| /* origin: OpenBSD /usr/src/lib/libm/src/ld80/e_expm1l.c */ |
| /* |
| * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net> |
| * |
| * Permission to use, copy, modify, and distribute this software for any |
| * purpose with or without fee is hereby granted, provided that the above |
| * copyright notice and this permission notice appear in all copies. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR |
| * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN |
| * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF |
| * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| */ |
| /* |
| * Exponential function, minus 1 |
| * Long double precision |
| * |
| * |
| * SYNOPSIS: |
| * |
| * long double x, y, expm1l(); |
| * |
| * y = expm1l( x ); |
| * |
| * |
| * DESCRIPTION: |
| * |
| * Returns e (2.71828...) raised to the x power, minus 1. |
| * |
| * Range reduction is accomplished by separating the argument |
| * into an integer k and fraction f such that |
| * |
| * x k f |
| * e = 2 e. |
| * |
| * An expansion x + .5 x^2 + x^3 R(x) approximates exp(f) - 1 |
| * in the basic range [-0.5 ln 2, 0.5 ln 2]. |
| * |
| * |
| * ACCURACY: |
| * |
| * Relative error: |
| * arithmetic domain # trials peak rms |
| * IEEE -45,+maxarg 200,000 1.2e-19 2.5e-20 |
| */ |
| |
| #include "libm.h" |
| |
| #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024 |
| long double expm1l(long double x) |
| { |
| return expm1(x); |
| } |
| #elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384 |
| |
| /* exp(x) - 1 = x + 0.5 x^2 + x^3 P(x)/Q(x) |
| -.5 ln 2 < x < .5 ln 2 |
| Theoretical peak relative error = 3.4e-22 */ |
| static const long double |
| P0 = -1.586135578666346600772998894928250240826E4L, |
| P1 = 2.642771505685952966904660652518429479531E3L, |
| P2 = -3.423199068835684263987132888286791620673E2L, |
| P3 = 1.800826371455042224581246202420972737840E1L, |
| P4 = -5.238523121205561042771939008061958820811E-1L, |
| Q0 = -9.516813471998079611319047060563358064497E4L, |
| Q1 = 3.964866271411091674556850458227710004570E4L, |
| Q2 = -7.207678383830091850230366618190187434796E3L, |
| Q3 = 7.206038318724600171970199625081491823079E2L, |
| Q4 = -4.002027679107076077238836622982900945173E1L, |
| /* Q5 = 1.000000000000000000000000000000000000000E0 */ |
| /* C1 + C2 = ln 2 */ |
| C1 = 6.93145751953125E-1L, |
| C2 = 1.428606820309417232121458176568075500134E-6L, |
| /* ln 2^-65 */ |
| minarg = -4.5054566736396445112120088E1L, |
| /* ln 2^16384 */ |
| maxarg = 1.1356523406294143949492E4L; |
| |
| long double expm1l(long double x) |
| { |
| long double px, qx, xx; |
| int k; |
| |
| if (isnan(x)) |
| return x; |
| if (x > maxarg) |
| return x*0x1p16383L; /* overflow, unless x==inf */ |
| if (x == 0.0) |
| return x; |
| if (x < minarg) |
| return -1.0; |
| |
| xx = C1 + C2; |
| /* Express x = ln 2 (k + remainder), remainder not exceeding 1/2. */ |
| px = floorl(0.5 + x / xx); |
| k = px; |
| /* remainder times ln 2 */ |
| x -= px * C1; |
| x -= px * C2; |
| |
| /* Approximate exp(remainder ln 2).*/ |
| px = (((( P4 * x + P3) * x + P2) * x + P1) * x + P0) * x; |
| qx = (((( x + Q4) * x + Q3) * x + Q2) * x + Q1) * x + Q0; |
| xx = x * x; |
| qx = x + (0.5 * xx + xx * px / qx); |
| |
| /* exp(x) = exp(k ln 2) exp(remainder ln 2) = 2^k exp(remainder ln 2). |
| We have qx = exp(remainder ln 2) - 1, so |
| exp(x) - 1 = 2^k (qx + 1) - 1 = 2^k qx + 2^k - 1. */ |
| px = scalbnl(1.0, k); |
| x = px * qx + (px - 1.0); |
| return x; |
| } |
| #elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384 |
| // TODO: broken implementation to make things compile |
| long double expm1l(long double x) |
| { |
| return expm1(x); |
| } |
| #endif |