| /* |
| * Copyright 2014 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #ifndef GrFragmentProcessor_DEFINED |
| #define GrFragmentProcessor_DEFINED |
| |
| #include "src/gpu/GrCoordTransform.h" |
| #include "src/gpu/GrProcessor.h" |
| #include "src/gpu/ops/GrOp.h" |
| |
| class GrGLSLFragmentProcessor; |
| class GrPaint; |
| class GrPipeline; |
| class GrProcessorKeyBuilder; |
| class GrShaderCaps; |
| class GrSwizzle; |
| |
| /** Provides custom fragment shader code. Fragment processors receive an input color (half4) and |
| produce an output color. They may reference textures and uniforms. They may use |
| GrCoordTransforms to receive a transformation of the local coordinates that map from local space |
| to the fragment being processed. |
| */ |
| class GrFragmentProcessor : public GrProcessor { |
| public: |
| class TextureSampler; |
| |
| /** |
| * In many instances (e.g. SkShader::asFragmentProcessor() implementations) it is desirable to |
| * only consider the input color's alpha. However, there is a competing desire to have reusable |
| * GrFragmentProcessor subclasses that can be used in other scenarios where the entire input |
| * color is considered. This function exists to filter the input color and pass it to a FP. It |
| * does so by returning a parent FP that multiplies the passed in FPs output by the parent's |
| * input alpha. The passed in FP will not receive an input color. |
| */ |
| static std::unique_ptr<GrFragmentProcessor> MulChildByInputAlpha( |
| std::unique_ptr<GrFragmentProcessor> child); |
| |
| /** |
| * Like MulChildByInputAlpha(), but reverses the sense of src and dst. In this case, return |
| * the input modulated by the child's alpha. The passed in FP will not receive an input color. |
| * |
| * output = input * child.a |
| */ |
| static std::unique_ptr<GrFragmentProcessor> MulInputByChildAlpha( |
| std::unique_ptr<GrFragmentProcessor> child); |
| |
| /** |
| * This assumes that the input color to the returned processor will be unpremul and that the |
| * passed processor (which becomes the returned processor's child) produces a premul output. |
| * The result of the returned processor is a premul of its input color modulated by the child |
| * processor's premul output. |
| */ |
| static std::unique_ptr<GrFragmentProcessor> MakeInputPremulAndMulByOutput( |
| std::unique_ptr<GrFragmentProcessor>); |
| |
| /** |
| * Returns a parent fragment processor that adopts the passed fragment processor as a child. |
| * The parent will ignore its input color and instead feed the passed in color as input to the |
| * child. |
| */ |
| static std::unique_ptr<GrFragmentProcessor> OverrideInput(std::unique_ptr<GrFragmentProcessor>, |
| const SkPMColor4f&, |
| bool useUniform = true); |
| |
| /** |
| * Returns a fragment processor that premuls the input before calling the passed in fragment |
| * processor. |
| */ |
| static std::unique_ptr<GrFragmentProcessor> PremulInput(std::unique_ptr<GrFragmentProcessor>); |
| |
| /** |
| * Returns a fragment processor that calls the passed in fragment processor, and then swizzles |
| * the output. |
| */ |
| static std::unique_ptr<GrFragmentProcessor> SwizzleOutput(std::unique_ptr<GrFragmentProcessor>, |
| const GrSwizzle&); |
| |
| /** |
| * Returns a fragment processor that runs the passed in array of fragment processors in a |
| * series. The original input is passed to the first, the first's output is passed to the |
| * second, etc. The output of the returned processor is the output of the last processor of the |
| * series. |
| * |
| * The array elements with be moved. |
| */ |
| static std::unique_ptr<GrFragmentProcessor> RunInSeries(std::unique_ptr<GrFragmentProcessor>*, |
| int cnt); |
| |
| /** |
| * Makes a copy of this fragment processor that draws equivalently to the original. |
| * If the processor has child processors they are cloned as well. |
| */ |
| virtual std::unique_ptr<GrFragmentProcessor> clone() const = 0; |
| |
| GrGLSLFragmentProcessor* createGLSLInstance() const; |
| |
| void getGLSLProcessorKey(const GrShaderCaps& caps, GrProcessorKeyBuilder* b) const { |
| this->onGetGLSLProcessorKey(caps, b); |
| for (int i = 0; i < fChildProcessors.count(); ++i) { |
| fChildProcessors[i]->getGLSLProcessorKey(caps, b); |
| } |
| } |
| |
| int numTextureSamplers() const { return fTextureSamplerCnt; } |
| const TextureSampler& textureSampler(int i) const; |
| |
| int numCoordTransforms() const { return fCoordTransforms.count(); } |
| |
| /** Returns the coordinate transformation at index. index must be valid according to |
| numTransforms(). */ |
| const GrCoordTransform& coordTransform(int index) const { return *fCoordTransforms[index]; } |
| |
| const SkTArray<GrCoordTransform*, true>& coordTransforms() const { |
| return fCoordTransforms; |
| } |
| |
| int numChildProcessors() const { return fChildProcessors.count(); } |
| |
| const GrFragmentProcessor& childProcessor(int index) const { return *fChildProcessors[index]; } |
| |
| SkDEBUGCODE(bool isInstantiated() const;) |
| |
| /** Do any of the coordtransforms for this processor require local coords? */ |
| bool usesLocalCoords() const { return SkToBool(fFlags & kUsesLocalCoords_Flag); } |
| |
| bool computeLocalCoordsInVertexShader() const { |
| return SkToBool(fFlags & kComputeLocalCoordsInVertexShader_Flag); |
| } |
| |
| void setComputeLocalCoordsInVertexShader(bool value) const { |
| if (value) { |
| fFlags |= kComputeLocalCoordsInVertexShader_Flag; |
| } else { |
| fFlags &= ~kComputeLocalCoordsInVertexShader_Flag; |
| } |
| for (GrCoordTransform* transform : fCoordTransforms) { |
| transform->setComputeInVertexShader(value); |
| } |
| for (const auto& child : fChildProcessors) { |
| child->setComputeLocalCoordsInVertexShader(value); |
| } |
| } |
| |
| /** |
| * A GrDrawOp may premultiply its antialiasing coverage into its GrGeometryProcessor's color |
| * output under the following scenario: |
| * * all the color fragment processors report true to this query, |
| * * all the coverage fragment processors report true to this query, |
| * * the blend mode arithmetic allows for it it. |
| * To be compatible a fragment processor's output must be a modulation of its input color or |
| * alpha with a computed premultiplied color or alpha that is in 0..1 range. The computed color |
| * or alpha that is modulated against the input cannot depend on the input's alpha. The computed |
| * value cannot depend on the input's color channels unless it unpremultiplies the input color |
| * channels by the input alpha. |
| */ |
| bool compatibleWithCoverageAsAlpha() const { |
| return SkToBool(fFlags & kCompatibleWithCoverageAsAlpha_OptimizationFlag); |
| } |
| |
| /** |
| * If this is true then all opaque input colors to the processor produce opaque output colors. |
| */ |
| bool preservesOpaqueInput() const { |
| return SkToBool(fFlags & kPreservesOpaqueInput_OptimizationFlag); |
| } |
| |
| /** |
| * Tests whether given a constant input color the processor produces a constant output color |
| * (for all fragments). If true outputColor will contain the constant color produces for |
| * inputColor. |
| */ |
| bool hasConstantOutputForConstantInput(SkPMColor4f inputColor, SkPMColor4f* outputColor) const { |
| if (fFlags & kConstantOutputForConstantInput_OptimizationFlag) { |
| *outputColor = this->constantOutputForConstantInput(inputColor); |
| return true; |
| } |
| return false; |
| } |
| bool hasConstantOutputForConstantInput() const { |
| return SkToBool(fFlags & kConstantOutputForConstantInput_OptimizationFlag); |
| } |
| |
| /** Returns true if this and other processor conservatively draw identically. It can only return |
| true when the two processor are of the same subclass (i.e. they return the same object from |
| from getFactory()). |
| |
| A return value of true from isEqual() should not be used to test whether the processor would |
| generate the same shader code. To test for identical code generation use getGLSLProcessorKey |
| */ |
| bool isEqual(const GrFragmentProcessor& that) const; |
| |
| /** |
| * Pre-order traversal of a FP hierarchy, or of the forest of FPs in a GrPipeline. In the latter |
| * case the tree rooted at each FP in the GrPipeline is visited successively. |
| */ |
| class Iter : public SkNoncopyable { |
| public: |
| explicit Iter(const GrFragmentProcessor* fp) { fFPStack.push_back(fp); } |
| explicit Iter(const GrPipeline& pipeline); |
| explicit Iter(const GrPaint&); |
| const GrFragmentProcessor* next(); |
| |
| private: |
| SkSTArray<4, const GrFragmentProcessor*, true> fFPStack; |
| }; |
| |
| /** |
| * Iterates over all the Ts owned by a GrFragmentProcessor and its children or over all the Ts |
| * owned by the forest of GrFragmentProcessors in a GrPipeline. FPs are visited in the same |
| * order as Iter and each of an FP's Ts are visited in order. |
| */ |
| template <typename T, int (GrFragmentProcessor::*COUNT)() const, |
| const T& (GrFragmentProcessor::*GET)(int)const> |
| class FPItemIter : public SkNoncopyable { |
| public: |
| explicit FPItemIter(const GrFragmentProcessor* fp) |
| : fCurrFP(nullptr) |
| , fCTIdx(0) |
| , fFPIter(fp) { |
| fCurrFP = fFPIter.next(); |
| } |
| explicit FPItemIter(const GrPipeline& pipeline) |
| : fCurrFP(nullptr) |
| , fCTIdx(0) |
| , fFPIter(pipeline) { |
| fCurrFP = fFPIter.next(); |
| } |
| |
| const T* next() { |
| if (!fCurrFP) { |
| return nullptr; |
| } |
| while (fCTIdx == (fCurrFP->*COUNT)()) { |
| fCTIdx = 0; |
| fCurrFP = fFPIter.next(); |
| if (!fCurrFP) { |
| return nullptr; |
| } |
| } |
| return &(fCurrFP->*GET)(fCTIdx++); |
| } |
| |
| private: |
| const GrFragmentProcessor* fCurrFP; |
| int fCTIdx; |
| GrFragmentProcessor::Iter fFPIter; |
| }; |
| |
| using CoordTransformIter = FPItemIter<GrCoordTransform, |
| &GrFragmentProcessor::numCoordTransforms, |
| &GrFragmentProcessor::coordTransform>; |
| |
| using TextureAccessIter = FPItemIter<TextureSampler, |
| &GrFragmentProcessor::numTextureSamplers, |
| &GrFragmentProcessor::textureSampler>; |
| |
| void visitProxies(const GrOp::VisitProxyFunc& func); |
| |
| protected: |
| enum OptimizationFlags : uint32_t { |
| kNone_OptimizationFlags, |
| kCompatibleWithCoverageAsAlpha_OptimizationFlag = 0x1, |
| kPreservesOpaqueInput_OptimizationFlag = 0x2, |
| kConstantOutputForConstantInput_OptimizationFlag = 0x4, |
| kAll_OptimizationFlags = kCompatibleWithCoverageAsAlpha_OptimizationFlag | |
| kPreservesOpaqueInput_OptimizationFlag | |
| kConstantOutputForConstantInput_OptimizationFlag |
| }; |
| GR_DECL_BITFIELD_OPS_FRIENDS(OptimizationFlags) |
| |
| /** |
| * Can be used as a helper to decide which fragment processor OptimizationFlags should be set. |
| * This assumes that the subclass output color will be a modulation of the input color with a |
| * value read from a texture of the passed color type and that the texture contains |
| * premultiplied color or alpha values that are in range. |
| * |
| * Since there are multiple ways in which a sampler may have its coordinates clamped or wrapped, |
| * callers must determine on their own if the sampling uses a decal strategy in any way, in |
| * which case the texture may become transparent regardless of the color type. |
| */ |
| static OptimizationFlags ModulateForSamplerOptFlags(GrColorType colorType, bool samplingDecal) { |
| if (samplingDecal) { |
| return kCompatibleWithCoverageAsAlpha_OptimizationFlag; |
| } else { |
| return ModulateForClampedSamplerOptFlags(colorType); |
| } |
| } |
| |
| // As above, but callers should somehow ensure or assert their sampler still uses clamping |
| static OptimizationFlags ModulateForClampedSamplerOptFlags(GrColorType colorType) { |
| if (!GrColorTypeHasAlpha(colorType)) { |
| return kCompatibleWithCoverageAsAlpha_OptimizationFlag | |
| kPreservesOpaqueInput_OptimizationFlag; |
| } else { |
| return kCompatibleWithCoverageAsAlpha_OptimizationFlag; |
| } |
| } |
| |
| GrFragmentProcessor(ClassID classID, OptimizationFlags optimizationFlags) |
| : INHERITED(classID) |
| , fFlags(optimizationFlags | kComputeLocalCoordsInVertexShader_Flag) { |
| SkASSERT((optimizationFlags & ~kAll_OptimizationFlags) == 0); |
| } |
| |
| OptimizationFlags optimizationFlags() const { |
| return static_cast<OptimizationFlags>(kAll_OptimizationFlags & fFlags); |
| } |
| |
| /** Useful when you can't call fp->optimizationFlags() on a base class object from a subclass.*/ |
| static OptimizationFlags ProcessorOptimizationFlags(const GrFragmentProcessor* fp) { |
| return fp->optimizationFlags(); |
| } |
| |
| /** |
| * This allows one subclass to access another subclass's implementation of |
| * constantOutputForConstantInput. It must only be called when |
| * hasConstantOutputForConstantInput() is known to be true. |
| */ |
| static SkPMColor4f ConstantOutputForConstantInput(const GrFragmentProcessor& fp, |
| const SkPMColor4f& input) { |
| SkASSERT(fp.hasConstantOutputForConstantInput()); |
| return fp.constantOutputForConstantInput(input); |
| } |
| |
| /** |
| * Fragment Processor subclasses call this from their constructor to register coordinate |
| * transformations. Coord transforms provide a mechanism for a processor to receive coordinates |
| * in their FS code. The matrix expresses a transformation from local space. For a given |
| * fragment the matrix will be applied to the local coordinate that maps to the fragment. |
| * |
| * When the transformation has perspective, the transformed coordinates will have |
| * 3 components. Otherwise they'll have 2. |
| * |
| * This must only be called from the constructor because GrProcessors are immutable. The |
| * processor subclass manages the lifetime of the transformations (this function only stores a |
| * pointer). The GrCoordTransform is typically a member field of the GrProcessor subclass. |
| * |
| * A processor subclass that has multiple methods of construction should always add its coord |
| * transforms in a consistent order. The non-virtual implementation of isEqual() automatically |
| * compares transforms and will assume they line up across the two processor instances. |
| */ |
| void addCoordTransform(GrCoordTransform*); |
| |
| /** |
| * FragmentProcessor subclasses call this from their constructor to register any child |
| * FragmentProcessors they have. This must be called AFTER all texture accesses and coord |
| * transforms have been added. |
| * This is for processors whose shader code will be composed of nested processors whose output |
| * colors will be combined somehow to produce its output color. Registering these child |
| * processors will allow the ProgramBuilder to automatically handle their transformed coords and |
| * texture accesses and mangle their uniform and output color names. |
| */ |
| int registerChildProcessor(std::unique_ptr<GrFragmentProcessor> child); |
| |
| void setTextureSamplerCnt(int cnt) { |
| SkASSERT(cnt >= 0); |
| fTextureSamplerCnt = cnt; |
| } |
| |
| /** |
| * Helper for implementing onTextureSampler(). E.g.: |
| * return IthTexureSampler(i, fMyFirstSampler, fMySecondSampler, fMyThirdSampler); |
| */ |
| template <typename... Args> |
| static const TextureSampler& IthTextureSampler(int i, const TextureSampler& samp0, |
| const Args&... samps) { |
| return (0 == i) ? samp0 : IthTextureSampler(i - 1, samps...); |
| } |
| inline static const TextureSampler& IthTextureSampler(int i); |
| |
| private: |
| virtual SkPMColor4f constantOutputForConstantInput(const SkPMColor4f& /* inputColor */) const { |
| SK_ABORT("Subclass must override this if advertising this optimization."); |
| } |
| |
| /** Returns a new instance of the appropriate *GL* implementation class |
| for the given GrFragmentProcessor; caller is responsible for deleting |
| the object. */ |
| virtual GrGLSLFragmentProcessor* onCreateGLSLInstance() const = 0; |
| |
| /** Implemented using GLFragmentProcessor::GenKey as described in this class's comment. */ |
| virtual void onGetGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder*) const = 0; |
| |
| /** |
| * Subclass implements this to support isEqual(). It will only be called if it is known that |
| * the two processors are of the same subclass (i.e. they return the same object from |
| * getFactory()). The processor subclass should not compare its coord transforms as that will |
| * be performed automatically in the non-virtual isEqual(). |
| */ |
| virtual bool onIsEqual(const GrFragmentProcessor&) const = 0; |
| |
| virtual const TextureSampler& onTextureSampler(int) const { return IthTextureSampler(0); } |
| |
| bool hasSameTransforms(const GrFragmentProcessor&) const; |
| |
| enum PrivateFlags { |
| kFirstPrivateFlag = kAll_OptimizationFlags + 1, |
| kUsesLocalCoords_Flag = kFirstPrivateFlag, |
| kComputeLocalCoordsInVertexShader_Flag = kFirstPrivateFlag << 1, |
| }; |
| |
| mutable uint32_t fFlags = kComputeLocalCoordsInVertexShader_Flag; |
| |
| int fTextureSamplerCnt = 0; |
| |
| SkSTArray<4, GrCoordTransform*, true> fCoordTransforms; |
| |
| SkSTArray<1, std::unique_ptr<GrFragmentProcessor>, true> fChildProcessors; |
| |
| typedef GrProcessor INHERITED; |
| }; |
| |
| /** |
| * Used to represent a texture that is required by a GrFragmentProcessor. It holds a GrTextureProxy |
| * along with an associated GrSamplerState. TextureSamplers don't perform any coord manipulation to |
| * account for texture origin. |
| */ |
| class GrFragmentProcessor::TextureSampler { |
| public: |
| TextureSampler() = default; |
| |
| /** |
| * This copy constructor is used by GrFragmentProcessor::clone() implementations. |
| */ |
| explicit TextureSampler(const TextureSampler& that) |
| : fProxy(that.fProxy) |
| , fSamplerState(that.fSamplerState) {} |
| |
| TextureSampler(sk_sp<GrTextureProxy>, const GrSamplerState& = GrSamplerState::ClampNearest()); |
| |
| TextureSampler& operator=(const TextureSampler&) = delete; |
| |
| void reset(sk_sp<GrTextureProxy>, const GrSamplerState&); |
| |
| bool operator==(const TextureSampler& that) const { |
| return this->proxy()->underlyingUniqueID() == that.proxy()->underlyingUniqueID() && |
| fSamplerState == that.fSamplerState; |
| } |
| |
| bool operator!=(const TextureSampler& other) const { return !(*this == other); } |
| |
| SkDEBUGCODE(bool isInstantiated() const { return fProxy->isInstantiated(); }) |
| |
| // 'peekTexture' should only ever be called after a successful 'instantiate' call |
| GrTexture* peekTexture() const { |
| SkASSERT(fProxy->isInstantiated()); |
| return fProxy->peekTexture(); |
| } |
| |
| GrTextureProxy* proxy() const { return fProxy.get(); } |
| const GrSamplerState& samplerState() const { return fSamplerState; } |
| const GrSwizzle& swizzle() const { return this->proxy()->textureSwizzle(); } |
| |
| bool isInitialized() const { return SkToBool(fProxy.get()); } |
| |
| private: |
| sk_sp<GrTextureProxy> fProxy; |
| GrSamplerState fSamplerState; |
| }; |
| |
| ////////////////////////////////////////////////////////////////////////////// |
| |
| const GrFragmentProcessor::TextureSampler& GrFragmentProcessor::IthTextureSampler(int i) { |
| SK_ABORT("Illegal texture sampler index"); |
| static const TextureSampler kBogus; |
| return kBogus; |
| } |
| |
| GR_MAKE_BITFIELD_OPS(GrFragmentProcessor::OptimizationFlags) |
| |
| #endif |