blob: a20b2f115a14587af114a4dec94ee9decfec57e4 [file] [log] [blame]
// Copyright 2017 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/wasm/wasm-serialization.h"
#include "src/codegen/assembler-inl.h"
#include "src/codegen/external-reference-table.h"
#include "src/objects/objects-inl.h"
#include "src/objects/objects.h"
#include "src/runtime/runtime.h"
#include "src/snapshot/code-serializer.h"
#include "src/snapshot/serializer-common.h"
#include "src/utils/ostreams.h"
#include "src/utils/utils.h"
#include "src/utils/version.h"
#include "src/wasm/function-compiler.h"
#include "src/wasm/module-compiler.h"
#include "src/wasm/module-decoder.h"
#include "src/wasm/wasm-code-manager.h"
#include "src/wasm/wasm-module.h"
#include "src/wasm/wasm-objects-inl.h"
#include "src/wasm/wasm-objects.h"
#include "src/wasm/wasm-result.h"
namespace v8 {
namespace internal {
namespace wasm {
namespace {
// TODO(bbudge) Try to unify the various implementations of readers and writers
// in WASM, e.g. StreamProcessor and ZoneBuffer, with these.
class Writer {
public:
explicit Writer(Vector<byte> buffer)
: start_(buffer.begin()), end_(buffer.end()), pos_(buffer.begin()) {}
size_t bytes_written() const { return pos_ - start_; }
byte* current_location() const { return pos_; }
size_t current_size() const { return end_ - pos_; }
Vector<byte> current_buffer() const {
return {current_location(), current_size()};
}
template <typename T>
void Write(const T& value) {
DCHECK_GE(current_size(), sizeof(T));
WriteUnalignedValue(reinterpret_cast<Address>(current_location()), value);
pos_ += sizeof(T);
if (FLAG_trace_wasm_serialization) {
StdoutStream{} << "wrote: " << static_cast<size_t>(value)
<< " sized: " << sizeof(T) << std::endl;
}
}
void WriteVector(const Vector<const byte> v) {
DCHECK_GE(current_size(), v.size());
if (v.size() > 0) {
memcpy(current_location(), v.begin(), v.size());
pos_ += v.size();
}
if (FLAG_trace_wasm_serialization) {
StdoutStream{} << "wrote vector of " << v.size() << " elements"
<< std::endl;
}
}
void Skip(size_t size) { pos_ += size; }
private:
byte* const start_;
byte* const end_;
byte* pos_;
};
class Reader {
public:
explicit Reader(Vector<const byte> buffer)
: start_(buffer.begin()), end_(buffer.end()), pos_(buffer.begin()) {}
size_t bytes_read() const { return pos_ - start_; }
const byte* current_location() const { return pos_; }
size_t current_size() const { return end_ - pos_; }
Vector<const byte> current_buffer() const {
return {current_location(), current_size()};
}
template <typename T>
T Read() {
DCHECK_GE(current_size(), sizeof(T));
T value =
ReadUnalignedValue<T>(reinterpret_cast<Address>(current_location()));
pos_ += sizeof(T);
if (FLAG_trace_wasm_serialization) {
StdoutStream{} << "read: " << static_cast<size_t>(value)
<< " sized: " << sizeof(T) << std::endl;
}
return value;
}
void ReadVector(Vector<byte> v) {
if (v.size() > 0) {
DCHECK_GE(current_size(), v.size());
memcpy(v.begin(), current_location(), v.size());
pos_ += v.size();
}
if (FLAG_trace_wasm_serialization) {
StdoutStream{} << "read vector of " << v.size() << " elements"
<< std::endl;
}
}
void Skip(size_t size) { pos_ += size; }
private:
const byte* const start_;
const byte* const end_;
const byte* pos_;
};
constexpr size_t kVersionSize = 4 * sizeof(uint32_t);
void WriteVersion(Writer* writer) {
writer->Write(SerializedData::kMagicNumber);
writer->Write(Version::Hash());
writer->Write(static_cast<uint32_t>(CpuFeatures::SupportedFeatures()));
writer->Write(FlagList::Hash());
}
// On Intel, call sites are encoded as a displacement. For linking and for
// serialization/deserialization, we want to store/retrieve a tag (the function
// index). On Intel, that means accessing the raw displacement.
// On ARM64, call sites are encoded as either a literal load or a direct branch.
// Other platforms simply require accessing the target address.
void SetWasmCalleeTag(RelocInfo* rinfo, uint32_t tag) {
#if V8_TARGET_ARCH_X64 || V8_TARGET_ARCH_IA32
DCHECK(rinfo->HasTargetAddressAddress());
DCHECK(!RelocInfo::IsCompressedEmbeddedObject(rinfo->rmode()));
WriteUnalignedValue(rinfo->target_address_address(), tag);
#elif V8_TARGET_ARCH_ARM64
Instruction* instr = reinterpret_cast<Instruction*>(rinfo->pc());
if (instr->IsLdrLiteralX()) {
WriteUnalignedValue(rinfo->constant_pool_entry_address(),
static_cast<Address>(tag));
} else {
DCHECK(instr->IsBranchAndLink() || instr->IsUnconditionalBranch());
instr->SetBranchImmTarget(
reinterpret_cast<Instruction*>(rinfo->pc() + tag * kInstrSize));
}
#else
Address addr = static_cast<Address>(tag);
if (rinfo->rmode() == RelocInfo::EXTERNAL_REFERENCE) {
rinfo->set_target_external_reference(addr, SKIP_ICACHE_FLUSH);
} else if (rinfo->rmode() == RelocInfo::WASM_STUB_CALL) {
rinfo->set_wasm_stub_call_address(addr, SKIP_ICACHE_FLUSH);
} else {
rinfo->set_target_address(addr, SKIP_WRITE_BARRIER, SKIP_ICACHE_FLUSH);
}
#endif
}
uint32_t GetWasmCalleeTag(RelocInfo* rinfo) {
#if V8_TARGET_ARCH_X64 || V8_TARGET_ARCH_IA32
DCHECK(!RelocInfo::IsCompressedEmbeddedObject(rinfo->rmode()));
return ReadUnalignedValue<uint32_t>(rinfo->target_address_address());
#elif V8_TARGET_ARCH_ARM64
Instruction* instr = reinterpret_cast<Instruction*>(rinfo->pc());
if (instr->IsLdrLiteralX()) {
return ReadUnalignedValue<uint32_t>(rinfo->constant_pool_entry_address());
} else {
DCHECK(instr->IsBranchAndLink() || instr->IsUnconditionalBranch());
return static_cast<uint32_t>(instr->ImmPCOffset() / kInstrSize);
}
#else
Address addr;
if (rinfo->rmode() == RelocInfo::EXTERNAL_REFERENCE) {
addr = rinfo->target_external_reference();
} else if (rinfo->rmode() == RelocInfo::WASM_STUB_CALL) {
addr = rinfo->wasm_stub_call_address();
} else {
addr = rinfo->target_address();
}
return static_cast<uint32_t>(addr);
#endif
}
constexpr size_t kHeaderSize =
sizeof(uint32_t) + // total wasm function count
sizeof(uint32_t); // imported functions (index of first wasm function)
constexpr size_t kCodeHeaderSize =
sizeof(size_t) + // size of code section
sizeof(size_t) + // offset of constant pool
sizeof(size_t) + // offset of safepoint table
sizeof(size_t) + // offset of handler table
sizeof(size_t) + // offset of code comments
sizeof(size_t) + // unpadded binary size
sizeof(uint32_t) + // stack slots
sizeof(uint32_t) + // tagged parameter slots
sizeof(size_t) + // code size
sizeof(size_t) + // reloc size
sizeof(size_t) + // source positions size
sizeof(size_t) + // protected instructions size
sizeof(WasmCode::Kind) + // code kind
sizeof(ExecutionTier); // tier
// A List of all isolate-independent external references. This is used to create
// a tag from the Address of an external reference and vice versa.
class ExternalReferenceList {
public:
uint32_t tag_from_address(Address ext_ref_address) const {
auto tag_addr_less_than = [this](uint32_t tag, Address searched_addr) {
return external_reference_by_tag_[tag] < searched_addr;
};
auto it = std::lower_bound(std::begin(tags_ordered_by_address_),
std::end(tags_ordered_by_address_),
ext_ref_address, tag_addr_less_than);
DCHECK_NE(std::end(tags_ordered_by_address_), it);
uint32_t tag = *it;
DCHECK_EQ(address_from_tag(tag), ext_ref_address);
return tag;
}
Address address_from_tag(uint32_t tag) const {
DCHECK_GT(kNumExternalReferences, tag);
return external_reference_by_tag_[tag];
}
static const ExternalReferenceList& Get() {
static ExternalReferenceList list; // Lazily initialized.
return list;
}
private:
// Private constructor. There will only be a single instance of this object.
ExternalReferenceList() {
for (uint32_t i = 0; i < kNumExternalReferences; ++i) {
tags_ordered_by_address_[i] = i;
}
auto addr_by_tag_less_than = [this](uint32_t a, uint32_t b) {
return external_reference_by_tag_[a] < external_reference_by_tag_[b];
};
std::sort(std::begin(tags_ordered_by_address_),
std::end(tags_ordered_by_address_), addr_by_tag_less_than);
}
#define COUNT_EXTERNAL_REFERENCE(name, ...) +1
static constexpr uint32_t kNumExternalReferencesList =
EXTERNAL_REFERENCE_LIST(COUNT_EXTERNAL_REFERENCE);
static constexpr uint32_t kNumExternalReferencesIntrinsics =
FOR_EACH_INTRINSIC(COUNT_EXTERNAL_REFERENCE);
static constexpr uint32_t kNumExternalReferences =
kNumExternalReferencesList + kNumExternalReferencesIntrinsics;
#undef COUNT_EXTERNAL_REFERENCE
Address external_reference_by_tag_[kNumExternalReferences] = {
#define EXT_REF_ADDR(name, desc) ExternalReference::name().address(),
EXTERNAL_REFERENCE_LIST(EXT_REF_ADDR)
#undef EXT_REF_ADDR
#define RUNTIME_ADDR(name, ...) \
ExternalReference::Create(Runtime::k##name).address(),
FOR_EACH_INTRINSIC(RUNTIME_ADDR)
#undef RUNTIME_ADDR
};
uint32_t tags_ordered_by_address_[kNumExternalReferences];
DISALLOW_COPY_AND_ASSIGN(ExternalReferenceList);
};
static_assert(std::is_trivially_destructible<ExternalReferenceList>::value,
"static destructors not allowed");
} // namespace
class V8_EXPORT_PRIVATE NativeModuleSerializer {
public:
NativeModuleSerializer() = delete;
NativeModuleSerializer(const NativeModule*, Vector<WasmCode* const>);
size_t Measure() const;
bool Write(Writer* writer);
private:
size_t MeasureCode(const WasmCode*) const;
void WriteHeader(Writer* writer);
void WriteCode(const WasmCode*, Writer* writer);
const NativeModule* const native_module_;
Vector<WasmCode* const> code_table_;
bool write_called_;
// Reverse lookup tables for embedded addresses.
std::map<Address, uint32_t> wasm_stub_targets_lookup_;
DISALLOW_COPY_AND_ASSIGN(NativeModuleSerializer);
};
NativeModuleSerializer::NativeModuleSerializer(
const NativeModule* module, Vector<WasmCode* const> code_table)
: native_module_(module), code_table_(code_table), write_called_(false) {
DCHECK_NOT_NULL(native_module_);
// TODO(mtrofin): persist the export wrappers. Ideally, we'd only persist
// the unique ones, i.e. the cache.
for (uint32_t i = 0; i < WasmCode::kRuntimeStubCount; ++i) {
Address addr = native_module_->runtime_stub_entry(
static_cast<WasmCode::RuntimeStubId>(i));
wasm_stub_targets_lookup_.insert(std::make_pair(addr, i));
}
}
size_t NativeModuleSerializer::MeasureCode(const WasmCode* code) const {
if (code == nullptr) return sizeof(size_t);
DCHECK(code->kind() == WasmCode::kFunction ||
code->kind() == WasmCode::kInterpreterEntry);
return kCodeHeaderSize + code->instructions().size() +
code->reloc_info().size() + code->source_positions().size() +
code->protected_instructions().size() *
sizeof(trap_handler::ProtectedInstructionData);
}
size_t NativeModuleSerializer::Measure() const {
size_t size = kHeaderSize;
for (WasmCode* code : code_table_) {
size += MeasureCode(code);
}
return size;
}
void NativeModuleSerializer::WriteHeader(Writer* writer) {
// TODO(eholk): We need to properly preserve the flag whether the trap
// handler was used or not when serializing.
writer->Write(native_module_->num_functions());
writer->Write(native_module_->num_imported_functions());
}
void NativeModuleSerializer::WriteCode(const WasmCode* code, Writer* writer) {
if (code == nullptr) {
writer->Write(size_t{0});
return;
}
DCHECK(code->kind() == WasmCode::kFunction ||
code->kind() == WasmCode::kInterpreterEntry);
// Write the size of the entire code section, followed by the code header.
writer->Write(MeasureCode(code));
writer->Write(code->constant_pool_offset());
writer->Write(code->safepoint_table_offset());
writer->Write(code->handler_table_offset());
writer->Write(code->code_comments_offset());
writer->Write(code->unpadded_binary_size());
writer->Write(code->stack_slots());
writer->Write(code->tagged_parameter_slots());
writer->Write(code->instructions().size());
writer->Write(code->reloc_info().size());
writer->Write(code->source_positions().size());
writer->Write(code->protected_instructions().size());
writer->Write(code->kind());
writer->Write(code->tier());
// Get a pointer to the destination buffer, to hold relocated code.
byte* serialized_code_start = writer->current_buffer().begin();
byte* code_start = serialized_code_start;
size_t code_size = code->instructions().size();
writer->Skip(code_size);
// Write the reloc info, source positions, and protected code.
writer->WriteVector(code->reloc_info());
writer->WriteVector(code->source_positions());
writer->WriteVector(Vector<byte>::cast(code->protected_instructions()));
#if V8_TARGET_ARCH_MIPS || V8_TARGET_ARCH_MIPS64 || V8_TARGET_ARCH_ARM || \
V8_TARGET_ARCH_PPC
// On platforms that don't support misaligned word stores, copy to an aligned
// buffer if necessary so we can relocate the serialized code.
std::unique_ptr<byte[]> aligned_buffer;
if (!IsAligned(reinterpret_cast<Address>(serialized_code_start),
kInt32Size)) {
aligned_buffer.reset(new byte[code_size]);
code_start = aligned_buffer.get();
}
#endif
memcpy(code_start, code->instructions().begin(), code_size);
// Relocate the code.
int mask = RelocInfo::ModeMask(RelocInfo::WASM_CALL) |
RelocInfo::ModeMask(RelocInfo::WASM_STUB_CALL) |
RelocInfo::ModeMask(RelocInfo::EXTERNAL_REFERENCE) |
RelocInfo::ModeMask(RelocInfo::INTERNAL_REFERENCE) |
RelocInfo::ModeMask(RelocInfo::INTERNAL_REFERENCE_ENCODED);
RelocIterator orig_iter(code->instructions(), code->reloc_info(),
code->constant_pool(), mask);
for (RelocIterator iter(
{code_start, code->instructions().size()}, code->reloc_info(),
reinterpret_cast<Address>(code_start) + code->constant_pool_offset(),
mask);
!iter.done(); iter.next(), orig_iter.next()) {
RelocInfo::Mode mode = orig_iter.rinfo()->rmode();
switch (mode) {
case RelocInfo::WASM_CALL: {
Address orig_target = orig_iter.rinfo()->wasm_call_address();
uint32_t tag =
native_module_->GetFunctionIndexFromJumpTableSlot(orig_target);
SetWasmCalleeTag(iter.rinfo(), tag);
} break;
case RelocInfo::WASM_STUB_CALL: {
Address orig_target = orig_iter.rinfo()->wasm_stub_call_address();
auto stub_iter = wasm_stub_targets_lookup_.find(orig_target);
DCHECK(stub_iter != wasm_stub_targets_lookup_.end());
uint32_t tag = stub_iter->second;
SetWasmCalleeTag(iter.rinfo(), tag);
} break;
case RelocInfo::EXTERNAL_REFERENCE: {
Address orig_target = orig_iter.rinfo()->target_external_reference();
uint32_t ext_ref_tag =
ExternalReferenceList::Get().tag_from_address(orig_target);
SetWasmCalleeTag(iter.rinfo(), ext_ref_tag);
} break;
case RelocInfo::INTERNAL_REFERENCE:
case RelocInfo::INTERNAL_REFERENCE_ENCODED: {
Address orig_target = orig_iter.rinfo()->target_internal_reference();
Address offset = orig_target - code->instruction_start();
Assembler::deserialization_set_target_internal_reference_at(
iter.rinfo()->pc(), offset, mode);
} break;
default:
UNREACHABLE();
}
}
// If we copied to an aligned buffer, copy code into serialized buffer.
if (code_start != serialized_code_start) {
memcpy(serialized_code_start, code_start, code_size);
}
}
bool NativeModuleSerializer::Write(Writer* writer) {
DCHECK(!write_called_);
write_called_ = true;
WriteHeader(writer);
for (WasmCode* code : code_table_) {
WriteCode(code, writer);
}
return true;
}
WasmSerializer::WasmSerializer(NativeModule* native_module)
: native_module_(native_module),
code_table_(native_module->SnapshotCodeTable()) {}
size_t WasmSerializer::GetSerializedNativeModuleSize() const {
NativeModuleSerializer serializer(native_module_, VectorOf(code_table_));
return kVersionSize + serializer.Measure();
}
bool WasmSerializer::SerializeNativeModule(Vector<byte> buffer) const {
NativeModuleSerializer serializer(native_module_, VectorOf(code_table_));
size_t measured_size = kVersionSize + serializer.Measure();
if (buffer.size() < measured_size) return false;
Writer writer(buffer);
WriteVersion(&writer);
if (!serializer.Write(&writer)) return false;
DCHECK_EQ(measured_size, writer.bytes_written());
return true;
}
class V8_EXPORT_PRIVATE NativeModuleDeserializer {
public:
NativeModuleDeserializer() = delete;
explicit NativeModuleDeserializer(NativeModule*);
bool Read(Reader* reader);
private:
bool ReadHeader(Reader* reader);
bool ReadCode(uint32_t fn_index, Reader* reader);
NativeModule* const native_module_;
bool read_called_;
DISALLOW_COPY_AND_ASSIGN(NativeModuleDeserializer);
};
NativeModuleDeserializer::NativeModuleDeserializer(NativeModule* native_module)
: native_module_(native_module), read_called_(false) {}
bool NativeModuleDeserializer::Read(Reader* reader) {
DCHECK(!read_called_);
read_called_ = true;
if (!ReadHeader(reader)) return false;
uint32_t total_fns = native_module_->num_functions();
uint32_t first_wasm_fn = native_module_->num_imported_functions();
for (uint32_t i = first_wasm_fn; i < total_fns; ++i) {
if (!ReadCode(i, reader)) return false;
}
return reader->current_size() == 0;
}
bool NativeModuleDeserializer::ReadHeader(Reader* reader) {
size_t functions = reader->Read<uint32_t>();
size_t imports = reader->Read<uint32_t>();
return functions == native_module_->num_functions() &&
imports == native_module_->num_imported_functions();
}
bool NativeModuleDeserializer::ReadCode(uint32_t fn_index, Reader* reader) {
size_t code_section_size = reader->Read<size_t>();
if (code_section_size == 0) {
DCHECK(FLAG_wasm_lazy_compilation ||
native_module_->enabled_features().compilation_hints);
native_module_->UseLazyStub(fn_index);
return true;
}
size_t constant_pool_offset = reader->Read<size_t>();
size_t safepoint_table_offset = reader->Read<size_t>();
size_t handler_table_offset = reader->Read<size_t>();
size_t code_comment_offset = reader->Read<size_t>();
size_t unpadded_binary_size = reader->Read<size_t>();
uint32_t stack_slot_count = reader->Read<uint32_t>();
uint32_t tagged_parameter_slots = reader->Read<uint32_t>();
size_t code_size = reader->Read<size_t>();
size_t reloc_size = reader->Read<size_t>();
size_t source_position_size = reader->Read<size_t>();
size_t protected_instructions_size = reader->Read<size_t>();
WasmCode::Kind kind = reader->Read<WasmCode::Kind>();
ExecutionTier tier = reader->Read<ExecutionTier>();
Vector<const byte> code_buffer = {reader->current_location(), code_size};
reader->Skip(code_size);
OwnedVector<byte> reloc_info = OwnedVector<byte>::New(reloc_size);
reader->ReadVector(reloc_info.as_vector());
OwnedVector<byte> source_pos = OwnedVector<byte>::New(source_position_size);
reader->ReadVector(source_pos.as_vector());
auto protected_instructions =
OwnedVector<trap_handler::ProtectedInstructionData>::New(
protected_instructions_size);
reader->ReadVector(Vector<byte>::cast(protected_instructions.as_vector()));
WasmCode* code = native_module_->AddDeserializedCode(
fn_index, code_buffer, stack_slot_count, tagged_parameter_slots,
safepoint_table_offset, handler_table_offset, constant_pool_offset,
code_comment_offset, unpadded_binary_size,
std::move(protected_instructions), std::move(reloc_info),
std::move(source_pos), kind, tier);
// Relocate the code.
int mask = RelocInfo::ModeMask(RelocInfo::WASM_CALL) |
RelocInfo::ModeMask(RelocInfo::WASM_STUB_CALL) |
RelocInfo::ModeMask(RelocInfo::EXTERNAL_REFERENCE) |
RelocInfo::ModeMask(RelocInfo::INTERNAL_REFERENCE) |
RelocInfo::ModeMask(RelocInfo::INTERNAL_REFERENCE_ENCODED);
for (RelocIterator iter(code->instructions(), code->reloc_info(),
code->constant_pool(), mask);
!iter.done(); iter.next()) {
RelocInfo::Mode mode = iter.rinfo()->rmode();
switch (mode) {
case RelocInfo::WASM_CALL: {
uint32_t tag = GetWasmCalleeTag(iter.rinfo());
Address target = native_module_->GetCallTargetForFunction(tag);
iter.rinfo()->set_wasm_call_address(target, SKIP_ICACHE_FLUSH);
break;
}
case RelocInfo::WASM_STUB_CALL: {
uint32_t tag = GetWasmCalleeTag(iter.rinfo());
DCHECK_LT(tag, WasmCode::kRuntimeStubCount);
Address target = native_module_->runtime_stub_entry(
static_cast<WasmCode::RuntimeStubId>(tag));
iter.rinfo()->set_wasm_stub_call_address(target, SKIP_ICACHE_FLUSH);
break;
}
case RelocInfo::EXTERNAL_REFERENCE: {
uint32_t tag = GetWasmCalleeTag(iter.rinfo());
Address address = ExternalReferenceList::Get().address_from_tag(tag);
iter.rinfo()->set_target_external_reference(address, SKIP_ICACHE_FLUSH);
break;
}
case RelocInfo::INTERNAL_REFERENCE:
case RelocInfo::INTERNAL_REFERENCE_ENCODED: {
Address offset = iter.rinfo()->target_internal_reference();
Address target = code->instruction_start() + offset;
Assembler::deserialization_set_target_internal_reference_at(
iter.rinfo()->pc(), target, mode);
break;
}
default:
UNREACHABLE();
}
}
code->MaybePrint();
code->Validate();
// Finally, flush the icache for that code.
FlushInstructionCache(code->instructions().begin(),
code->instructions().size());
return true;
}
bool IsSupportedVersion(Vector<const byte> version) {
if (version.size() < kVersionSize) return false;
byte current_version[kVersionSize];
Writer writer({current_version, kVersionSize});
WriteVersion(&writer);
return memcmp(version.begin(), current_version, kVersionSize) == 0;
}
MaybeHandle<WasmModuleObject> DeserializeNativeModule(
Isolate* isolate, Vector<const byte> data,
Vector<const byte> wire_bytes_vec) {
if (!IsWasmCodegenAllowed(isolate, isolate->native_context())) return {};
if (!IsSupportedVersion(data)) return {};
ModuleWireBytes wire_bytes(wire_bytes_vec);
// TODO(titzer): module features should be part of the serialization format.
WasmFeatures enabled_features = WasmFeaturesFromIsolate(isolate);
ModuleResult decode_result =
DecodeWasmModule(enabled_features, wire_bytes.start(), wire_bytes.end(),
false, i::wasm::kWasmOrigin, isolate->counters(),
isolate->wasm_engine()->allocator());
if (decode_result.failed()) return {};
CHECK_NOT_NULL(decode_result.value());
WasmModule* module = decode_result.value().get();
Handle<Script> script =
CreateWasmScript(isolate, wire_bytes, module->source_map_url);
OwnedVector<uint8_t> wire_bytes_copy =
OwnedVector<uint8_t>::Of(wire_bytes_vec);
Handle<WasmModuleObject> module_object = WasmModuleObject::New(
isolate, enabled_features, std::move(decode_result).value(),
std::move(wire_bytes_copy), script, Handle<ByteArray>::null());
NativeModule* native_module = module_object->native_module();
NativeModuleDeserializer deserializer(native_module);
WasmCodeRefScope wasm_code_ref_scope;
Reader reader(data + kVersionSize);
if (!deserializer.Read(&reader)) return {};
CompileJsToWasmWrappers(isolate, native_module->module(),
handle(module_object->export_wrappers(), isolate));
// Log the code within the generated module for profiling.
native_module->LogWasmCodes(isolate);
// Finish the Wasm script now and make it public to the debugger.
isolate->debug()->OnAfterCompile(script);
return module_object;
}
} // namespace wasm
} // namespace internal
} // namespace v8