account for the growing strategy for the backing store
// of the stack.
size_t interpreter_size = FLAG_stack_size * KB * 2;
handle = Managed<wasm::InterpreterHandle>::Allocate(
isolate, interpreter_size, isolate, debug_info);
debug_info->set_interpreter_handle(*handle);
}
return Handle<Managed<wasm::InterpreterHandle>>::cast(handle)->raw();
}
wasm::InterpreterHandle* GetInterpreterHandle(WasmDebugInfo debug_info) {
Object handle_obj = debug_info.interpreter_handle();
DCHECK(!handle_obj.IsUndefined());
return Managed<wasm::InterpreterHandle>::cast(handle_obj).raw();
}
wasm::InterpreterHandle* GetInterpreterHandleOrNull(WasmDebugInfo debug_info) {
Object handle_obj = debug_info.interpreter_handle();
if (handle_obj.IsUndefined()) return nullptr;
return Managed<wasm::InterpreterHandle>::cast(handle_obj).raw();
}
} // namespace
Handle<WasmDebugInfo> WasmDebugInfo::New(Handle<WasmInstanceObject> instance) {
DCHECK(!instance->has_debug_info());
Factory* factory = instance->GetIsolate()->factory();
Handle<WasmDebugInfo> debug_info = Handle<WasmDebugInfo>::cast(
factory->NewStruct(WASM_DEBUG_INFO_TYPE, AllocationType::kOld));
debug_info->set_wasm_instance(*instance);
instance->set_debug_info(*debug_info);
return debug_info;
}
wasm::WasmInterpreter* WasmDebugInfo::SetupForTesting(
Handle<WasmInstanceObject> instance_obj) {
Handle<WasmDebugInfo> debug_info = WasmDebugInfo::New(instance_obj);
Isolate* isolate = instance_obj->GetIsolate();
// Use the maximum stack size to estimate the maximum size of the interpreter.
// The interpreter keeps its own stack internally, and the size of the stack
// should dominate the overall size of the interpreter. We multiply by '2' to
// account for the growing strategy for the backing store of the stack.
size_t interpreter_size = FLAG_stack_size * KB * 2;
auto interp_handle = Managed<wasm::InterpreterHandle>::Allocate(
isolate, interpreter_size, isolate, debug_info);
debug_info->set_interpreter_handle(*interp_handle);
return interp_handle->raw()->interpreter();
}
void WasmDebugInfo::SetBreakpoint(Handle<WasmDebugInfo> debug_info,
int func_index, int offset) {
Isolate* isolate = debug_info->GetIsolate();
auto* handle = GetOrCreateInterpreterHandle(isolate, debug_info);
RedirectToInterpreter(debug_info, Vector<int>(&func_index, 1));
const wasm::WasmFunction* func = &handle->module()->functions[func_index];
handle->interpreter()->SetBreakpoint(func, offset, true);
}
void WasmDebugInfo::RedirectToInterpreter(Handle<WasmDebugInfo> debug_info,
Vector<int> func_indexes) {
Isolate* isolate = debug_info->GetIsolate();
// Ensure that the interpreter is instantiated.
GetOrCreateInterpreterHandle(isolate, debug_info);
Handle<WasmInstanceObject> instance(debug_info->wasm_instance(), isolate);
wasm::NativeModule* native_module = instance->module_object().native_module();
const wasm::WasmModule* module = instance->module();
// We may modify the wasm jump table.
wasm::NativeModuleModificationScope native_module_modification_scope(
native_module);
for (int func_index : func_indexes) {
DCHECK_LE(0, func_index);
DCHECK_GT(module->functions.size(), func_index);
// Note that this is just a best effort check. Multiple threads can still
// race at redirecting the same function to the interpreter, which is OK.
if (native_module->IsRedirectedToInterpreter(func_index)) continue;
wasm::WasmCodeRefScope code_ref_scope;
wasm::WasmCompilationResult result = compiler::CompileWasmInterpreterEntry(
isolate->wasm_engine(), native_module->enabled_features(), func_index,
module->functions[func_index].sig);
std::unique_ptr<wasm::WasmCode> wasm_code = native_module->AddCode(
func_index, result.code_desc, result.frame_slot_count,
result.tagged_parameter_slots, std::move(result.protected_instructions),
std::move(result.source_positions), wasm::WasmCode::kInterpreterEntry,
wasm::ExecutionTier::kInterpreter);
native_module->PublishCode(std::move(wasm_code));
DCHECK(native_module->IsRedirectedToInterpreter(func_index));
}
}
void WasmDebugInfo::PrepareStep(StepAction step_action) {
GetInterpreterHandle(*this)->PrepareStep(step_action);
}
// static
bool WasmDebugInfo::RunInterpreter(Isolate* isolate,
Handle<WasmDebugInfo> debug_info,
Address frame_pointer, int func_index,
Vector<wasm::WasmValue> argument_values,
Vector<wasm::WasmValue> return_values) {
DCHECK_LE(0, func_index);
auto* handle = GetOrCreateInterpreterHandle(isolate, debug_info);
Handle<WasmInstanceObject> instance(debug_info->wasm_instance(), isolate);
return handle->Execute(instance, frame_pointer,
static_cast<uint32_t>(func_index), argument_values,
return_values);
}
std::vector<std::pair<uint32_t, int>> WasmDebugInfo::GetInterpretedStack(
Address frame_pointer) {
return GetInterpreterHandle(*this)->GetInterpretedStack(frame_pointer);
}
wasm::WasmInterpreter::FramePtr WasmDebugInfo::GetInterpretedFrame(
Address frame_pointer, int idx) {
return GetInterpreterHandle(*this)->GetInterpretedFrame(frame_pointer, idx);
}
uint64_t WasmDebugInfo::NumInterpretedCalls() {
auto* handle = GetInterpreterHandleOrNull(*this);
return handle ? handle->NumInterpretedCalls() : 0;
}
// static
Handle<JSObject> WasmDebugInfo::GetGlobalScopeObject(
Handle<WasmDebugInfo> debug_info, Address frame_pointer, int frame_index) {
auto* interp_handle = GetInterpreterHandle(*debug_info);
auto frame = interp_handle->GetInterpretedFrame(frame_pointer, frame_index);
return interp_handle->GetGlobalScopeObject(frame.get(), debug_info);
}
// static
Handle<JSObject> WasmDebugInfo::GetLocalScopeObject(
Handle<WasmDebugInfo> debug_info, Address frame_pointer, int frame_index) {
auto* interp_handle = GetInterpreterHandle(*debug_info);
auto frame = interp_handle->GetInterpretedFrame(frame_pointer, frame_index);
return interp_handle->GetLocalScopeObject(frame.get(), debug_info);
}
// static
Handle<Code> WasmDebugInfo::GetCWasmEntry(Handle<WasmDebugInfo> debug_info,
wasm::FunctionSig* sig) {
Isolate* isolate = debug_info->GetIsolate();
DCHECK_EQ(debug_info->has_c_wasm_entries(),
debug_info->has_c_wasm_entry_map());
if (!debug_info->has_c_wasm_entries()) {
auto entries = isolate->factory()->NewFixedArray(4, AllocationType::kOld);
debug_info->set_c_wasm_entries(*entries);
size_t map_size = 0; // size estimate not so important here.
auto managed_map = Managed<wasm::SignatureMap>::Allocate(isolate, map_size);
debug_info->set_c_wasm_entry_map(*managed_map);
}
Handle<FixedArray> entries(debug_info->c_wasm_entries(), isolate);
wasm::SignatureMap* map = debug_info->c_wasm_entry_map().raw();
int32_t index = map->Find(*sig);
if (index == -1) {
index = static_cast<int32_t>(map->FindOrInsert(*sig));
if (index == entries->length()) {
entries = isolate->factory()->CopyFixedArrayAndGrow(
entries, entries->length(), AllocationType::kOld);
debug_info->set_c_wasm_entries(*entries);
}
DCHECK(entries->get(index).IsUndefined(isolate));
Handle<Code> new_entry_code =
compiler::CompileCWasmEntry(isolate, sig).ToHandleChecked();
entries->set(index, *new_entry_code);
}
return handle(Code::cast(entries->get(index)), isolate);
}
} // namespace internal
} // namespace v8