| /* |
| * Copyright 2016 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #ifndef SKSL_CONSTRUCTOR |
| #define SKSL_CONSTRUCTOR |
| |
| #include "src/sksl/SkSLIRGenerator.h" |
| #include "src/sksl/ir/SkSLExpression.h" |
| #include "src/sksl/ir/SkSLFloatLiteral.h" |
| #include "src/sksl/ir/SkSLIntLiteral.h" |
| #include "src/sksl/ir/SkSLPrefixExpression.h" |
| |
| namespace SkSL { |
| |
| /** |
| * Represents the construction of a compound type, such as "float2(x, y)". |
| * |
| * Vector constructors will always consist of either exactly 1 scalar, or a collection of vectors |
| * and scalars totalling exactly the right number of scalar components. |
| * |
| * Matrix constructors will always consist of either exactly 1 scalar, exactly 1 matrix, or a |
| * collection of vectors and scalars totalling exactly the right number of scalar components. |
| */ |
| struct Constructor : public Expression { |
| Constructor(int offset, const Type& type, std::vector<std::unique_ptr<Expression>> arguments) |
| : INHERITED(offset, kConstructor_Kind, type) |
| , fArguments(std::move(arguments)) {} |
| |
| std::unique_ptr<Expression> constantPropagate(const IRGenerator& irGenerator, |
| const DefinitionMap& definitions) override { |
| if (fArguments.size() == 1 && fArguments[0]->fKind == Expression::kIntLiteral_Kind) { |
| if (fType.isFloat()) { |
| // promote float(1) to 1.0 |
| int64_t intValue = ((IntLiteral&) *fArguments[0]).fValue; |
| return std::unique_ptr<Expression>(new FloatLiteral(irGenerator.fContext, |
| fOffset, |
| intValue)); |
| } else if (fType.isInteger()) { |
| // promote uint(1) to 1u |
| int64_t intValue = ((IntLiteral&) *fArguments[0]).fValue; |
| return std::unique_ptr<Expression>(new IntLiteral(fOffset, |
| intValue, |
| &fType)); |
| } |
| } |
| return nullptr; |
| } |
| |
| bool hasSideEffects() const override { |
| for (const auto& arg : fArguments) { |
| if (arg->hasSideEffects()) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| std::unique_ptr<Expression> clone() const override { |
| std::vector<std::unique_ptr<Expression>> cloned; |
| for (const auto& arg : fArguments) { |
| cloned.push_back(arg->clone()); |
| } |
| return std::unique_ptr<Expression>(new Constructor(fOffset, fType, std::move(cloned))); |
| } |
| |
| String description() const override { |
| String result = fType.description() + "("; |
| String separator; |
| for (size_t i = 0; i < fArguments.size(); i++) { |
| result += separator; |
| result += fArguments[i]->description(); |
| separator = ", "; |
| } |
| result += ")"; |
| return result; |
| } |
| |
| bool isConstant() const override { |
| for (size_t i = 0; i < fArguments.size(); i++) { |
| if (!fArguments[i]->isConstant()) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| bool compareConstant(const Context& context, const Expression& other) const override { |
| SkASSERT(other.fKind == Expression::kConstructor_Kind && other.fType == fType); |
| Constructor& c = (Constructor&) other; |
| if (c.fType.kind() == Type::kVector_Kind) { |
| bool isFloat = c.fType.columns() > 1 ? c.fType.componentType().isFloat() |
| : c.fType.isFloat(); |
| for (int i = 0; i < fType.columns(); i++) { |
| if (isFloat) { |
| if (this->getFVecComponent(i) != c.getFVecComponent(i)) { |
| return false; |
| } |
| } else if (this->getIVecComponent(i) != c.getIVecComponent(i)) { |
| return false; |
| } |
| } |
| return true; |
| } |
| // shouldn't be possible to have a constant constructor that isn't a vector or matrix; |
| // a constant scalar constructor should have been collapsed down to the appropriate |
| // literal |
| SkASSERT(fType.kind() == Type::kMatrix_Kind); |
| for (int col = 0; col < fType.columns(); col++) { |
| for (int row = 0; row < fType.rows(); row++) { |
| if (getMatComponent(col, row) != c.getMatComponent(col, row)) { |
| return false; |
| } |
| } |
| } |
| return true; |
| } |
| |
| template<typename type> |
| type getVecComponent(int index) const { |
| SkASSERT(fType.kind() == Type::kVector_Kind); |
| if (fArguments.size() == 1 && fArguments[0]->fType.kind() == Type::kScalar_Kind) { |
| if (std::is_floating_point<type>::value) { |
| return fArguments[0]->getConstantFloat(); |
| } else { |
| return fArguments[0]->getConstantInt(); |
| } |
| } |
| int current = 0; |
| for (const auto& arg : fArguments) { |
| SkASSERT(current <= index); |
| if (arg->fType.kind() == Type::kScalar_Kind) { |
| if (index == current) { |
| if (std::is_floating_point<type>::value) { |
| return arg.get()->getConstantFloat(); |
| } else { |
| return arg.get()->getConstantInt(); |
| } |
| } |
| current++; |
| } else if (arg->fKind == kConstructor_Kind) { |
| if (current + arg->fType.columns() > index) { |
| return ((const Constructor&) *arg).getVecComponent<type>(index - current); |
| } |
| current += arg->fType.columns(); |
| } else { |
| if (current + arg->fType.columns() > index) { |
| SkASSERT(arg->fKind == kPrefix_Kind); |
| const PrefixExpression& p = (PrefixExpression&) *arg; |
| const Constructor& c = (const Constructor&) *p.fOperand; |
| return -c.getVecComponent<type>(index - current); |
| } |
| current += arg->fType.columns(); |
| } |
| } |
| ABORT("failed to find vector component %d in %s\n", index, description().c_str()); |
| } |
| |
| SKSL_FLOAT getFVecComponent(int n) const override { |
| return this->getVecComponent<SKSL_FLOAT>(n); |
| } |
| |
| /** |
| * For a literal vector expression, return the integer value of the n'th vector component. It is |
| * an error to call this method on an expression which is not a literal vector. |
| */ |
| SKSL_INT getIVecComponent(int n) const override { |
| return this->getVecComponent<SKSL_INT>(n); |
| } |
| |
| SKSL_FLOAT getMatComponent(int col, int row) const override { |
| SkASSERT(this->isConstant()); |
| SkASSERT(fType.kind() == Type::kMatrix_Kind); |
| SkASSERT(col < fType.columns() && row < fType.rows()); |
| if (fArguments.size() == 1) { |
| if (fArguments[0]->fType.kind() == Type::kScalar_Kind) { |
| // single scalar argument, so matrix is of the form: |
| // x 0 0 |
| // 0 x 0 |
| // 0 0 x |
| // return x if col == row |
| return col == row ? fArguments[0]->getConstantFloat() : 0.0; |
| } |
| if (fArguments[0]->fType.kind() == Type::kMatrix_Kind) { |
| SkASSERT(fArguments[0]->fKind == Expression::kConstructor_Kind); |
| // single matrix argument. make sure we're within the argument's bounds. |
| const Type& argType = ((Constructor&) *fArguments[0]).fType; |
| if (col < argType.columns() && row < argType.rows()) { |
| // within bounds, defer to argument |
| return ((Constructor&) *fArguments[0]).getMatComponent(col, row); |
| } |
| // out of bounds |
| return 0.0; |
| } |
| } |
| int currentIndex = 0; |
| int targetIndex = col * fType.rows() + row; |
| for (const auto& arg : fArguments) { |
| SkASSERT(targetIndex >= currentIndex); |
| SkASSERT(arg->fType.rows() == 1); |
| if (currentIndex + arg->fType.columns() > targetIndex) { |
| if (arg->fType.columns() == 1) { |
| return arg->getConstantFloat(); |
| } else { |
| return arg->getFVecComponent(targetIndex - currentIndex); |
| } |
| } |
| currentIndex += arg->fType.columns(); |
| } |
| ABORT("can't happen, matrix component out of bounds"); |
| } |
| |
| std::vector<std::unique_ptr<Expression>> fArguments; |
| |
| typedef Expression INHERITED; |
| }; |
| |
| } // namespace |
| |
| #endif |