| # 2009 October 7 |
| # |
| # The author disclaims copyright to this source code. In place of |
| # a legal notice, here is a blessing: |
| # |
| # May you do good and not evil. |
| # May you find forgiveness for yourself and forgive others. |
| # May you share freely, never taking more than you give. |
| # |
| #*********************************************************************** |
| # |
| # This file implements tests to verify the "testable statements" in the |
| # foreignkeys.in document. |
| # |
| # The tests in this file are arranged to mirror the structure of |
| # foreignkey.in, with one exception: The statements in section 2, which |
| # deals with enabling/disabling foreign key support, is tested first, |
| # before section 1. This is because some statements in section 2 deal |
| # with builds that do not include complete foreign key support (because |
| # either SQLITE_OMIT_TRIGGER or SQLITE_OMIT_FOREIGN_KEY was defined |
| # at build time). |
| # |
| |
| set testdir [file dirname $argv0] |
| source $testdir/tester.tcl |
| |
| proc eqp {sql {db db}} { uplevel execsql [list "EXPLAIN QUERY PLAN $sql"] $db } |
| |
| ########################################################################### |
| ### SECTION 2: Enabling Foreign Key Support |
| ########################################################################### |
| |
| #------------------------------------------------------------------------- |
| # EVIDENCE-OF: R-33710-56344 In order to use foreign key constraints in |
| # SQLite, the library must be compiled with neither |
| # SQLITE_OMIT_FOREIGN_KEY or SQLITE_OMIT_TRIGGER defined. |
| # |
| ifcapable trigger&&foreignkey { |
| do_test e_fkey-1 { |
| execsql { |
| PRAGMA foreign_keys = ON; |
| CREATE TABLE p(i PRIMARY KEY); |
| CREATE TABLE c(j REFERENCES p ON UPDATE CASCADE); |
| INSERT INTO p VALUES('hello'); |
| INSERT INTO c VALUES('hello'); |
| UPDATE p SET i = 'world'; |
| SELECT * FROM c; |
| } |
| } {world} |
| } |
| |
| #------------------------------------------------------------------------- |
| # Test the effects of defining OMIT_TRIGGER but not OMIT_FOREIGN_KEY. |
| # |
| # EVIDENCE-OF: R-44697-61543 If SQLITE_OMIT_TRIGGER is defined but |
| # SQLITE_OMIT_FOREIGN_KEY is not, then SQLite behaves as it did prior to |
| # version 3.6.19 - foreign key definitions are parsed and may be queried |
| # using PRAGMA foreign_key_list, but foreign key constraints are not |
| # enforced. |
| # |
| # Specifically, test that "PRAGMA foreign_keys" is a no-op in this case. |
| # When using the pragma to query the current setting, 0 rows are returned. |
| # |
| # EVIDENCE-OF: R-22567-44039 The PRAGMA foreign_keys command is a no-op |
| # in this configuration. |
| # |
| # EVIDENCE-OF: R-41784-13339 Tip: If the command "PRAGMA foreign_keys" |
| # returns no data instead of a single row containing "0" or "1", then |
| # the version of SQLite you are using does not support foreign keys |
| # (either because it is older than 3.6.19 or because it was compiled |
| # with SQLITE_OMIT_FOREIGN_KEY or SQLITE_OMIT_TRIGGER defined). |
| # |
| reset_db |
| ifcapable !trigger&&foreignkey { |
| do_test e_fkey-2.1 { |
| execsql { |
| PRAGMA foreign_keys = ON; |
| CREATE TABLE p(i PRIMARY KEY); |
| CREATE TABLE c(j REFERENCES p ON UPDATE CASCADE); |
| INSERT INTO p VALUES('hello'); |
| INSERT INTO c VALUES('hello'); |
| UPDATE p SET i = 'world'; |
| SELECT * FROM c; |
| } |
| } {hello} |
| do_test e_fkey-2.2 { |
| execsql { PRAGMA foreign_key_list(c) } |
| } {0 0 p j {} CASCADE {NO ACTION} NONE} |
| do_test e_fkey-2.3 { |
| execsql { PRAGMA foreign_keys } |
| } {} |
| } |
| |
| |
| #------------------------------------------------------------------------- |
| # Test the effects of defining OMIT_FOREIGN_KEY. |
| # |
| # EVIDENCE-OF: R-58428-36660 If OMIT_FOREIGN_KEY is defined, then |
| # foreign key definitions cannot even be parsed (attempting to specify a |
| # foreign key definition is a syntax error). |
| # |
| # Specifically, test that foreign key constraints cannot even be parsed |
| # in such a build. |
| # |
| reset_db |
| ifcapable !foreignkey { |
| do_test e_fkey-3.1 { |
| execsql { CREATE TABLE p(i PRIMARY KEY) } |
| catchsql { CREATE TABLE c(j REFERENCES p ON UPDATE CASCADE) } |
| } {1 {near "ON": syntax error}} |
| do_test e_fkey-3.2 { |
| # This is allowed, as in this build, "REFERENCES" is not a keyword. |
| # The declared datatype of column j is "REFERENCES p". |
| execsql { CREATE TABLE c(j REFERENCES p) } |
| } {} |
| do_test e_fkey-3.3 { |
| execsql { PRAGMA table_info(c) } |
| } {0 j {REFERENCES p} 0 {} 0} |
| do_test e_fkey-3.4 { |
| execsql { PRAGMA foreign_key_list(c) } |
| } {} |
| do_test e_fkey-3.5 { |
| execsql { PRAGMA foreign_keys } |
| } {} |
| } |
| |
| ifcapable !foreignkey||!trigger { finish_test ; return } |
| reset_db |
| |
| |
| #------------------------------------------------------------------------- |
| # EVIDENCE-OF: R-07280-60510 Assuming the library is compiled with |
| # foreign key constraints enabled, it must still be enabled by the |
| # application at runtime, using the PRAGMA foreign_keys command. |
| # |
| # This also tests that foreign key constraints are disabled by default. |
| # |
| # EVIDENCE-OF: R-59578-04990 Foreign key constraints are disabled by |
| # default (for backwards compatibility), so must be enabled separately |
| # for each database connection separately. |
| # |
| drop_all_tables |
| do_test e_fkey-4.1 { |
| execsql { |
| CREATE TABLE p(i PRIMARY KEY); |
| CREATE TABLE c(j REFERENCES p ON UPDATE CASCADE); |
| INSERT INTO p VALUES('hello'); |
| INSERT INTO c VALUES('hello'); |
| UPDATE p SET i = 'world'; |
| SELECT * FROM c; |
| } |
| } {hello} |
| do_test e_fkey-4.2 { |
| execsql { |
| DELETE FROM c; |
| DELETE FROM p; |
| PRAGMA foreign_keys = ON; |
| INSERT INTO p VALUES('hello'); |
| INSERT INTO c VALUES('hello'); |
| UPDATE p SET i = 'world'; |
| SELECT * FROM c; |
| } |
| } {world} |
| |
| #------------------------------------------------------------------------- |
| # EVIDENCE-OF: R-15278-54456 The application can can also use a PRAGMA |
| # foreign_keys statement to determine if foreign keys are currently |
| # enabled. |
| # |
| # This also tests the example code in section 2 of foreignkeys.in. |
| # |
| # EVIDENCE-OF: R-11255-19907 |
| # |
| reset_db |
| do_test e_fkey-5.1 { |
| execsql { PRAGMA foreign_keys } |
| } {0} |
| do_test e_fkey-5.2 { |
| execsql { |
| PRAGMA foreign_keys = ON; |
| PRAGMA foreign_keys; |
| } |
| } {1} |
| do_test e_fkey-5.3 { |
| execsql { |
| PRAGMA foreign_keys = OFF; |
| PRAGMA foreign_keys; |
| } |
| } {0} |
| |
| #------------------------------------------------------------------------- |
| # Test that it is not possible to enable or disable foreign key support |
| # while not in auto-commit mode. |
| # |
| # EVIDENCE-OF: R-46649-58537 It is not possible to enable or disable |
| # foreign key constraints in the middle of a multi-statement transaction |
| # (when SQLite is not in autocommit mode). Attempting to do so does not |
| # return an error; it simply has no effect. |
| # |
| reset_db |
| do_test e_fkey-6.1 { |
| execsql { |
| PRAGMA foreign_keys = ON; |
| CREATE TABLE t1(a UNIQUE, b); |
| CREATE TABLE t2(c, d REFERENCES t1(a)); |
| INSERT INTO t1 VALUES(1, 2); |
| INSERT INTO t2 VALUES(2, 1); |
| BEGIN; |
| PRAGMA foreign_keys = OFF; |
| } |
| catchsql { |
| DELETE FROM t1 |
| } |
| } {1 {foreign key constraint failed}} |
| do_test e_fkey-6.2 { |
| execsql { PRAGMA foreign_keys } |
| } {1} |
| do_test e_fkey-6.3 { |
| execsql { |
| COMMIT; |
| PRAGMA foreign_keys = OFF; |
| BEGIN; |
| PRAGMA foreign_keys = ON; |
| DELETE FROM t1; |
| PRAGMA foreign_keys; |
| } |
| } {0} |
| do_test e_fkey-6.4 { |
| execsql COMMIT |
| } {} |
| |
| ########################################################################### |
| ### SECTION 1: Introduction to Foreign Key Constraints |
| ########################################################################### |
| execsql "PRAGMA foreign_keys = ON" |
| |
| #------------------------------------------------------------------------- |
| # Verify that the syntax in the first example in section 1 is valid. |
| # |
| # EVIDENCE-OF: R-04042-24825 To do so, a foreign key definition may be |
| # added by modifying the declaration of the track table to the |
| # following: CREATE TABLE track( trackid INTEGER, trackname TEXT, |
| # trackartist INTEGER, FOREIGN KEY(trackartist) REFERENCES |
| # artist(artistid) ); |
| # |
| do_test e_fkey-7.1 { |
| execsql { |
| CREATE TABLE artist( |
| artistid INTEGER PRIMARY KEY, |
| artistname TEXT |
| ); |
| CREATE TABLE track( |
| trackid INTEGER, |
| trackname TEXT, |
| trackartist INTEGER, |
| FOREIGN KEY(trackartist) REFERENCES artist(artistid) |
| ); |
| } |
| } {} |
| |
| #------------------------------------------------------------------------- |
| # EVIDENCE-OF: R-61362-32087 Attempting to insert a row into the track |
| # table that does not correspond to any row in the artist table will |
| # fail, |
| # |
| do_test e_fkey-8.1 { |
| catchsql { INSERT INTO track VALUES(1, 'track 1', 1) } |
| } {1 {foreign key constraint failed}} |
| do_test e_fkey-8.2 { |
| execsql { INSERT INTO artist VALUES(2, 'artist 1') } |
| catchsql { INSERT INTO track VALUES(1, 'track 1', 1) } |
| } {1 {foreign key constraint failed}} |
| do_test e_fkey-8.2 { |
| execsql { INSERT INTO track VALUES(1, 'track 1', 2) } |
| } {} |
| |
| #------------------------------------------------------------------------- |
| # Attempting to delete a row from the 'artist' table while there are |
| # dependent rows in the track table also fails. |
| # |
| # EVIDENCE-OF: R-24401-52400 as will attempting to delete a row from the |
| # artist table when there exist dependent rows in the track table |
| # |
| do_test e_fkey-9.1 { |
| catchsql { DELETE FROM artist WHERE artistid = 2 } |
| } {1 {foreign key constraint failed}} |
| do_test e_fkey-9.2 { |
| execsql { |
| DELETE FROM track WHERE trackartist = 2; |
| DELETE FROM artist WHERE artistid = 2; |
| } |
| } {} |
| |
| #------------------------------------------------------------------------- |
| # If the foreign key column (trackartist) in table 'track' is set to NULL, |
| # there is no requirement for a matching row in the 'artist' table. |
| # |
| # EVIDENCE-OF: R-23980-48859 There is one exception: if the foreign key |
| # column in the track table is NULL, then no corresponding entry in the |
| # artist table is required. |
| # |
| do_test e_fkey-10.1 { |
| execsql { |
| INSERT INTO track VALUES(1, 'track 1', NULL); |
| INSERT INTO track VALUES(2, 'track 2', NULL); |
| } |
| } {} |
| do_test e_fkey-10.2 { |
| execsql { SELECT * FROM artist } |
| } {} |
| do_test e_fkey-10.3 { |
| # Setting the trackid to a non-NULL value fails, of course. |
| catchsql { UPDATE track SET trackartist = 5 WHERE trackid = 1 } |
| } {1 {foreign key constraint failed}} |
| do_test e_fkey-10.4 { |
| execsql { |
| INSERT INTO artist VALUES(5, 'artist 5'); |
| UPDATE track SET trackartist = 5 WHERE trackid = 1; |
| } |
| catchsql { DELETE FROM artist WHERE artistid = 5} |
| } {1 {foreign key constraint failed}} |
| do_test e_fkey-10.5 { |
| execsql { |
| UPDATE track SET trackartist = NULL WHERE trackid = 1; |
| DELETE FROM artist WHERE artistid = 5; |
| } |
| } {} |
| |
| #------------------------------------------------------------------------- |
| # Test that the following is true fo all rows in the track table: |
| # |
| # trackartist IS NULL OR |
| # EXISTS(SELECT 1 FROM artist WHERE artistid=trackartist) |
| # |
| # EVIDENCE-OF: R-52486-21352 Expressed in SQL, this means that for every |
| # row in the track table, the following expression evaluates to true: |
| # trackartist IS NULL OR EXISTS(SELECT 1 FROM artist WHERE |
| # artistid=trackartist) |
| |
| # This procedure executes a test case to check that statement |
| # R-52486-21352 is true after executing the SQL statement passed. |
| # as the second argument. |
| proc test_r52486_21352 {tn sql} { |
| set res [catchsql $sql] |
| set results { |
| {0 {}} |
| {1 {PRIMARY KEY must be unique}} |
| {1 {foreign key constraint failed}} |
| } |
| if {[lsearch $results $res]<0} { |
| error $res |
| } |
| |
| do_test e_fkey-11.$tn { |
| execsql { |
| SELECT count(*) FROM track WHERE NOT ( |
| trackartist IS NULL OR |
| EXISTS(SELECT 1 FROM artist WHERE artistid=trackartist) |
| ) |
| } |
| } {0} |
| } |
| |
| # Execute a series of random INSERT, UPDATE and DELETE operations |
| # (some of which may fail due to FK or PK constraint violations) on |
| # the two tables in the example schema. Test that R-52486-21352 |
| # is true after executing each operation. |
| # |
| set Template { |
| {INSERT INTO track VALUES($t, 'track $t', $a)} |
| {DELETE FROM track WHERE trackid = $t} |
| {UPDATE track SET trackartist = $a WHERE trackid = $t} |
| {INSERT INTO artist VALUES($a, 'artist $a')} |
| {DELETE FROM artist WHERE artistid = $a} |
| {UPDATE artist SET artistid = $a2 WHERE artistid = $a} |
| } |
| for {set i 0} {$i < 500} {incr i} { |
| set a [expr int(rand()*10)] |
| set a2 [expr int(rand()*10)] |
| set t [expr int(rand()*50)] |
| set sql [subst [lindex $Template [expr int(rand()*6)]]] |
| |
| test_r52486_21352 $i $sql |
| } |
| |
| #------------------------------------------------------------------------- |
| # Check that a NOT NULL constraint can be added to the example schema |
| # to prohibit NULL child keys from being inserted. |
| # |
| # EVIDENCE-OF: R-42412-59321 Tip: If the application requires a stricter |
| # relationship between artist and track, where NULL values are not |
| # permitted in the trackartist column, simply add the appropriate "NOT |
| # NULL" constraint to the schema. |
| # |
| drop_all_tables |
| do_test e_fkey-12.1 { |
| execsql { |
| CREATE TABLE artist( |
| artistid INTEGER PRIMARY KEY, |
| artistname TEXT |
| ); |
| CREATE TABLE track( |
| trackid INTEGER, |
| trackname TEXT, |
| trackartist INTEGER NOT NULL, |
| FOREIGN KEY(trackartist) REFERENCES artist(artistid) |
| ); |
| } |
| } {} |
| do_test e_fkey-12.2 { |
| catchsql { INSERT INTO track VALUES(14, 'Mr. Bojangles', NULL) } |
| } {1 {track.trackartist may not be NULL}} |
| |
| #------------------------------------------------------------------------- |
| # EVIDENCE-OF: R-16127-35442 |
| # |
| # Test an example from foreignkeys.html. |
| # |
| drop_all_tables |
| do_test e_fkey-13.1 { |
| execsql { |
| CREATE TABLE artist( |
| artistid INTEGER PRIMARY KEY, |
| artistname TEXT |
| ); |
| CREATE TABLE track( |
| trackid INTEGER, |
| trackname TEXT, |
| trackartist INTEGER, |
| FOREIGN KEY(trackartist) REFERENCES artist(artistid) |
| ); |
| INSERT INTO artist VALUES(1, 'Dean Martin'); |
| INSERT INTO artist VALUES(2, 'Frank Sinatra'); |
| INSERT INTO track VALUES(11, 'That''s Amore', 1); |
| INSERT INTO track VALUES(12, 'Christmas Blues', 1); |
| INSERT INTO track VALUES(13, 'My Way', 2); |
| } |
| } {} |
| do_test e_fkey-13.2 { |
| catchsql { INSERT INTO track VALUES(14, 'Mr. Bojangles', 3) } |
| } {1 {foreign key constraint failed}} |
| do_test e_fkey-13.3 { |
| execsql { INSERT INTO track VALUES(14, 'Mr. Bojangles', NULL) } |
| } {} |
| do_test e_fkey-13.4 { |
| catchsql { |
| UPDATE track SET trackartist = 3 WHERE trackname = 'Mr. Bojangles'; |
| } |
| } {1 {foreign key constraint failed}} |
| do_test e_fkey-13.5 { |
| execsql { |
| INSERT INTO artist VALUES(3, 'Sammy Davis Jr.'); |
| UPDATE track SET trackartist = 3 WHERE trackname = 'Mr. Bojangles'; |
| INSERT INTO track VALUES(15, 'Boogie Woogie', 3); |
| } |
| } {} |
| |
| #------------------------------------------------------------------------- |
| # EVIDENCE-OF: R-15958-50233 |
| # |
| # Test the second example from the first section of foreignkeys.html. |
| # |
| do_test e_fkey-14.1 { |
| catchsql { |
| DELETE FROM artist WHERE artistname = 'Frank Sinatra'; |
| } |
| } {1 {foreign key constraint failed}} |
| do_test e_fkey-14.2 { |
| execsql { |
| DELETE FROM track WHERE trackname = 'My Way'; |
| DELETE FROM artist WHERE artistname = 'Frank Sinatra'; |
| } |
| } {} |
| do_test e_fkey-14.3 { |
| catchsql { |
| UPDATE artist SET artistid=4 WHERE artistname = 'Dean Martin'; |
| } |
| } {1 {foreign key constraint failed}} |
| do_test e_fkey-14.4 { |
| execsql { |
| DELETE FROM track WHERE trackname IN('That''s Amore', 'Christmas Blues'); |
| UPDATE artist SET artistid=4 WHERE artistname = 'Dean Martin'; |
| } |
| } {} |
| |
| |
| #------------------------------------------------------------------------- |
| # EVIDENCE-OF: R-56032-24923 The foreign key constraint is satisfied if |
| # for each row in the child table either one or more of the child key |
| # columns are NULL, or there exists a row in the parent table for which |
| # each parent key column contains a value equal to the value in its |
| # associated child key column. |
| # |
| # Test also that the usual comparison rules are used when testing if there |
| # is a matching row in the parent table of a foreign key constraint. |
| # |
| # EVIDENCE-OF: R-57765-12380 In the above paragraph, the term "equal" |
| # means equal when values are compared using the rules specified here. |
| # |
| drop_all_tables |
| do_test e_fkey-15.1 { |
| execsql { |
| CREATE TABLE par(p PRIMARY KEY); |
| CREATE TABLE chi(c REFERENCES par); |
| |
| INSERT INTO par VALUES(1); |
| INSERT INTO par VALUES('1'); |
| INSERT INTO par VALUES(X'31'); |
| SELECT typeof(p) FROM par; |
| } |
| } {integer text blob} |
| |
| proc test_efkey_45 {tn isError sql} { |
| do_test e_fkey-15.$tn.1 " |
| catchsql {$sql} |
| " [lindex {{0 {}} {1 {foreign key constraint failed}}} $isError] |
| |
| do_test e_fkey-15.$tn.2 { |
| execsql { |
| SELECT * FROM chi WHERE c IS NOT NULL AND c NOT IN (SELECT p FROM par) |
| } |
| } {} |
| } |
| |
| test_efkey_45 1 0 "INSERT INTO chi VALUES(1)" |
| test_efkey_45 2 1 "INSERT INTO chi VALUES('1.0')" |
| test_efkey_45 3 0 "INSERT INTO chi VALUES('1')" |
| test_efkey_45 4 1 "DELETE FROM par WHERE p = '1'" |
| test_efkey_45 5 0 "DELETE FROM chi WHERE c = '1'" |
| test_efkey_45 6 0 "DELETE FROM par WHERE p = '1'" |
| test_efkey_45 7 1 "INSERT INTO chi VALUES('1')" |
| test_efkey_45 8 0 "INSERT INTO chi VALUES(X'31')" |
| test_efkey_45 9 1 "INSERT INTO chi VALUES(X'32')" |
| |
| #------------------------------------------------------------------------- |
| # Specifically, test that when comparing child and parent key values the |
| # default collation sequence of the parent key column is used. |
| # |
| # EVIDENCE-OF: R-15796-47513 When comparing text values, the collating |
| # sequence associated with the parent key column is always used. |
| # |
| drop_all_tables |
| do_test e_fkey-16.1 { |
| execsql { |
| CREATE TABLE t1(a COLLATE nocase PRIMARY KEY); |
| CREATE TABLE t2(b REFERENCES t1); |
| } |
| } {} |
| do_test e_fkey-16.2 { |
| execsql { |
| INSERT INTO t1 VALUES('oNe'); |
| INSERT INTO t2 VALUES('one'); |
| INSERT INTO t2 VALUES('ONE'); |
| UPDATE t2 SET b = 'OnE'; |
| UPDATE t1 SET a = 'ONE'; |
| } |
| } {} |
| do_test e_fkey-16.3 { |
| catchsql { UPDATE t2 SET b = 'two' WHERE rowid = 1 } |
| } {1 {foreign key constraint failed}} |
| do_test e_fkey-16.4 { |
| catchsql { DELETE FROM t1 WHERE rowid = 1 } |
| } {1 {foreign key constraint failed}} |
| |
| #------------------------------------------------------------------------- |
| # Specifically, test that when comparing child and parent key values the |
| # affinity of the parent key column is applied to the child key value |
| # before the comparison takes place. |
| # |
| # EVIDENCE-OF: R-04240-13860 When comparing values, if the parent key |
| # column has an affinity, then that affinity is applied to the child key |
| # value before the comparison is performed. |
| # |
| drop_all_tables |
| do_test e_fkey-17.1 { |
| execsql { |
| CREATE TABLE t1(a NUMERIC PRIMARY KEY); |
| CREATE TABLE t2(b TEXT REFERENCES t1); |
| } |
| } {} |
| do_test e_fkey-17.2 { |
| execsql { |
| INSERT INTO t1 VALUES(1); |
| INSERT INTO t1 VALUES(2); |
| INSERT INTO t1 VALUES('three'); |
| INSERT INTO t2 VALUES('2.0'); |
| SELECT b, typeof(b) FROM t2; |
| } |
| } {2.0 text} |
| do_test e_fkey-17.3 { |
| execsql { SELECT typeof(a) FROM t1 } |
| } {integer integer text} |
| do_test e_fkey-17.4 { |
| catchsql { DELETE FROM t1 WHERE rowid = 2 } |
| } {1 {foreign key constraint failed}} |
| |
| ########################################################################### |
| ### SECTION 3: Required and Suggested Database Indexes |
| ########################################################################### |
| |
| #------------------------------------------------------------------------- |
| # A parent key must be either a PRIMARY KEY, subject to a UNIQUE |
| # constraint, or have a UNIQUE index created on it. |
| # |
| # EVIDENCE-OF: R-13435-26311 Usually, the parent key of a foreign key |
| # constraint is the primary key of the parent table. If they are not the |
| # primary key, then the parent key columns must be collectively subject |
| # to a UNIQUE constraint or have a UNIQUE index. |
| # |
| # Also test that if a parent key is not subject to a PRIMARY KEY or UNIQUE |
| # constraint, but does have a UNIQUE index created on it, then the UNIQUE index |
| # must use the default collation sequences associated with the parent key |
| # columns. |
| # |
| # EVIDENCE-OF: R-00376-39212 If the parent key columns have a UNIQUE |
| # index, then that index must use the collation sequences that are |
| # specified in the CREATE TABLE statement for the parent table. |
| # |
| drop_all_tables |
| do_test e_fkey-18.1 { |
| execsql { |
| CREATE TABLE t2(a REFERENCES t1(x)); |
| } |
| } {} |
| proc test_efkey_57 {tn isError sql} { |
| catchsql { DROP TABLE t1 } |
| execsql $sql |
| do_test e_fkey-18.$tn { |
| catchsql { INSERT INTO t2 VALUES(NULL) } |
| } [lindex {{0 {}} {1 {foreign key mismatch}}} $isError] |
| } |
| test_efkey_57 2 0 { CREATE TABLE t1(x PRIMARY KEY) } |
| test_efkey_57 3 0 { CREATE TABLE t1(x UNIQUE) } |
| test_efkey_57 4 0 { CREATE TABLE t1(x); CREATE UNIQUE INDEX t1i ON t1(x) } |
| test_efkey_57 5 1 { |
| CREATE TABLE t1(x); |
| CREATE UNIQUE INDEX t1i ON t1(x COLLATE nocase); |
| } |
| test_efkey_57 6 1 { CREATE TABLE t1(x) } |
| test_efkey_57 7 1 { CREATE TABLE t1(x, y, PRIMARY KEY(x, y)) } |
| test_efkey_57 8 1 { CREATE TABLE t1(x, y, UNIQUE(x, y)) } |
| test_efkey_57 9 1 { |
| CREATE TABLE t1(x, y); |
| CREATE UNIQUE INDEX t1i ON t1(x, y); |
| } |
| |
| |
| #------------------------------------------------------------------------- |
| # This block tests an example in foreignkeys.html. Several testable |
| # statements refer to this example, as follows |
| # |
| # EVIDENCE-OF: R-27484-01467 |
| # |
| # FK Constraints on child1, child2 and child3 are Ok. |
| # |
| # Problem with FK on child4: |
| # |
| # EVIDENCE-OF: R-51039-44840 The foreign key declared as part of table |
| # child4 is an error because even though the parent key column is |
| # indexed, the index is not UNIQUE. |
| # |
| # Problem with FK on child5: |
| # |
| # EVIDENCE-OF: R-01060-48788 The foreign key for table child5 is an |
| # error because even though the parent key column has a unique index, |
| # the index uses a different collating sequence. |
| # |
| # Problem with FK on child6 and child7: |
| # |
| # EVIDENCE-OF: R-63088-37469 Tables child6 and child7 are incorrect |
| # because while both have UNIQUE indices on their parent keys, the keys |
| # are not an exact match to the columns of a single UNIQUE index. |
| # |
| drop_all_tables |
| do_test e_fkey-19.1 { |
| execsql { |
| CREATE TABLE parent(a PRIMARY KEY, b UNIQUE, c, d, e, f); |
| CREATE UNIQUE INDEX i1 ON parent(c, d); |
| CREATE INDEX i2 ON parent(e); |
| CREATE UNIQUE INDEX i3 ON parent(f COLLATE nocase); |
| |
| CREATE TABLE child1(f, g REFERENCES parent(a)); -- Ok |
| CREATE TABLE child2(h, i REFERENCES parent(b)); -- Ok |
| CREATE TABLE child3(j, k, FOREIGN KEY(j, k) REFERENCES parent(c, d)); -- Ok |
| CREATE TABLE child4(l, m REFERENCES parent(e)); -- Err |
| CREATE TABLE child5(n, o REFERENCES parent(f)); -- Err |
| CREATE TABLE child6(p, q, FOREIGN KEY(p,q) REFERENCES parent(b, c)); -- Err |
| CREATE TABLE child7(r REFERENCES parent(c)); -- Err |
| } |
| } {} |
| do_test e_fkey-19.2 { |
| execsql { |
| INSERT INTO parent VALUES(1, 2, 3, 4, 5, 6); |
| INSERT INTO child1 VALUES('xxx', 1); |
| INSERT INTO child2 VALUES('xxx', 2); |
| INSERT INTO child3 VALUES(3, 4); |
| } |
| } {} |
| do_test e_fkey-19.2 { |
| catchsql { INSERT INTO child4 VALUES('xxx', 5) } |
| } {1 {foreign key mismatch}} |
| do_test e_fkey-19.3 { |
| catchsql { INSERT INTO child5 VALUES('xxx', 6) } |
| } {1 {foreign key mismatch}} |
| do_test e_fkey-19.4 { |
| catchsql { INSERT INTO child6 VALUES(2, 3) } |
| } {1 {foreign key mismatch}} |
| do_test e_fkey-19.5 { |
| catchsql { INSERT INTO child7 VALUES(3) } |
| } {1 {foreign key mismatch}} |
| |
| #------------------------------------------------------------------------- |
| # Test errors in the database schema that are detected while preparing |
| # DML statements. The error text for these messages always matches |
| # either "foreign key mismatch" or "no such table*" (using [string match]). |
| # |
| # EVIDENCE-OF: R-45488-08504 If the database schema contains foreign key |
| # errors that require looking at more than one table definition to |
| # identify, then those errors are not detected when the tables are |
| # created. |
| # |
| # EVIDENCE-OF: R-48391-38472 Instead, such errors prevent the |
| # application from preparing SQL statements that modify the content of |
| # the child or parent tables in ways that use the foreign keys. |
| # |
| # EVIDENCE-OF: R-03108-63659 The English language error message for |
| # foreign key DML errors is usually "foreign key mismatch" but can also |
| # be "no such table" if the parent table does not exist. |
| # |
| # EVIDENCE-OF: R-60781-26576 Foreign key DML errors are may be reported |
| # if: The parent table does not exist, or The parent key columns named |
| # in the foreign key constraint do not exist, or The parent key columns |
| # named in the foreign key constraint are not the primary key of the |
| # parent table and are not subject to a unique constraint using |
| # collating sequence specified in the CREATE TABLE, or The child table |
| # references the primary key of the parent without specifying the |
| # primary key columns and the number of primary key columns in the |
| # parent do not match the number of child key columns. |
| # |
| do_test e_fkey-20.1 { |
| execsql { |
| CREATE TABLE c1(c REFERENCES nosuchtable, d); |
| |
| CREATE TABLE p2(a, b, UNIQUE(a, b)); |
| CREATE TABLE c2(c, d, FOREIGN KEY(c, d) REFERENCES p2(a, x)); |
| |
| CREATE TABLE p3(a PRIMARY KEY, b); |
| CREATE TABLE c3(c REFERENCES p3(b), d); |
| |
| CREATE TABLE p4(a PRIMARY KEY, b); |
| CREATE UNIQUE INDEX p4i ON p4(b COLLATE nocase); |
| CREATE TABLE c4(c REFERENCES p4(b), d); |
| |
| CREATE TABLE p5(a PRIMARY KEY, b COLLATE nocase); |
| CREATE UNIQUE INDEX p5i ON p5(b COLLATE binary); |
| CREATE TABLE c5(c REFERENCES p5(b), d); |
| |
| CREATE TABLE p6(a PRIMARY KEY, b); |
| CREATE TABLE c6(c, d, FOREIGN KEY(c, d) REFERENCES p6); |
| |
| CREATE TABLE p7(a, b, PRIMARY KEY(a, b)); |
| CREATE TABLE c7(c, d REFERENCES p7); |
| } |
| } {} |
| |
| foreach {tn tbl ptbl err} { |
| 2 c1 {} "no such table: main.nosuchtable" |
| 3 c2 p2 "foreign key mismatch" |
| 4 c3 p3 "foreign key mismatch" |
| 5 c4 p4 "foreign key mismatch" |
| 6 c5 p5 "foreign key mismatch" |
| 7 c6 p6 "foreign key mismatch" |
| 8 c7 p7 "foreign key mismatch" |
| } { |
| do_test e_fkey-20.$tn.1 { |
| catchsql "INSERT INTO $tbl VALUES('a', 'b')" |
| } [list 1 $err] |
| do_test e_fkey-20.$tn.2 { |
| catchsql "UPDATE $tbl SET c = ?, d = ?" |
| } [list 1 $err] |
| do_test e_fkey-20.$tn.3 { |
| catchsql "INSERT INTO $tbl SELECT ?, ?" |
| } [list 1 $err] |
| |
| if {$ptbl ne ""} { |
| do_test e_fkey-20.$tn.4 { |
| catchsql "DELETE FROM $ptbl" |
| } [list 1 $err] |
| do_test e_fkey-20.$tn.5 { |
| catchsql "UPDATE $ptbl SET a = ?, b = ?" |
| } [list 1 $err] |
| do_test e_fkey-20.$tn.6 { |
| catchsql "INSERT INTO $ptbl SELECT ?, ?" |
| } [list 1 $err] |
| } |
| } |
| |
| #------------------------------------------------------------------------- |
| # EVIDENCE-OF: R-19353-43643 |
| # |
| # Test the example of foreign key mismatch errors caused by implicitly |
| # mapping a child key to the primary key of the parent table when the |
| # child key consists of a different number of columns to that primary key. |
| # |
| drop_all_tables |
| do_test e_fkey-21.1 { |
| execsql { |
| CREATE TABLE parent2(a, b, PRIMARY KEY(a,b)); |
| |
| CREATE TABLE child8(x, y, FOREIGN KEY(x,y) REFERENCES parent2); -- Ok |
| CREATE TABLE child9(x REFERENCES parent2); -- Err |
| CREATE TABLE child10(x,y,z, FOREIGN KEY(x,y,z) REFERENCES parent2); -- Err |
| } |
| } {} |
| do_test e_fkey-21.2 { |
| execsql { |
| INSERT INTO parent2 VALUES('I', 'II'); |
| INSERT INTO child8 VALUES('I', 'II'); |
| } |
| } {} |
| do_test e_fkey-21.3 { |
| catchsql { INSERT INTO child9 VALUES('I') } |
| } {1 {foreign key mismatch}} |
| do_test e_fkey-21.4 { |
| catchsql { INSERT INTO child9 VALUES('II') } |
| } {1 {foreign key mismatch}} |
| do_test e_fkey-21.5 { |
| catchsql { INSERT INTO child9 VALUES(NULL) } |
| } {1 {foreign key mismatch}} |
| do_test e_fkey-21.6 { |
| catchsql { INSERT INTO child10 VALUES('I', 'II', 'III') } |
| } {1 {foreign key mismatch}} |
| do_test e_fkey-21.7 { |
| catchsql { INSERT INTO child10 VALUES(1, 2, 3) } |
| } {1 {foreign key mismatch}} |
| do_test e_fkey-21.8 { |
| catchsql { INSERT INTO child10 VALUES(NULL, NULL, NULL) } |
| } {1 {foreign key mismatch}} |
| |
| #------------------------------------------------------------------------- |
| # Test errors that are reported when creating the child table. |
| # Specifically: |
| # |
| # * different number of child and parent key columns, and |
| # * child columns that do not exist. |
| # |
| # EVIDENCE-OF: R-23682-59820 By contrast, if foreign key errors can be |
| # recognized simply by looking at the definition of the child table and |
| # without having to consult the parent table definition, then the CREATE |
| # TABLE statement for the child table fails. |
| # |
| # These errors are reported whether or not FK support is enabled. |
| # |
| # EVIDENCE-OF: R-33883-28833 Foreign key DDL errors are reported |
| # regardless of whether or not foreign key constraints are enabled when |
| # the table is created. |
| # |
| drop_all_tables |
| foreach fk [list OFF ON] { |
| execsql "PRAGMA foreign_keys = $fk" |
| set i 0 |
| foreach {sql error} { |
| "CREATE TABLE child1(a, b, FOREIGN KEY(a, b) REFERENCES p(c))" |
| {number of columns in foreign key does not match the number of columns in the referenced table} |
| "CREATE TABLE child2(a, b, FOREIGN KEY(a, b) REFERENCES p(c, d, e))" |
| {number of columns in foreign key does not match the number of columns in the referenced table} |
| "CREATE TABLE child2(a, b, FOREIGN KEY(a, c) REFERENCES p(c, d))" |
| {unknown column "c" in foreign key definition} |
| "CREATE TABLE child2(a, b, FOREIGN KEY(c, b) REFERENCES p(c, d))" |
| {unknown column "c" in foreign key definition} |
| } { |
| do_test e_fkey-22.$fk.[incr i] { |
| catchsql $sql |
| } [list 1 $error] |
| } |
| } |
| |
| #------------------------------------------------------------------------- |
| # Test that a REFERENCING clause that does not specify parent key columns |
| # implicitly maps to the primary key of the parent table. |
| # |
| # EVIDENCE-OF: R-43879-08025 Attaching a "REFERENCES <parent-table>" |
| # clause to a column definition creates a foreign |
| # key constraint that maps the column to the primary key of |
| # <parent-table>. |
| # |
| do_test e_fkey-23.1 { |
| execsql { |
| CREATE TABLE p1(a, b, PRIMARY KEY(a, b)); |
| CREATE TABLE p2(a, b PRIMARY KEY); |
| CREATE TABLE c1(c, d, FOREIGN KEY(c, d) REFERENCES p1); |
| CREATE TABLE c2(a, b REFERENCES p2); |
| } |
| } {} |
| proc test_efkey_60 {tn isError sql} { |
| do_test e_fkey-23.$tn " |
| catchsql {$sql} |
| " [lindex {{0 {}} {1 {foreign key constraint failed}}} $isError] |
| } |
| |
| test_efkey_60 2 1 "INSERT INTO c1 VALUES(239, 231)" |
| test_efkey_60 3 0 "INSERT INTO p1 VALUES(239, 231)" |
| test_efkey_60 4 0 "INSERT INTO c1 VALUES(239, 231)" |
| test_efkey_60 5 1 "INSERT INTO c2 VALUES(239, 231)" |
| test_efkey_60 6 0 "INSERT INTO p2 VALUES(239, 231)" |
| test_efkey_60 7 0 "INSERT INTO c2 VALUES(239, 231)" |
| |
| #------------------------------------------------------------------------- |
| # Test that an index on on the child key columns of an FK constraint |
| # is optional. |
| # |
| # EVIDENCE-OF: R-15417-28014 Indices are not required for child key |
| # columns |
| # |
| # Also test that if an index is created on the child key columns, it does |
| # not make a difference whether or not it is a UNIQUE index. |
| # |
| # EVIDENCE-OF: R-15741-50893 The child key index does not have to be |
| # (and usually will not be) a UNIQUE index. |
| # |
| drop_all_tables |
| do_test e_fkey-24.1 { |
| execsql { |
| CREATE TABLE parent(x, y, UNIQUE(y, x)); |
| CREATE TABLE c1(a, b, FOREIGN KEY(a, b) REFERENCES parent(x, y)); |
| CREATE TABLE c2(a, b, FOREIGN KEY(a, b) REFERENCES parent(x, y)); |
| CREATE TABLE c3(a, b, FOREIGN KEY(a, b) REFERENCES parent(x, y)); |
| CREATE INDEX c2i ON c2(a, b); |
| CREATE UNIQUE INDEX c3i ON c2(b, a); |
| } |
| } {} |
| proc test_efkey_61 {tn isError sql} { |
| do_test e_fkey-24.$tn " |
| catchsql {$sql} |
| " [lindex {{0 {}} {1 {foreign key constraint failed}}} $isError] |
| } |
| foreach {tn c} [list 2 c1 3 c2 4 c3] { |
| test_efkey_61 $tn.1 1 "INSERT INTO $c VALUES(1, 2)" |
| test_efkey_61 $tn.2 0 "INSERT INTO parent VALUES(1, 2)" |
| test_efkey_61 $tn.3 0 "INSERT INTO $c VALUES(1, 2)" |
| |
| execsql "DELETE FROM $c ; DELETE FROM parent" |
| } |
| |
| #------------------------------------------------------------------------- |
| # EVIDENCE-OF: R-00279-52283 |
| # |
| # Test an example showing that when a row is deleted from the parent |
| # table, the child table is queried for orphaned rows as follows: |
| # |
| # SELECT rowid FROM track WHERE trackartist = ? |
| # |
| # EVIDENCE-OF: R-23302-30956 If this SELECT returns any rows at all, |
| # then SQLite concludes that deleting the row from the parent table |
| # would violate the foreign key constraint and returns an error. |
| # |
| do_test e_fkey-25.1 { |
| execsql { |
| CREATE TABLE artist( |
| artistid INTEGER PRIMARY KEY, |
| artistname TEXT |
| ); |
| CREATE TABLE track( |
| trackid INTEGER, |
| trackname TEXT, |
| trackartist INTEGER, |
| FOREIGN KEY(trackartist) REFERENCES artist(artistid) |
| ); |
| } |
| } {} |
| do_execsql_test e_fkey-25.2 { |
| PRAGMA foreign_keys = OFF; |
| EXPLAIN QUERY PLAN DELETE FROM artist WHERE 1; |
| EXPLAIN QUERY PLAN SELECT rowid FROM track WHERE trackartist = ?; |
| } { |
| 0 0 0 {SCAN TABLE artist (~1000000 rows)} |
| 0 0 0 {SCAN TABLE track (~100000 rows)} |
| } |
| do_execsql_test e_fkey-25.3 { |
| PRAGMA foreign_keys = ON; |
| EXPLAIN QUERY PLAN DELETE FROM artist WHERE 1; |
| } { |
| 0 0 0 {SCAN TABLE artist (~1000000 rows)} |
| 0 0 0 {SCAN TABLE track (~100000 rows)} |
| } |
| do_test e_fkey-25.4 { |
| execsql { |
| INSERT INTO artist VALUES(5, 'artist 5'); |
| INSERT INTO artist VALUES(6, 'artist 6'); |
| INSERT INTO artist VALUES(7, 'artist 7'); |
| INSERT INTO track VALUES(1, 'track 1', 5); |
| INSERT INTO track VALUES(2, 'track 2', 6); |
| } |
| } {} |
| |
| do_test e_fkey-25.5 { |
| concat \ |
| [execsql { SELECT rowid FROM track WHERE trackartist = 5 }] \ |
| [catchsql { DELETE FROM artist WHERE artistid = 5 }] |
| } {1 1 {foreign key constraint failed}} |
| |
| do_test e_fkey-25.6 { |
| concat \ |
| [execsql { SELECT rowid FROM track WHERE trackartist = 7 }] \ |
| [catchsql { DELETE FROM artist WHERE artistid = 7 }] |
| } {0 {}} |
| |
| do_test e_fkey-25.7 { |
| concat \ |
| [execsql { SELECT rowid FROM track WHERE trackartist = 6 }] \ |
| [catchsql { DELETE FROM artist WHERE artistid = 6 }] |
| } {2 1 {foreign key constraint failed}} |
| |
| #------------------------------------------------------------------------- |
| # EVIDENCE-OF: R-47936-10044 Or, more generally: |
| # SELECT rowid FROM <child-table> WHERE <child-key> = :parent_key_value |
| # |
| # Test that when a row is deleted from the parent table of an FK |
| # constraint, the child table is queried for orphaned rows. The |
| # query is equivalent to: |
| # |
| # SELECT rowid FROM <child-table> WHERE <child-key> = :parent_key_value |
| # |
| # Also test that when a row is inserted into the parent table, or when the |
| # parent key values of an existing row are modified, a query equivalent |
| # to the following is planned. In some cases it is not executed, but it |
| # is always planned. |
| # |
| # SELECT rowid FROM <child-table> WHERE <child-key> = :parent_key_value |
| # |
| # EVIDENCE-OF: R-61616-46700 Similar queries may be run if the content |
| # of the parent key is modified or a new row is inserted into the parent |
| # table. |
| # |
| # |
| drop_all_tables |
| do_test e_fkey-26.1 { |
| execsql { CREATE TABLE parent(x, y, UNIQUE(y, x)) } |
| } {} |
| foreach {tn sql} { |
| 2 { |
| CREATE TABLE child(a, b, FOREIGN KEY(a, b) REFERENCES parent(x, y)) |
| } |
| 3 { |
| CREATE TABLE child(a, b, FOREIGN KEY(a, b) REFERENCES parent(x, y)); |
| CREATE INDEX childi ON child(a, b); |
| } |
| 4 { |
| CREATE TABLE child(a, b, FOREIGN KEY(a, b) REFERENCES parent(x, y)); |
| CREATE UNIQUE INDEX childi ON child(b, a); |
| } |
| } { |
| execsql $sql |
| |
| execsql {PRAGMA foreign_keys = OFF} |
| set delete [concat \ |
| [eqp "DELETE FROM parent WHERE 1"] \ |
| [eqp "SELECT rowid FROM child WHERE a = ? AND b = ?"] |
| ] |
| set update [concat \ |
| [eqp "UPDATE parent SET x=?, y=?"] \ |
| [eqp "SELECT rowid FROM child WHERE a = ? AND b = ?"] \ |
| [eqp "SELECT rowid FROM child WHERE a = ? AND b = ?"] |
| ] |
| execsql {PRAGMA foreign_keys = ON} |
| |
| do_test e_fkey-26.$tn.1 { eqp "DELETE FROM parent WHERE 1" } $delete |
| do_test e_fkey-26.$tn.2 { eqp "UPDATE parent set x=?, y=?" } $update |
| |
| execsql {DROP TABLE child} |
| } |
| |
| #------------------------------------------------------------------------- |
| # EVIDENCE-OF: R-14553-34013 |
| # |
| # Test the example schema at the end of section 3. Also test that is |
| # is "efficient". In this case "efficient" means that foreign key |
| # related operations on the parent table do not provoke linear scans. |
| # |
| drop_all_tables |
| do_test e_fkey-27.1 { |
| execsql { |
| CREATE TABLE artist( |
| artistid INTEGER PRIMARY KEY, |
| artistname TEXT |
| ); |
| CREATE TABLE track( |
| trackid INTEGER, |
| trackname TEXT, |
| trackartist INTEGER REFERENCES artist |
| ); |
| CREATE INDEX trackindex ON track(trackartist); |
| } |
| } {} |
| do_test e_fkey-27.2 { |
| eqp { INSERT INTO artist VALUES(?, ?) } |
| } {} |
| do_execsql_test e_fkey-27.3 { |
| EXPLAIN QUERY PLAN UPDATE artist SET artistid = ?, artistname = ? |
| } { |
| 0 0 0 {SCAN TABLE artist (~1000000 rows)} |
| 0 0 0 {SEARCH TABLE track USING COVERING INDEX trackindex (trackartist=?) (~10 rows)} |
| 0 0 0 {SEARCH TABLE track USING COVERING INDEX trackindex (trackartist=?) (~10 rows)} |
| } |
| do_execsql_test e_fkey-27.4 { |
| EXPLAIN QUERY PLAN DELETE FROM artist |
| } { |
| 0 0 0 {SCAN TABLE artist (~1000000 rows)} |
| 0 0 0 {SEARCH TABLE track USING COVERING INDEX trackindex (trackartist=?) (~10 rows)} |
| } |
| |
| |
| ########################################################################### |
| ### SECTION 4.1: Composite Foreign Key Constraints |
| ########################################################################### |
| |
| #------------------------------------------------------------------------- |
| # Check that parent and child keys must have the same number of columns. |
| # |
| # EVIDENCE-OF: R-41062-34431 Parent and child keys must have the same |
| # cardinality. |
| # |
| foreach {tn sql err} { |
| 1 "CREATE TABLE c(jj REFERENCES p(x, y))" |
| {foreign key on jj should reference only one column of table p} |
| |
| 2 "CREATE TABLE c(jj REFERENCES p())" {near ")": syntax error} |
| |
| 3 "CREATE TABLE c(jj, FOREIGN KEY(jj) REFERENCES p(x, y))" |
| {number of columns in foreign key does not match the number of columns in the referenced table} |
| |
| 4 "CREATE TABLE c(jj, FOREIGN KEY(jj) REFERENCES p())" |
| {near ")": syntax error} |
| |
| 5 "CREATE TABLE c(ii, jj, FOREIGN KEY(jj, ii) REFERENCES p())" |
| {near ")": syntax error} |
| |
| 6 "CREATE TABLE c(ii, jj, FOREIGN KEY(jj, ii) REFERENCES p(x))" |
| {number of columns in foreign key does not match the number of columns in the referenced table} |
| |
| 7 "CREATE TABLE c(ii, jj, FOREIGN KEY(jj, ii) REFERENCES p(x,y,z))" |
| {number of columns in foreign key does not match the number of columns in the referenced table} |
| } { |
| drop_all_tables |
| do_test e_fkey-28.$tn [list catchsql $sql] [list 1 $err] |
| } |
| do_test e_fkey-28.8 { |
| drop_all_tables |
| execsql { |
| CREATE TABLE p(x PRIMARY KEY); |
| CREATE TABLE c(a, b, FOREIGN KEY(a,b) REFERENCES p); |
| } |
| catchsql {DELETE FROM p} |
| } {1 {foreign key mismatch}} |
| do_test e_fkey-28.9 { |
| drop_all_tables |
| execsql { |
| CREATE TABLE p(x, y, PRIMARY KEY(x,y)); |
| CREATE TABLE c(a REFERENCES p); |
| } |
| catchsql {DELETE FROM p} |
| } {1 {foreign key mismatch}} |
| |
| |
| #------------------------------------------------------------------------- |
| # EVIDENCE-OF: R-24676-09859 |
| # |
| # Test the example schema in the "Composite Foreign Key Constraints" |
| # section. |
| # |
| do_test e_fkey-29.1 { |
| execsql { |
| CREATE TABLE album( |
| albumartist TEXT, |
| albumname TEXT, |
| albumcover BINARY, |
| PRIMARY KEY(albumartist, albumname) |
| ); |
| CREATE TABLE song( |
| songid INTEGER, |
| songartist TEXT, |
| songalbum TEXT, |
| songname TEXT, |
| FOREIGN KEY(songartist, songalbum) REFERENCES album(albumartist,albumname) |
| ); |
| } |
| } {} |
| |
| do_test e_fkey-29.2 { |
| execsql { |
| INSERT INTO album VALUES('Elvis Presley', 'Elvis'' Christmas Album', NULL); |
| INSERT INTO song VALUES( |
| 1, 'Elvis Presley', 'Elvis'' Christmas Album', 'Here Comes Santa Clause' |
| ); |
| } |
| } {} |
| do_test e_fkey-29.3 { |
| catchsql { |
| INSERT INTO song VALUES(2, 'Elvis Presley', 'Elvis Is Back!', 'Fever'); |
| } |
| } {1 {foreign key constraint failed}} |
| |
| |
| #------------------------------------------------------------------------- |
| # EVIDENCE-OF: R-33626-48418 In SQLite, if any of the child key columns |
| # (in this case songartist and songalbum) are NULL, then there is no |
| # requirement for a corresponding row in the parent table. |
| # |
| do_test e_fkey-30.1 { |
| execsql { |
| INSERT INTO song VALUES(2, 'Elvis Presley', NULL, 'Fever'); |
| INSERT INTO song VALUES(3, NULL, 'Elvis Is Back', 'Soldier Boy'); |
| } |
| } {} |
| |
| ########################################################################### |
| ### SECTION 4.2: Deferred Foreign Key Constraints |
| ########################################################################### |
| |
| #------------------------------------------------------------------------- |
| # Test that if a statement violates an immediate FK constraint, and the |
| # database does not satisfy the FK constraint once all effects of the |
| # statement have been applied, an error is reported and the effects of |
| # the statement rolled back. |
| # |
| # EVIDENCE-OF: R-09323-30470 If a statement modifies the contents of the |
| # database so that an immediate foreign key constraint is in violation |
| # at the conclusion the statement, an exception is thrown and the |
| # effects of the statement are reverted. |
| # |
| drop_all_tables |
| do_test e_fkey-31.1 { |
| execsql { |
| CREATE TABLE king(a, b, PRIMARY KEY(a)); |
| CREATE TABLE prince(c REFERENCES king, d); |
| } |
| } {} |
| |
| do_test e_fkey-31.2 { |
| # Execute a statement that violates the immediate FK constraint. |
| catchsql { INSERT INTO prince VALUES(1, 2) } |
| } {1 {foreign key constraint failed}} |
| |
| do_test e_fkey-31.3 { |
| # This time, use a trigger to fix the constraint violation before the |
| # statement has finished executing. Then execute the same statement as |
| # in the previous test case. This time, no error. |
| execsql { |
| CREATE TRIGGER kt AFTER INSERT ON prince WHEN |
| NOT EXISTS (SELECT a FROM king WHERE a = new.c) |
| BEGIN |
| INSERT INTO king VALUES(new.c, NULL); |
| END |
| } |
| execsql { INSERT INTO prince VALUES(1, 2) } |
| } {} |
| |
| # Test that operating inside a transaction makes no difference to |
| # immediate constraint violation handling. |
| do_test e_fkey-31.4 { |
| execsql { |
| BEGIN; |
| INSERT INTO prince VALUES(2, 3); |
| DROP TRIGGER kt; |
| } |
| catchsql { INSERT INTO prince VALUES(3, 4) } |
| } {1 {foreign key constraint failed}} |
| do_test e_fkey-31.5 { |
| execsql { |
| COMMIT; |
| SELECT * FROM king; |
| } |
| } {1 {} 2 {}} |
| |
| #------------------------------------------------------------------------- |
| # Test that if a deferred constraint is violated within a transaction, |
| # nothing happens immediately and the database is allowed to persist |
| # in a state that does not satisfy the FK constraint. However attempts |
| # to COMMIT the transaction fail until the FK constraint is satisfied. |
| # |
| # EVIDENCE-OF: R-49178-21358 By contrast, if a statement modifies the |
| # contents of the database such that a deferred foreign key constraint |
| # is violated, the violation is not reported immediately. |
| # |
| # EVIDENCE-OF: R-39692-12488 Deferred foreign key constraints are not |
| # checked until the transaction tries to COMMIT. |
| # |
| # EVIDENCE-OF: R-55147-47664 For as long as the user has an open |
| # transaction, the database is allowed to exist in a state that violates |
| # any number of deferred foreign key constraints. |
| # |
| # EVIDENCE-OF: R-29604-30395 However, COMMIT will fail as long as |
| # foreign key constraints remain in violation. |
| # |
| proc test_efkey_34 {tn isError sql} { |
| do_test e_fkey-32.$tn " |
| catchsql {$sql} |
| " [lindex {{0 {}} {1 {foreign key constraint failed}}} $isError] |
| } |
| drop_all_tables |
| |
| test_efkey_34 1 0 { |
| CREATE TABLE ll(k PRIMARY KEY); |
| CREATE TABLE kk(c REFERENCES ll DEFERRABLE INITIALLY DEFERRED); |
| } |
| test_efkey_34 2 0 "BEGIN" |
| test_efkey_34 3 0 "INSERT INTO kk VALUES(5)" |
| test_efkey_34 4 0 "INSERT INTO kk VALUES(10)" |
| test_efkey_34 5 1 "COMMIT" |
| test_efkey_34 6 0 "INSERT INTO ll VALUES(10)" |
| test_efkey_34 7 1 "COMMIT" |
| test_efkey_34 8 0 "INSERT INTO ll VALUES(5)" |
| test_efkey_34 9 0 "COMMIT" |
| |
| #------------------------------------------------------------------------- |
| # When not running inside a transaction, a deferred constraint is similar |
| # to an immediate constraint (violations are reported immediately). |
| # |
| # EVIDENCE-OF: R-56844-61705 If the current statement is not inside an |
| # explicit transaction (a BEGIN/COMMIT/ROLLBACK block), then an implicit |
| # transaction is committed as soon as the statement has finished |
| # executing. In this case deferred constraints behave the same as |
| # immediate constraints. |
| # |
| drop_all_tables |
| proc test_efkey_35 {tn isError sql} { |
| do_test e_fkey-33.$tn " |
| catchsql {$sql} |
| " [lindex {{0 {}} {1 {foreign key constraint failed}}} $isError] |
| } |
| do_test e_fkey-33.1 { |
| execsql { |
| CREATE TABLE parent(x, y); |
| CREATE UNIQUE INDEX pi ON parent(x, y); |
| CREATE TABLE child(a, b, |
| FOREIGN KEY(a, b) REFERENCES parent(x, y) DEFERRABLE INITIALLY DEFERRED |
| ); |
| } |
| } {} |
| test_efkey_35 2 1 "INSERT INTO child VALUES('x', 'y')" |
| test_efkey_35 3 0 "INSERT INTO parent VALUES('x', 'y')" |
| test_efkey_35 4 0 "INSERT INTO child VALUES('x', 'y')" |
| |
| |
| #------------------------------------------------------------------------- |
| # EVIDENCE-OF: R-12782-61841 |
| # |
| # Test that an FK constraint is made deferred by adding the following |
| # to the definition: |
| # |
| # DEFERRABLE INITIALLY DEFERRED |
| # |
| # EVIDENCE-OF: R-09005-28791 |
| # |
| # Also test that adding any of the following to a foreign key definition |
| # makes the constraint IMMEDIATE: |
| # |
| # NOT DEFERRABLE INITIALLY DEFERRED |
| # NOT DEFERRABLE INITIALLY IMMEDIATE |
| # NOT DEFERRABLE |
| # DEFERRABLE INITIALLY IMMEDIATE |
| # DEFERRABLE |
| # |
| # Foreign keys are IMMEDIATE by default (if there is no DEFERRABLE or NOT |
| # DEFERRABLE clause). |
| # |
| # EVIDENCE-OF: R-35290-16460 Foreign key constraints are immediate by |
| # default. |
| # |
| # EVIDENCE-OF: R-30323-21917 Each foreign key constraint in SQLite is |
| # classified as either immediate or deferred. |
| # |
| drop_all_tables |
| do_test e_fkey-34.1 { |
| execsql { |
| CREATE TABLE parent(x, y, z, PRIMARY KEY(x,y,z)); |
| CREATE TABLE c1(a, b, c, |
| FOREIGN KEY(a, b, c) REFERENCES parent NOT DEFERRABLE INITIALLY DEFERRED |
| ); |
| CREATE TABLE c2(a, b, c, |
| FOREIGN KEY(a, b, c) REFERENCES parent NOT DEFERRABLE INITIALLY IMMEDIATE |
| ); |
| CREATE TABLE c3(a, b, c, |
| FOREIGN KEY(a, b, c) REFERENCES parent NOT DEFERRABLE |
| ); |
| CREATE TABLE c4(a, b, c, |
| FOREIGN KEY(a, b, c) REFERENCES parent DEFERRABLE INITIALLY IMMEDIATE |
| ); |
| CREATE TABLE c5(a, b, c, |
| FOREIGN KEY(a, b, c) REFERENCES parent DEFERRABLE |
| ); |
| CREATE TABLE c6(a, b, c, FOREIGN KEY(a, b, c) REFERENCES parent); |
| |
| -- This FK constraint is the only deferrable one. |
| CREATE TABLE c7(a, b, c, |
| FOREIGN KEY(a, b, c) REFERENCES parent DEFERRABLE INITIALLY DEFERRED |
| ); |
| |
| INSERT INTO parent VALUES('a', 'b', 'c'); |
| INSERT INTO parent VALUES('d', 'e', 'f'); |
| INSERT INTO parent VALUES('g', 'h', 'i'); |
| INSERT INTO parent VALUES('j', 'k', 'l'); |
| INSERT INTO parent VALUES('m', 'n', 'o'); |
| INSERT INTO parent VALUES('p', 'q', 'r'); |
| INSERT INTO parent VALUES('s', 't', 'u'); |
| |
| INSERT INTO c1 VALUES('a', 'b', 'c'); |
| INSERT INTO c2 VALUES('d', 'e', 'f'); |
| INSERT INTO c3 VALUES('g', 'h', 'i'); |
| INSERT INTO c4 VALUES('j', 'k', 'l'); |
| INSERT INTO c5 VALUES('m', 'n', 'o'); |
| INSERT INTO c6 VALUES('p', 'q', 'r'); |
| INSERT INTO c7 VALUES('s', 't', 'u'); |
| } |
| } {} |
| |
| proc test_efkey_29 {tn sql isError} { |
| do_test e_fkey-34.$tn "catchsql {$sql}" [ |
| lindex {{0 {}} {1 {foreign key constraint failed}}} $isError |
| ] |
| } |
| test_efkey_29 2 "BEGIN" 0 |
| test_efkey_29 3 "DELETE FROM parent WHERE x = 'a'" 1 |
| test_efkey_29 4 "DELETE FROM parent WHERE x = 'd'" 1 |
| test_efkey_29 5 "DELETE FROM parent WHERE x = 'g'" 1 |
| test_efkey_29 6 "DELETE FROM parent WHERE x = 'j'" 1 |
| test_efkey_29 7 "DELETE FROM parent WHERE x = 'm'" 1 |
| test_efkey_29 8 "DELETE FROM parent WHERE x = 'p'" 1 |
| test_efkey_29 9 "DELETE FROM parent WHERE x = 's'" 0 |
| test_efkey_29 10 "COMMIT" 1 |
| test_efkey_29 11 "ROLLBACK" 0 |
| |
| test_efkey_29 9 "BEGIN" 0 |
| test_efkey_29 10 "UPDATE parent SET z = 'z' WHERE z = 'c'" 1 |
| test_efkey_29 11 "UPDATE parent SET z = 'z' WHERE z = 'f'" 1 |
| test_efkey_29 12 "UPDATE parent SET z = 'z' WHERE z = 'i'" 1 |
| test_efkey_29 13 "UPDATE parent SET z = 'z' WHERE z = 'l'" 1 |
| test_efkey_29 14 "UPDATE parent SET z = 'z' WHERE z = 'o'" 1 |
| test_efkey_29 15 "UPDATE parent SET z = 'z' WHERE z = 'r'" 1 |
| test_efkey_29 16 "UPDATE parent SET z = 'z' WHERE z = 'u'" 0 |
| test_efkey_29 17 "COMMIT" 1 |
| test_efkey_29 18 "ROLLBACK" 0 |
| |
| test_efkey_29 17 "BEGIN" 0 |
| test_efkey_29 18 "INSERT INTO c1 VALUES(1, 2, 3)" 1 |
| test_efkey_29 19 "INSERT INTO c2 VALUES(1, 2, 3)" 1 |
| test_efkey_29 20 "INSERT INTO c3 VALUES(1, 2, 3)" 1 |
| test_efkey_29 21 "INSERT INTO c4 VALUES(1, 2, 3)" 1 |
| test_efkey_29 22 "INSERT INTO c5 VALUES(1, 2, 3)" 1 |
| test_efkey_29 22 "INSERT INTO c6 VALUES(1, 2, 3)" 1 |
| test_efkey_29 22 "INSERT INTO c7 VALUES(1, 2, 3)" 0 |
| test_efkey_29 23 "COMMIT" 1 |
| test_efkey_29 24 "INSERT INTO parent VALUES(1, 2, 3)" 0 |
| test_efkey_29 25 "COMMIT" 0 |
| |
| test_efkey_29 26 "BEGIN" 0 |
| test_efkey_29 27 "UPDATE c1 SET a = 10" 1 |
| test_efkey_29 28 "UPDATE c2 SET a = 10" 1 |
| test_efkey_29 29 "UPDATE c3 SET a = 10" 1 |
| test_efkey_29 30 "UPDATE c4 SET a = 10" 1 |
| test_efkey_29 31 "UPDATE c5 SET a = 10" 1 |
| test_efkey_29 31 "UPDATE c6 SET a = 10" 1 |
| test_efkey_29 31 "UPDATE c7 SET a = 10" 0 |
| test_efkey_29 32 "COMMIT" 1 |
| test_efkey_29 33 "ROLLBACK" 0 |
| |
| #------------------------------------------------------------------------- |
| # EVIDENCE-OF: R-24499-57071 |
| # |
| # Test an example from foreignkeys.html dealing with a deferred foreign |
| # key constraint. |
| # |
| do_test e_fkey-35.1 { |
| drop_all_tables |
| execsql { |
| CREATE TABLE artist( |
| artistid INTEGER PRIMARY KEY, |
| artistname TEXT |
| ); |
| CREATE TABLE track( |
| trackid INTEGER, |
| trackname TEXT, |
| trackartist INTEGER REFERENCES artist(artistid) DEFERRABLE INITIALLY DEFERRED |
| ); |
| } |
| } {} |
| do_test e_fkey-35.2 { |
| execsql { |
| BEGIN; |
| INSERT INTO track VALUES(1, 'White Christmas', 5); |
| } |
| catchsql COMMIT |
| } {1 {foreign key constraint failed}} |
| do_test e_fkey-35.3 { |
| execsql { |
| INSERT INTO artist VALUES(5, 'Bing Crosby'); |
| COMMIT; |
| } |
| } {} |
| |
| #------------------------------------------------------------------------- |
| # Verify that a nested savepoint may be released without satisfying |
| # deferred foreign key constraints. |
| # |
| # EVIDENCE-OF: R-07223-48323 A nested savepoint transaction may be |
| # RELEASEd while the database is in a state that does not satisfy a |
| # deferred foreign key constraint. |
| # |
| drop_all_tables |
| do_test e_fkey-36.1 { |
| execsql { |
| CREATE TABLE t1(a PRIMARY KEY, |
| b REFERENCES t1 DEFERRABLE INITIALLY DEFERRED |
| ); |
| INSERT INTO t1 VALUES(1, 1); |
| INSERT INTO t1 VALUES(2, 2); |
| INSERT INTO t1 VALUES(3, 3); |
| } |
| } {} |
| do_test e_fkey-36.2 { |
| execsql { |
| BEGIN; |
| SAVEPOINT one; |
| INSERT INTO t1 VALUES(4, 5); |
| RELEASE one; |
| } |
| } {} |
| do_test e_fkey-36.3 { |
| catchsql COMMIT |
| } {1 {foreign key constraint failed}} |
| do_test e_fkey-36.4 { |
| execsql { |
| UPDATE t1 SET a = 5 WHERE a = 4; |
| COMMIT; |
| } |
| } {} |
| |
| |
| #------------------------------------------------------------------------- |
| # Check that a transaction savepoint (an outermost savepoint opened when |
| # the database was in auto-commit mode) cannot be released without |
| # satisfying deferred foreign key constraints. It may be rolled back. |
| # |
| # EVIDENCE-OF: R-44295-13823 A transaction savepoint (a non-nested |
| # savepoint that was opened while there was not currently an open |
| # transaction), on the other hand, is subject to the same restrictions |
| # as a COMMIT - attempting to RELEASE it while the database is in such a |
| # state will fail. |
| # |
| do_test e_fkey-37.1 { |
| execsql { |
| SAVEPOINT one; |
| SAVEPOINT two; |
| INSERT INTO t1 VALUES(6, 7); |
| RELEASE two; |
| } |
| } {} |
| do_test e_fkey-37.2 { |
| catchsql {RELEASE one} |
| } {1 {foreign key constraint failed}} |
| do_test e_fkey-37.3 { |
| execsql { |
| UPDATE t1 SET a = 7 WHERE a = 6; |
| RELEASE one; |
| } |
| } {} |
| do_test e_fkey-37.4 { |
| execsql { |
| SAVEPOINT one; |
| SAVEPOINT two; |
| INSERT INTO t1 VALUES(9, 10); |
| RELEASE two; |
| } |
| } {} |
| do_test e_fkey-37.5 { |
| catchsql {RELEASE one} |
| } {1 {foreign key constraint failed}} |
| do_test e_fkey-37.6 { |
| execsql {ROLLBACK TO one ; RELEASE one} |
| } {} |
| |
| #------------------------------------------------------------------------- |
| # Test that if a COMMIT operation fails due to deferred foreign key |
| # constraints, any nested savepoints remain open. |
| # |
| # EVIDENCE-OF: R-37736-42616 If a COMMIT statement (or the RELEASE of a |
| # transaction SAVEPOINT) fails because the database is currently in a |
| # state that violates a deferred foreign key constraint and there are |
| # currently nested savepoints, the nested savepoints remain open. |
| # |
| do_test e_fkey-38.1 { |
| execsql { |
| DELETE FROM t1 WHERE a>3; |
| SELECT * FROM t1; |
| } |
| } {1 1 2 2 3 3} |
| do_test e_fkey-38.2 { |
| execsql { |
| BEGIN; |
| INSERT INTO t1 VALUES(4, 4); |
| SAVEPOINT one; |
| INSERT INTO t1 VALUES(5, 6); |
| SELECT * FROM t1; |
| } |
| } {1 1 2 2 3 3 4 4 5 6} |
| do_test e_fkey-38.3 { |
| catchsql COMMIT |
| } {1 {foreign key constraint failed}} |
| do_test e_fkey-38.4 { |
| execsql { |
| ROLLBACK TO one; |
| COMMIT; |
| SELECT * FROM t1; |
| } |
| } {1 1 2 2 3 3 4 4} |
| |
| do_test e_fkey-38.5 { |
| execsql { |
| SAVEPOINT a; |
| INSERT INTO t1 VALUES(5, 5); |
| SAVEPOINT b; |
| INSERT INTO t1 VALUES(6, 7); |
| SAVEPOINT c; |
| INSERT INTO t1 VALUES(7, 8); |
| } |
| } {} |
| do_test e_fkey-38.6 { |
| catchsql {RELEASE a} |
| } {1 {foreign key constraint failed}} |
| do_test e_fkey-38.7 { |
| execsql {ROLLBACK TO c} |
| catchsql {RELEASE a} |
| } {1 {foreign key constraint failed}} |
| do_test e_fkey-38.8 { |
| execsql { |
| ROLLBACK TO b; |
| RELEASE a; |
| SELECT * FROM t1; |
| } |
| } {1 1 2 2 3 3 4 4 5 5} |
| |
| ########################################################################### |
| ### SECTION 4.3: ON DELETE and ON UPDATE Actions |
| ########################################################################### |
| |
| #------------------------------------------------------------------------- |
| # Test that configured ON DELETE and ON UPDATE actions take place when |
| # deleting or modifying rows of the parent table, respectively. |
| # |
| # EVIDENCE-OF: R-48270-44282 Foreign key ON DELETE and ON UPDATE clauses |
| # are used to configure actions that take place when deleting rows from |
| # the parent table (ON DELETE), or modifying the parent key values of |
| # existing rows (ON UPDATE). |
| # |
| # Test that a single FK constraint may have different actions configured |
| # for ON DELETE and ON UPDATE. |
| # |
| # EVIDENCE-OF: R-48124-63225 A single foreign key constraint may have |
| # different actions configured for ON DELETE and ON UPDATE. |
| # |
| do_test e_fkey-39.1 { |
| execsql { |
| CREATE TABLE p(a, b PRIMARY KEY, c); |
| CREATE TABLE c1(d, e, f DEFAULT 'k0' REFERENCES p |
| ON UPDATE SET DEFAULT |
| ON DELETE SET NULL |
| ); |
| |
| INSERT INTO p VALUES(0, 'k0', ''); |
| INSERT INTO p VALUES(1, 'k1', 'I'); |
| INSERT INTO p VALUES(2, 'k2', 'II'); |
| INSERT INTO p VALUES(3, 'k3', 'III'); |
| |
| INSERT INTO c1 VALUES(1, 'xx', 'k1'); |
| INSERT INTO c1 VALUES(2, 'xx', 'k2'); |
| INSERT INTO c1 VALUES(3, 'xx', 'k3'); |
| } |
| } {} |
| do_test e_fkey-39.2 { |
| execsql { |
| UPDATE p SET b = 'k4' WHERE a = 1; |
| SELECT * FROM c1; |
| } |
| } {1 xx k0 2 xx k2 3 xx k3} |
| do_test e_fkey-39.3 { |
| execsql { |
| DELETE FROM p WHERE a = 2; |
| SELECT * FROM c1; |
| } |
| } {1 xx k0 2 xx {} 3 xx k3} |
| do_test e_fkey-39.4 { |
| execsql { |
| CREATE UNIQUE INDEX pi ON p(c); |
| REPLACE INTO p VALUES(5, 'k5', 'III'); |
| SELECT * FROM c1; |
| } |
| } {1 xx k0 2 xx {} 3 xx {}} |
| |
| #------------------------------------------------------------------------- |
| # Each foreign key in the system has an ON UPDATE and ON DELETE action, |
| # either "NO ACTION", "RESTRICT", "SET NULL", "SET DEFAULT" or "CASCADE". |
| # |
| # EVIDENCE-OF: R-33326-45252 The ON DELETE and ON UPDATE action |
| # associated with each foreign key in an SQLite database is one of "NO |
| # ACTION", "RESTRICT", "SET NULL", "SET DEFAULT" or "CASCADE". |
| # |
| # If none is specified explicitly, "NO ACTION" is the default. |
| # |
| # EVIDENCE-OF: R-19803-45884 If an action is not explicitly specified, |
| # it defaults to "NO ACTION". |
| # |
| drop_all_tables |
| do_test e_fkey-40.1 { |
| execsql { |
| CREATE TABLE parent(x PRIMARY KEY, y); |
| CREATE TABLE child1(a, |
| b REFERENCES parent ON UPDATE NO ACTION ON DELETE RESTRICT |
| ); |
| CREATE TABLE child2(a, |
| b REFERENCES parent ON UPDATE RESTRICT ON DELETE SET NULL |
| ); |
| CREATE TABLE child3(a, |
| b REFERENCES parent ON UPDATE SET NULL ON DELETE SET DEFAULT |
| ); |
| CREATE TABLE child4(a, |
| b REFERENCES parent ON UPDATE SET DEFAULT ON DELETE CASCADE |
| ); |
| |
| -- Create some foreign keys that use the default action - "NO ACTION" |
| CREATE TABLE child5(a, b REFERENCES parent ON UPDATE CASCADE); |
| CREATE TABLE child6(a, b REFERENCES parent ON DELETE RESTRICT); |
| CREATE TABLE child7(a, b REFERENCES parent ON DELETE NO ACTION); |
| CREATE TABLE child8(a, b REFERENCES parent ON UPDATE NO ACTION); |
| } |
| } {} |
| |
| foreach {tn zTab lRes} { |
| 2 child1 {0 0 parent b {} {NO ACTION} RESTRICT NONE} |
| 3 child2 {0 0 parent b {} RESTRICT {SET NULL} NONE} |
| 4 child3 {0 0 parent b {} {SET NULL} {SET DEFAULT} NONE} |
| 5 child4 {0 0 parent b {} {SET DEFAULT} CASCADE NONE} |
| 6 child5 {0 0 parent b {} CASCADE {NO ACTION} NONE} |
| 7 child6 {0 0 parent b {} {NO ACTION} RESTRICT NONE} |
| 8 child7 {0 0 parent b {} {NO ACTION} {NO ACTION} NONE} |
| 9 child8 {0 0 parent b {} {NO ACTION} {NO ACTION} NONE} |
| } { |
| do_test e_fkey-40.$tn { execsql "PRAGMA foreign_key_list($zTab)" } $lRes |
| } |
| |
| #------------------------------------------------------------------------- |
| # Test that "NO ACTION" means that nothing happens to a child row when |
| # it's parent row is updated or deleted. |
| # |
| # EVIDENCE-OF: R-19971-54976 Configuring "NO ACTION" means just that: |
| # when a parent key is modified or deleted from the database, no special |
| # action is taken. |
| # |
| drop_all_tables |
| do_test e_fkey-41.1 { |
| execsql { |
| CREATE TABLE parent(p1, p2, PRIMARY KEY(p1, p2)); |
| CREATE TABLE child(c1, c2, |
| FOREIGN KEY(c1, c2) REFERENCES parent |
| ON UPDATE NO ACTION |
| ON DELETE NO ACTION |
| DEFERRABLE INITIALLY DEFERRED |
| ); |
| INSERT INTO parent VALUES('j', 'k'); |
| INSERT INTO parent VALUES('l', 'm'); |
| INSERT INTO child VALUES('j', 'k'); |
| INSERT INTO child VALUES('l', 'm'); |
| } |
| } {} |
| do_test e_fkey-41.2 { |
| execsql { |
| BEGIN; |
| UPDATE parent SET p1='k' WHERE p1='j'; |
| DELETE FROM parent WHERE p1='l'; |
| SELECT * FROM child; |
| } |
| } {j k l m} |
| do_test e_fkey-41.3 { |
| catchsql COMMIT |
| } {1 {foreign key constraint failed}} |
| do_test e_fkey-41.4 { |
| execsql ROLLBACK |
| } {} |
| |
| #------------------------------------------------------------------------- |
| # Test that "RESTRICT" means the application is prohibited from deleting |
| # or updating a parent table row when there exists one or more child keys |
| # mapped to it. |
| # |
| # EVIDENCE-OF: R-04272-38653 The "RESTRICT" action means that the |
| # application is prohibited from deleting (for ON DELETE RESTRICT) or |
| # modifying (for ON UPDATE RESTRICT) a parent key when there exists one |
| # or more child keys mapped to it. |
| # |
| drop_all_tables |
| do_test e_fkey-41.1 { |
| execsql { |
| CREATE TABLE parent(p1, p2); |
| CREATE UNIQUE INDEX parent_i ON parent(p1, p2); |
| CREATE TABLE child1(c1, c2, |
| FOREIGN KEY(c2, c1) REFERENCES parent(p1, p2) ON DELETE RESTRICT |
| ); |
| CREATE TABLE child2(c1, c2, |
| FOREIGN KEY(c2, c1) REFERENCES parent(p1, p2) ON UPDATE RESTRICT |
| ); |
| } |
| } {} |
| do_test e_fkey-41.2 { |
| execsql { |
| INSERT INTO parent VALUES('a', 'b'); |
| INSERT INTO parent VALUES('c', 'd'); |
| INSERT INTO child1 VALUES('b', 'a'); |
| INSERT INTO child2 VALUES('d', 'c'); |
| } |
| } {} |
| do_test e_fkey-41.3 { |
| catchsql { DELETE FROM parent WHERE p1 = 'a' } |
| } {1 {foreign key constraint failed}} |
| do_test e_fkey-41.4 { |
| catchsql { UPDATE parent SET p2 = 'e' WHERE p1 = 'c' } |
| } {1 {foreign key constraint failed}} |
| |
| #------------------------------------------------------------------------- |
| # Test that RESTRICT is slightly different from NO ACTION for IMMEDIATE |
| # constraints, in that it is enforced immediately, not at the end of the |
| # statement. |
| # |
| # EVIDENCE-OF: R-37997-42187 The difference between the effect of a |
| # RESTRICT action and normal foreign key constraint enforcement is that |
| # the RESTRICT action processing happens as soon as the field is updated |
| # - not at the end of the current statement as it would with an |
| # immediate constraint, or at the end of the current transaction as it |
| # would with a deferred constraint. |
| # |
| drop_all_tables |
| do_test e_fkey-42.1 { |
| execsql { |
| CREATE TABLE parent(x PRIMARY KEY); |
| CREATE TABLE child1(c REFERENCES parent ON UPDATE RESTRICT); |
| CREATE TABLE child2(c REFERENCES parent ON UPDATE NO ACTION); |
| |
| INSERT INTO parent VALUES('key1'); |
| INSERT INTO parent VALUES('key2'); |
| INSERT INTO child1 VALUES('key1'); |
| INSERT INTO child2 VALUES('key2'); |
| |
| CREATE TRIGGER parent_t AFTER UPDATE ON parent BEGIN |
| UPDATE child1 set c = new.x WHERE c = old.x; |
| UPDATE child2 set c = new.x WHERE c = old.x; |
| END; |
| } |
| } {} |
| do_test e_fkey-42.2 { |
| catchsql { UPDATE parent SET x = 'key one' WHERE x = 'key1' } |
| } {1 {foreign key constraint failed}} |
| do_test e_fkey-42.3 { |
| execsql { |
| UPDATE parent SET x = 'key two' WHERE x = 'key2'; |
| SELECT * FROM child2; |
| } |
| } {{key two}} |
| |
| drop_all_tables |
| do_test e_fkey-42.4 { |
| execsql { |
| CREATE TABLE parent(x PRIMARY KEY); |
| CREATE TABLE child1(c REFERENCES parent ON DELETE RESTRICT); |
| CREATE TABLE child2(c REFERENCES parent ON DELETE NO ACTION); |
| |
| INSERT INTO parent VALUES('key1'); |
| INSERT INTO parent VALUES('key2'); |
| INSERT INTO child1 VALUES('key1'); |
| INSERT INTO child2 VALUES('key2'); |
| |
| CREATE TRIGGER parent_t AFTER DELETE ON parent BEGIN |
| UPDATE child1 SET c = NULL WHERE c = old.x; |
| UPDATE child2 SET c = NULL WHERE c = old.x; |
| END; |
| } |
| } {} |
| do_test e_fkey-42.5 { |
| catchsql { DELETE FROM parent WHERE x = 'key1' } |
| } {1 {foreign key constraint failed}} |
| do_test e_fkey-42.6 { |
| execsql { |
| DELETE FROM parent WHERE x = 'key2'; |
| SELECT * FROM child2; |
| } |
| } {{}} |
| |
| drop_all_tables |
| do_test e_fkey-42.7 { |
| execsql { |
| CREATE TABLE parent(x PRIMARY KEY); |
| CREATE TABLE child1(c REFERENCES parent ON DELETE RESTRICT); |
| CREATE TABLE child2(c REFERENCES parent ON DELETE NO ACTION); |
| |
| INSERT INTO parent VALUES('key1'); |
| INSERT INTO parent VALUES('key2'); |
| INSERT INTO child1 VALUES('key1'); |
| INSERT INTO child2 VALUES('key2'); |
| } |
| } {} |
| do_test e_fkey-42.8 { |
| catchsql { REPLACE INTO parent VALUES('key1') } |
| } {1 {foreign key constraint failed}} |
| do_test e_fkey-42.9 { |
| execsql { |
| REPLACE INTO parent VALUES('key2'); |
| SELECT * FROM child2; |
| } |
| } {key2} |
| |
| #------------------------------------------------------------------------- |
| # Test that RESTRICT is enforced immediately, even for a DEFERRED constraint. |
| # |
| # EVIDENCE-OF: R-24179-60523 Even if the foreign key constraint it is |
| # attached to is deferred, configuring a RESTRICT action causes SQLite |
| # to return an error immediately if a parent key with dependent child |
| # keys is deleted or modified. |
| # |
| drop_all_tables |
| do_test e_fkey-43.1 { |
| execsql { |
| CREATE TABLE parent(x PRIMARY KEY); |
| CREATE TABLE child1(c REFERENCES parent ON UPDATE RESTRICT |
| DEFERRABLE INITIALLY DEFERRED |
| ); |
| CREATE TABLE child2(c REFERENCES parent ON UPDATE NO ACTION |
| DEFERRABLE INITIALLY DEFERRED |
| ); |
| |
| INSERT INTO parent VALUES('key1'); |
| INSERT INTO parent VALUES('key2'); |
| INSERT INTO child1 VALUES('key1'); |
| INSERT INTO child2 VALUES('key2'); |
| BEGIN; |
| } |
| } {} |
| do_test e_fkey-43.2 { |
| catchsql { UPDATE parent SET x = 'key one' WHERE x = 'key1' } |
| } {1 {foreign key constraint failed}} |
| do_test e_fkey-43.3 { |
| execsql { UPDATE parent SET x = 'key two' WHERE x = 'key2' } |
| } {} |
| do_test e_fkey-43.4 { |
| catchsql COMMIT |
| } {1 {foreign key constraint failed}} |
| do_test e_fkey-43.5 { |
| execsql { |
| UPDATE child2 SET c = 'key two'; |
| COMMIT; |
| } |
| } {} |
| |
| drop_all_tables |
| do_test e_fkey-43.6 { |
| execsql { |
| CREATE TABLE parent(x PRIMARY KEY); |
| CREATE TABLE child1(c REFERENCES parent ON DELETE RESTRICT |
| DEFERRABLE INITIALLY DEFERRED |
| ); |
| CREATE TABLE child2(c REFERENCES parent ON DELETE NO ACTION |
| DEFERRABLE INITIALLY DEFERRED |
| ); |
| |
| INSERT INTO parent VALUES('key1'); |
| INSERT INTO parent VALUES('key2'); |
| INSERT INTO child1 VALUES('key1'); |
| INSERT INTO child2 VALUES('key2'); |
| BEGIN; |
| } |
| } {} |
| do_test e_fkey-43.7 { |
| catchsql { DELETE FROM parent WHERE x = 'key1' } |
| } {1 {foreign key constraint failed}} |
| do_test e_fkey-43.8 { |
| execsql { DELETE FROM parent WHERE x = 'key2' } |
| } {} |
| do_test e_fkey-43.9 { |
| catchsql COMMIT |
| } {1 {foreign key constraint failed}} |
| do_test e_fkey-43.10 { |
| execsql { |
| UPDATE child2 SET c = NULL; |
| COMMIT; |
| } |
| } {} |
| |
| #------------------------------------------------------------------------- |
| # Test SET NULL actions. |
| # |
| # EVIDENCE-OF: R-03353-05327 If the configured action is "SET NULL", |
| # then when a parent key is deleted (for ON DELETE SET NULL) or modified |
| # (for ON UPDATE SET NULL), the child key columns of all rows in the |
| # child table that mapped to the parent key are set to contain SQL NULL |
| # values. |
| # |
| drop_all_tables |
| do_test e_fkey-44.1 { |
| execsql { |
| CREATE TABLE pA(x PRIMARY KEY); |
| CREATE TABLE cA(c REFERENCES pA ON DELETE SET NULL); |
| CREATE TABLE cB(c REFERENCES pA ON UPDATE SET NULL); |
| |
| INSERT INTO pA VALUES(X'ABCD'); |
| INSERT INTO pA VALUES(X'1234'); |
| INSERT INTO cA VALUES(X'ABCD'); |
| INSERT INTO cB VALUES(X'1234'); |
| } |
| } {} |
| do_test e_fkey-44.2 { |
| execsql { |
| DELETE FROM pA WHERE rowid = 1; |
| SELECT quote(x) FROM pA; |
| } |
| } {X'1234'} |
| do_test e_fkey-44.3 { |
| execsql { |
| SELECT quote(c) FROM cA; |
| } |
| } {NULL} |
| do_test e_fkey-44.4 { |
| execsql { |
| UPDATE pA SET x = X'8765' WHERE rowid = 2; |
| SELECT quote(x) FROM pA; |
| } |
| } {X'8765'} |
| do_test e_fkey-44.5 { |
| execsql { SELECT quote(c) FROM cB } |
| } {NULL} |
| |
| #------------------------------------------------------------------------- |
| # Test SET DEFAULT actions. |
| # |
| # EVIDENCE-OF: R-43054-54832 The "SET DEFAULT" actions are similar to |
| # "SET NULL", except that each of the child key columns is set to |
| # contain the columns default value instead of NULL. |
| # |
| drop_all_tables |
| do_test e_fkey-45.1 { |
| execsql { |
| CREATE TABLE pA(x PRIMARY KEY); |
| CREATE TABLE cA(c DEFAULT X'0000' REFERENCES pA ON DELETE SET DEFAULT); |
| CREATE TABLE cB(c DEFAULT X'9999' REFERENCES pA ON UPDATE SET DEFAULT); |
| |
| INSERT INTO pA(rowid, x) VALUES(1, X'0000'); |
| INSERT INTO pA(rowid, x) VALUES(2, X'9999'); |
| INSERT INTO pA(rowid, x) VALUES(3, X'ABCD'); |
| INSERT INTO pA(rowid, x) VALUES(4, X'1234'); |
| |
| INSERT INTO cA VALUES(X'ABCD'); |
| INSERT INTO cB VALUES(X'1234'); |
| } |
| } {} |
| do_test e_fkey-45.2 { |
| execsql { |
| DELETE FROM pA WHERE rowid = 3; |
| SELECT quote(x) FROM pA; |
| } |
| } {X'0000' X'9999' X'1234'} |
| do_test e_fkey-45.3 { |
| execsql { SELECT quote(c) FROM cA } |
| } {X'0000'} |
| do_test e_fkey-45.4 { |
| execsql { |
| UPDATE pA SET x = X'8765' WHERE rowid = 4; |
| SELECT quote(x) FROM pA; |
| } |
| } {X'0000' X'9999' X'8765'} |
| do_test e_fkey-45.5 { |
| execsql { SELECT quote(c) FROM cB } |
| } {X'9999'} |
| |
| #------------------------------------------------------------------------- |
| # Test ON DELETE CASCADE actions. |
| # |
| # EVIDENCE-OF: R-61376-57267 A "CASCADE" action propagates the delete or |
| # update operation on the parent key to each dependent child key. |
| # |
| # EVIDENCE-OF: R-61809-62207 For an "ON DELETE CASCADE" action, this |
| # means that each row in the child table that was associated with the |
| # deleted parent row is also deleted. |
| # |
| drop_all_tables |
| do_test e_fkey-46.1 { |
| execsql { |
| CREATE TABLE p1(a, b UNIQUE); |
| CREATE TABLE c1(c REFERENCES p1(b) ON DELETE CASCADE, d); |
| INSERT INTO p1 VALUES(NULL, NULL); |
| INSERT INTO p1 VALUES(4, 4); |
| INSERT INTO p1 VALUES(5, 5); |
| INSERT INTO c1 VALUES(NULL, NULL); |
| INSERT INTO c1 VALUES(4, 4); |
| INSERT INTO c1 VALUES(5, 5); |
| SELECT count(*) FROM c1; |
| } |
| } {3} |
| do_test e_fkey-46.2 { |
| execsql { |
| DELETE FROM p1 WHERE a = 4; |
| SELECT d, c FROM c1; |
| } |
| } {{} {} 5 5} |
| do_test e_fkey-46.3 { |
| execsql { |
| DELETE FROM p1; |
| SELECT d, c FROM c1; |
| } |
| } {{} {}} |
| do_test e_fkey-46.4 { |
| execsql { SELECT * FROM p1 } |
| } {} |
| |
| |
| #------------------------------------------------------------------------- |
| # Test ON UPDATE CASCADE actions. |
| # |
| # EVIDENCE-OF: R-13877-64542 For an "ON UPDATE CASCADE" action, it means |
| # that the values stored in each dependent child key are modified to |
| # match the new parent key values. |
| # |
| # EVIDENCE-OF: R-61376-57267 A "CASCADE" action propagates the delete or |
| # update operation on the parent key to each dependent child key. |
| # |
| drop_all_tables |
| do_test e_fkey-47.1 { |
| execsql { |
| CREATE TABLE p1(a, b UNIQUE); |
| CREATE TABLE c1(c REFERENCES p1(b) ON UPDATE CASCADE, d); |
| INSERT INTO p1 VALUES(NULL, NULL); |
| INSERT INTO p1 VALUES(4, 4); |
| INSERT INTO p1 VALUES(5, 5); |
| INSERT INTO c1 VALUES(NULL, NULL); |
| INSERT INTO c1 VALUES(4, 4); |
| INSERT INTO c1 VALUES(5, 5); |
| SELECT count(*) FROM c1; |
| } |
| } {3} |
| do_test e_fkey-47.2 { |
| execsql { |
| UPDATE p1 SET b = 10 WHERE b = 5; |
| SELECT d, c FROM c1; |
| } |
| } {{} {} 4 4 5 10} |
| do_test e_fkey-47.3 { |
| execsql { |
| UPDATE p1 SET b = 11 WHERE b = 4; |
| SELECT d, c FROM c1; |
| } |
| } {{} {} 4 11 5 10} |
| do_test e_fkey-47.4 { |
| execsql { |
| UPDATE p1 SET b = 6 WHERE b IS NULL; |
| SELECT d, c FROM c1; |
| } |
| } {{} {} 4 11 5 10} |
| do_test e_fkey-46.5 { |
| execsql { SELECT * FROM p1 } |
| } {{} 6 4 11 5 10} |
| |
| #------------------------------------------------------------------------- |
| # EVIDENCE-OF: R-65058-57158 |
| # |
| # Test an example from the "ON DELETE and ON UPDATE Actions" section |
| # of foreignkeys.html. |
| # |
| drop_all_tables |
| do_test e_fkey-48.1 { |
| execsql { |
| CREATE TABLE artist( |
| artistid INTEGER PRIMARY KEY, |
| artistname TEXT |
| ); |
| CREATE TABLE track( |
| trackid INTEGER, |
| trackname TEXT, |
| trackartist INTEGER REFERENCES artist(artistid) ON UPDATE CASCADE |
| ); |
| |
| INSERT INTO artist VALUES(1, 'Dean Martin'); |
| INSERT INTO artist VALUES(2, 'Frank Sinatra'); |
| INSERT INTO track VALUES(11, 'That''s Amore', 1); |
| INSERT INTO track VALUES(12, 'Christmas Blues', 1); |
| INSERT INTO track VALUES(13, 'My Way', 2); |
| } |
| } {} |
| do_test e_fkey-48.2 { |
| execsql { |
| UPDATE artist SET artistid = 100 WHERE artistname = 'Dean Martin'; |
| } |
| } {} |
| do_test e_fkey-48.3 { |
| execsql { SELECT * FROM artist } |
| } {2 {Frank Sinatra} 100 {Dean Martin}} |
| do_test e_fkey-48.4 { |
| execsql { SELECT * FROM track } |
| } {11 {That's Amore} 100 12 {Christmas Blues} 100 13 {My Way} 2} |
| |
| |
| #------------------------------------------------------------------------- |
| # Verify that adding an FK action does not absolve the user of the |
| # requirement not to violate the foreign key constraint. |
| # |
| # EVIDENCE-OF: R-53968-51642 Configuring an ON UPDATE or ON DELETE |
| # action does not mean that the foreign key constraint does not need to |
| # be satisfied. |
| # |
| drop_all_tables |
| do_test e_fkey-49.1 { |
| execsql { |
| CREATE TABLE parent(a COLLATE nocase, b, c, PRIMARY KEY(c, a)); |
| CREATE TABLE child(d DEFAULT 'a', e, f DEFAULT 'c', |
| FOREIGN KEY(f, d) REFERENCES parent ON UPDATE SET DEFAULT |
| ); |
| |
| INSERT INTO parent VALUES('A', 'b', 'c'); |
| INSERT INTO parent VALUES('ONE', 'two', 'three'); |
| INSERT INTO child VALUES('one', 'two', 'three'); |
| } |
| } {} |
| do_test e_fkey-49.2 { |
| execsql { |
| BEGIN; |
| UPDATE parent SET a = '' WHERE a = 'oNe'; |
| SELECT * FROM child; |
| } |
| } {a two c} |
| do_test e_fkey-49.3 { |
| execsql { |
| ROLLBACK; |
| DELETE FROM parent WHERE a = 'A'; |
| SELECT * FROM parent; |
| } |
| } {ONE two three} |
| do_test e_fkey-49.4 { |
| catchsql { UPDATE parent SET a = '' WHERE a = 'oNe' } |
| } {1 {foreign key constraint failed}} |
| |
| |
| #------------------------------------------------------------------------- |
| # EVIDENCE-OF: R-11856-19836 |
| # |
| # Test an example from the "ON DELETE and ON UPDATE Actions" section |
| # of foreignkeys.html. This example shows that adding an "ON DELETE DEFAULT" |
| # clause does not abrogate the need to satisfy the foreign key constraint |
| # (R-28220-46694). |
| # |
| # EVIDENCE-OF: R-28220-46694 For example, if an "ON DELETE SET DEFAULT" |
| # action is configured, but there is no row in the parent table that |
| # corresponds to the default values of the child key columns, deleting a |
| # parent key while dependent child keys exist still causes a foreign key |
| # violation. |
| # |
| drop_all_tables |
| do_test e_fkey-50.1 { |
| execsql { |
| CREATE TABLE artist( |
| artistid INTEGER PRIMARY KEY, |
| artistname TEXT |
| ); |
| CREATE TABLE track( |
| trackid INTEGER, |
| trackname TEXT, |
| trackartist INTEGER DEFAULT 0 REFERENCES artist(artistid) ON DELETE SET DEFAULT |
| ); |
| INSERT INTO artist VALUES(3, 'Sammy Davis Jr.'); |
| INSERT INTO track VALUES(14, 'Mr. Bojangles', 3); |
| } |
| } {} |
| do_test e_fkey-50.2 { |
| catchsql { DELETE FROM artist WHERE artistname = 'Sammy Davis Jr.' } |
| } {1 {foreign key constraint failed}} |
| do_test e_fkey-50.3 { |
| execsql { |
| INSERT INTO artist VALUES(0, 'Unknown Artist'); |
| DELETE FROM artist WHERE artistname = 'Sammy Davis Jr.'; |
| } |
| } {} |
| do_test e_fkey-50.4 { |
| execsql { SELECT * FROM artist } |
| } {0 {Unknown Artist}} |
| do_test e_fkey-50.5 { |
| execsql { SELECT * FROM track } |
| } {14 {Mr. Bojangles} 0} |
| |
| #------------------------------------------------------------------------- |
| # EVIDENCE-OF: R-09564-22170 |
| # |
| # Check that the order of steps in an UPDATE or DELETE on a parent |
| # table is as follows: |
| # |
| # 1. Execute applicable BEFORE trigger programs, |
| # 2. Check local (non foreign key) constraints, |
| # 3. Update or delete the row in the parent table, |
| # 4. Perform any required foreign key actions, |
| # 5. Execute applicable AFTER trigger programs. |
| # |
| drop_all_tables |
| do_test e_fkey-51.1 { |
| proc maxparent {args} { db one {SELECT max(x) FROM parent} } |
| db func maxparent maxparent |
| |
| execsql { |
| CREATE TABLE parent(x PRIMARY KEY); |
| |
| CREATE TRIGGER bu BEFORE UPDATE ON parent BEGIN |
| INSERT INTO parent VALUES(new.x-old.x); |
| END; |
| CREATE TABLE child( |
| a DEFAULT (maxparent()) REFERENCES parent ON UPDATE SET DEFAULT |
| ); |
| CREATE TRIGGER au AFTER UPDATE ON parent BEGIN |
| INSERT INTO parent VALUES(new.x+old.x); |
| END; |
| |
| INSERT INTO parent VALUES(1); |
| INSERT INTO child VALUES(1); |
| } |
| } {} |
| do_test e_fkey-51.2 { |
| execsql { |
| UPDATE parent SET x = 22; |
| SELECT * FROM parent UNION ALL SELECT 'xxx' UNION ALL SELECT a FROM child; |
| } |
| } {22 21 23 xxx 22} |
| do_test e_fkey-51.3 { |
| execsql { |
| DELETE FROM child; |
| DELETE FROM parent; |
| INSERT INTO parent VALUES(-1); |
| INSERT INTO child VALUES(-1); |
| UPDATE parent SET x = 22; |
| SELECT * FROM parent UNION ALL SELECT 'xxx' UNION ALL SELECT a FROM child; |
| } |
| } {22 23 21 xxx 23} |
| |
| |
| #------------------------------------------------------------------------- |
| # Verify that ON UPDATE actions only actually take place if the parent key |
| # is set to a new value that is distinct from the old value. The default |
| # collation sequence and affinity are used to determine if the new value |
| # is 'distinct' from the old or not. |
| # |
| # EVIDENCE-OF: R-27383-10246 An ON UPDATE action is only taken if the |
| # values of the parent key are modified so that the new parent key |
| # values are not equal to the old. |
| # |
| drop_all_tables |
| do_test e_fkey-52.1 { |
| execsql { |
| CREATE TABLE zeus(a INTEGER COLLATE NOCASE, b, PRIMARY KEY(a, b)); |
| CREATE TABLE apollo(c, d, |
| FOREIGN KEY(c, d) REFERENCES zeus ON UPDATE CASCADE |
| ); |
| INSERT INTO zeus VALUES('abc', 'xyz'); |
| INSERT INTO apollo VALUES('ABC', 'xyz'); |
| } |
| execsql { |
| UPDATE zeus SET a = 'aBc'; |
| SELECT * FROM apollo; |
| } |
| } {ABC xyz} |
| do_test e_fkey-52.2 { |
| execsql { |
| UPDATE zeus SET a = 1, b = 1; |
| SELECT * FROM apollo; |
| } |
| } {1 1} |
| do_test e_fkey-52.3 { |
| execsql { |
| UPDATE zeus SET a = 1, b = 1; |
| SELECT typeof(c), c, typeof(d), d FROM apollo; |
| } |
| } {integer 1 integer 1} |
| do_test e_fkey-52.4 { |
| execsql { |
| UPDATE zeus SET a = '1'; |
| SELECT typeof(c), c, typeof(d), d FROM apollo; |
| } |
| } {integer 1 integer 1} |
| do_test e_fkey-52.5 { |
| execsql { |
| UPDATE zeus SET b = '1'; |
| SELECT typeof(c), c, typeof(d), d FROM apollo; |
| } |
| } {integer 1 text 1} |
| do_test e_fkey-52.6 { |
| execsql { |
| UPDATE zeus SET b = NULL; |
| SELECT typeof(c), c, typeof(d), d FROM apollo; |
| } |
| } {integer 1 null {}} |
| |
| #------------------------------------------------------------------------- |
| # EVIDENCE-OF: R-35129-58141 |
| # |
| # Test an example from the "ON DELETE and ON UPDATE Actions" section |
| # of foreignkeys.html. This example demonstrates that ON UPDATE actions |
| # only take place if at least one parent key column is set to a value |
| # that is distinct from its previous value. |
| # |
| drop_all_tables |
| do_test e_fkey-53.1 { |
| execsql { |
| CREATE TABLE parent(x PRIMARY KEY); |
| CREATE TABLE child(y REFERENCES parent ON UPDATE SET NULL); |
| INSERT INTO parent VALUES('key'); |
| INSERT INTO child VALUES('key'); |
| } |
| } {} |
| do_test e_fkey-53.2 { |
| execsql { |
| UPDATE parent SET x = 'key'; |
| SELECT IFNULL(y, 'null') FROM child; |
| } |
| } {key} |
| do_test e_fkey-53.3 { |
| execsql { |
| UPDATE parent SET x = 'key2'; |
| SELECT IFNULL(y, 'null') FROM child; |
| } |
| } {null} |
| |
| ########################################################################### |
| ### SECTION 5: CREATE, ALTER and DROP TABLE commands |
| ########################################################################### |
| |
| #------------------------------------------------------------------------- |
| # Test that parent keys are not checked when tables are created. |
| # |
| # EVIDENCE-OF: R-36018-21755 The parent key definitions of foreign key |
| # constraints are not checked when a table is created. |
| # |
| # EVIDENCE-OF: R-25384-39337 There is nothing stopping the user from |
| # creating a foreign key definition that refers to a parent table that |
| # does not exist, or to parent key columns that do not exist or are not |
| # collectively bound by a PRIMARY KEY or UNIQUE constraint. |
| # |
| # Child keys are checked to ensure all component columns exist. If parent |
| # key columns are explicitly specified, SQLite checks to make sure there |
| # are the same number of columns in the child and parent keys. (TODO: This |
| # is tested but does not correspond to any testable statement.) |
| # |
| # Also test that the above statements are true regardless of whether or not |
| # foreign keys are enabled: "A CREATE TABLE command operates the same whether |
| # or not foreign key constraints are enabled." |
| # |
| # EVIDENCE-OF: R-08908-23439 A CREATE TABLE command operates the same |
| # whether or not foreign key constraints are enabled. |
| # |
| foreach {tn zCreateTbl lRes} { |
| 1 "CREATE TABLE t1(a, b REFERENCES t1)" {0 {}} |
| 2 "CREATE TABLE t1(a, b REFERENCES t2)" {0 {}} |
| 3 "CREATE TABLE t1(a, b, FOREIGN KEY(a,b) REFERENCES t1)" {0 {}} |
| 4 "CREATE TABLE t1(a, b, FOREIGN KEY(a,b) REFERENCES t2)" {0 {}} |
| 5 "CREATE TABLE t1(a, b, FOREIGN KEY(a,b) REFERENCES t2)" {0 {}} |
| 6 "CREATE TABLE t1(a, b, FOREIGN KEY(a,b) REFERENCES t2(n,d))" {0 {}} |
| 7 "CREATE TABLE t1(a, b, FOREIGN KEY(a,b) REFERENCES t1(a,b))" {0 {}} |
| |
| A "CREATE TABLE t1(a, b, FOREIGN KEY(c,b) REFERENCES t2)" |
| {1 {unknown column "c" in foreign key definition}} |
| B "CREATE TABLE t1(a, b, FOREIGN KEY(c,b) REFERENCES t2(d))" |
| {1 {number of columns in foreign key does not match the number of columns in the referenced table}} |
| } { |
| do_test e_fkey-54.$tn.off { |
| drop_all_tables |
| execsql {PRAGMA foreign_keys = OFF} |
| catchsql $zCreateTbl |
| } $lRes |
| do_test e_fkey-54.$tn.on { |
| drop_all_tables |
| execsql {PRAGMA foreign_keys = ON} |
| catchsql $zCreateTbl |
| } $lRes |
| } |
| |
| #------------------------------------------------------------------------- |
| # EVIDENCE-OF: R-47952-62498 It is not possible to use the "ALTER TABLE |
| # ... ADD COLUMN" syntax to add a column that includes a REFERENCES |
| # clause, unless the default value of the new column is NULL. Attempting |
| # to do so returns an error. |
| # |
| proc test_efkey_6 {tn zAlter isError} { |
| drop_all_tables |
| |
| do_test e_fkey-56.$tn.1 " |
| execsql { CREATE TABLE tbl(a, b) } |
| [list catchsql $zAlter] |
| " [lindex {{0 {}} {1 {Cannot add a REFERENCES column with non-NULL default value}}} $isError] |
| |
| } |
| |
| test_efkey_6 1 "ALTER TABLE tbl ADD COLUMN c REFERENCES xx" 0 |
| test_efkey_6 2 "ALTER TABLE tbl ADD COLUMN c DEFAULT NULL REFERENCES xx" 0 |
| test_efkey_6 3 "ALTER TABLE tbl ADD COLUMN c DEFAULT 0 REFERENCES xx" 1 |
| |
| #------------------------------------------------------------------------- |
| # Test that ALTER TABLE adjusts REFERENCES clauses when the parent table |
| # is RENAMED. |
| # |
| # EVIDENCE-OF: R-47080-02069 If an "ALTER TABLE ... RENAME TO" command |
| # is used to rename a table that is the parent table of one or more |
| # foreign key constraints, the definitions of the foreign key |
| # constraints are modified to refer to the parent table by its new name |
| # |
| # Test that these adjustments are visible in the sqlite_master table. |
| # |
| # EVIDENCE-OF: R-63827-54774 The text of the child CREATE TABLE |
| # statement or statements stored in the sqlite_master table are modified |
| # to reflect the new parent table name. |
| # |
| do_test e_fkey-56.1 { |
| drop_all_tables |
| execsql { |
| CREATE TABLE 'p 1 "parent one"'(a REFERENCES 'p 1 "parent one"', b, PRIMARY KEY(b)); |
| |
| CREATE TABLE c1(c, d REFERENCES 'p 1 "parent one"' ON UPDATE CASCADE); |
| CREATE TABLE c2(e, f, FOREIGN KEY(f) REFERENCES 'p 1 "parent one"' ON UPDATE CASCADE); |
| CREATE TABLE c3(e, 'f col 2', FOREIGN KEY('f col 2') REFERENCES 'p 1 "parent one"' ON UPDATE CASCADE); |
| |
| INSERT INTO 'p 1 "parent one"' VALUES(1, 1); |
| INSERT INTO c1 VALUES(1, 1); |
| INSERT INTO c2 VALUES(1, 1); |
| INSERT INTO c3 VALUES(1, 1); |
| |
| -- CREATE TABLE q(a, b, PRIMARY KEY(b)); |
| } |
| } {} |
| do_test e_fkey-56.2 { |
| execsql { ALTER TABLE 'p 1 "parent one"' RENAME TO p } |
| } {} |
| do_test e_fkey-56.3 { |
| execsql { |
| UPDATE p SET a = 'xxx', b = 'xxx'; |
| SELECT * FROM p; |
| SELECT * FROM c1; |
| SELECT * FROM c2; |
| SELECT * FROM c3; |
| } |
| } {xxx xxx 1 xxx 1 xxx 1 xxx} |
| do_test e_fkey-56.4 { |
| execsql { SELECT sql FROM sqlite_master WHERE type = 'table'} |
| } [list \ |
| {CREATE TABLE "p"(a REFERENCES "p", b, PRIMARY KEY(b))} \ |
| {CREATE TABLE c1(c, d REFERENCES "p" ON UPDATE CASCADE)} \ |
| {CREATE TABLE c2(e, f, FOREIGN KEY(f) REFERENCES "p" ON UPDATE CASCADE)} \ |
| {CREATE TABLE c3(e, 'f col 2', FOREIGN KEY('f col 2') REFERENCES "p" ON UPDATE CASCADE)} \ |
| ] |
| |
| #------------------------------------------------------------------------- |
| # Check that a DROP TABLE does an implicit DELETE FROM. Which does not |
| # cause any triggers to fire, but does fire foreign key actions. |
| # |
| # EVIDENCE-OF: R-14208-23986 If foreign key constraints are enabled when |
| # it is prepared, the DROP TABLE command performs an implicit DELETE to |
| # remove all rows from the table before dropping it. |
| # |
| # EVIDENCE-OF: R-11078-03945 The implicit DELETE does not cause any SQL |
| # triggers to fire, but may invoke foreign key actions or constraint |
| # violations. |
| # |
| do_test e_fkey-57.1 { |
| drop_all_tables |
| execsql { |
| CREATE TABLE p(a, b, PRIMARY KEY(a, b)); |
| |
| CREATE TABLE c1(c, d, FOREIGN KEY(c, d) REFERENCES p ON DELETE SET NULL); |
| CREATE TABLE c2(c, d, FOREIGN KEY(c, d) REFERENCES p ON DELETE SET DEFAULT); |
| CREATE TABLE c3(c, d, FOREIGN KEY(c, d) REFERENCES p ON DELETE CASCADE); |
| CREATE TABLE c4(c, d, FOREIGN KEY(c, d) REFERENCES p ON DELETE RESTRICT); |
| CREATE TABLE c5(c, d, FOREIGN KEY(c, d) REFERENCES p ON DELETE NO ACTION); |
| |
| CREATE TABLE c6(c, d, |
| FOREIGN KEY(c, d) REFERENCES p ON DELETE RESTRICT |
| DEFERRABLE INITIALLY DEFERRED |
| ); |
| CREATE TABLE c7(c, d, |
| FOREIGN KEY(c, d) REFERENCES p ON DELETE NO ACTION |
| DEFERRABLE INITIALLY DEFERRED |
| ); |
| |
| CREATE TABLE log(msg); |
| CREATE TRIGGER tt AFTER DELETE ON p BEGIN |
| INSERT INTO log VALUES('delete ' || old.rowid); |
| END; |
| } |
| } {} |
| |
| do_test e_fkey-57.2 { |
| execsql { |
| INSERT INTO p VALUES('a', 'b'); |
| INSERT INTO c1 VALUES('a', 'b'); |
| INSERT INTO c2 VALUES('a', 'b'); |
| INSERT INTO c3 VALUES('a', 'b'); |
| BEGIN; |
| DROP TABLE p; |
| SELECT * FROM c1; |
| } |
| } {{} {}} |
| do_test e_fkey-57.3 { |
| execsql { SELECT * FROM c2 } |
| } {{} {}} |
| do_test e_fkey-57.4 { |
| execsql { SELECT * FROM c3 } |
| } {} |
| do_test e_fkey-57.5 { |
| execsql { SELECT * FROM log } |
| } {} |
| do_test e_fkey-57.6 { |
| execsql ROLLBACK |
| } {} |
| do_test e_fkey-57.7 { |
| execsql { |
| BEGIN; |
| DELETE FROM p; |
| SELECT * FROM log; |
| ROLLBACK; |
| } |
| } {{delete 1}} |
| |
| #------------------------------------------------------------------------- |
| # If an IMMEDIATE foreign key fails as a result of a DROP TABLE, the |
| # DROP TABLE command fails. |
| # |
| # EVIDENCE-OF: R-32768-47925 If an immediate foreign key constraint is |
| # violated, the DROP TABLE statement fails and the table is not dropped. |
| # |
| do_test e_fkey-58.1 { |
| execsql { |
| DELETE FROM c1; |
| DELETE FROM c2; |
| DELETE FROM c3; |
| } |
| execsql { INSERT INTO c5 VALUES('a', 'b') } |
| catchsql { DROP TABLE p } |
| } {1 {foreign key constraint failed}} |
| do_test e_fkey-58.2 { |
| execsql { SELECT * FROM p } |
| } {a b} |
| do_test e_fkey-58.3 { |
| catchsql { |
| BEGIN; |
| DROP TABLE p; |
| } |
| } {1 {foreign key constraint failed}} |
| do_test e_fkey-58.4 { |
| execsql { |
| SELECT * FROM p; |
| SELECT * FROM c5; |
| ROLLBACK; |
| } |
| } {a b a b} |
| |
| #------------------------------------------------------------------------- |
| # If a DEFERRED foreign key fails as a result of a DROP TABLE, attempting |
| # to commit the transaction fails unless the violation is fixed. |
| # |
| # EVIDENCE-OF: R-05903-08460 If a deferred foreign key constraint is |
| # violated, then an error is reported when the user attempts to commit |
| # the transaction if the foreign key constraint violations still exist |
| # at that point. |
| # |
| do_test e_fkey-59.1 { |
| execsql { |
| DELETE FROM c1 ; DELETE FROM c2 ; DELETE FROM c3 ; |
| DELETE FROM c4 ; DELETE FROM c5 ; DELETE FROM c6 ; |
| DELETE FROM c7 |
| } |
| } {} |
| do_test e_fkey-59.2 { |
| execsql { INSERT INTO c7 VALUES('a', 'b') } |
| execsql { |
| BEGIN; |
| DROP TABLE p; |
| } |
| } {} |
| do_test e_fkey-59.3 { |
| catchsql COMMIT |
| } {1 {foreign key constraint failed}} |
| do_test e_fkey-59.4 { |
| execsql { CREATE TABLE p(a, b, PRIMARY KEY(a, b)) } |
| catchsql COMMIT |
| } {1 {foreign key constraint failed}} |
| do_test e_fkey-59.5 { |
| execsql { INSERT INTO p VALUES('a', 'b') } |
| execsql COMMIT |
| } {} |
| |
| #------------------------------------------------------------------------- |
| # Any "foreign key mismatch" errors encountered while running an implicit |
| # "DELETE FROM tbl" are ignored. |
| # |
| # EVIDENCE-OF: R-57242-37005 Any "foreign key mismatch" errors |
| # encountered as part of an implicit DELETE are ignored. |
| # |
| drop_all_tables |
| do_test e_fkey-60.1 { |
| execsql { |
| PRAGMA foreign_keys = OFF; |
| |
| CREATE TABLE p(a PRIMARY KEY, b REFERENCES nosuchtable); |
| CREATE TABLE c1(c, d, FOREIGN KEY(c, d) REFERENCES a); |
| CREATE TABLE c2(c REFERENCES p(b), d); |
| CREATE TABLE c3(c REFERENCES p ON DELETE SET NULL, d); |
| |
| INSERT INTO p VALUES(1, 2); |
| INSERT INTO c1 VALUES(1, 2); |
| INSERT INTO c2 VALUES(1, 2); |
| INSERT INTO c3 VALUES(1, 2); |
| } |
| } {} |
| do_test e_fkey-60.2 { |
| execsql { PRAGMA foreign_keys = ON } |
| catchsql { DELETE FROM p } |
| } {1 {no such table: main.nosuchtable}} |
| do_test e_fkey-60.3 { |
| execsql { |
| BEGIN; |
| DROP TABLE p; |
| SELECT * FROM c3; |
| ROLLBACK; |
| } |
| } {{} 2} |
| do_test e_fkey-60.4 { |
| execsql { CREATE TABLE nosuchtable(x PRIMARY KEY) } |
| catchsql { DELETE FROM p } |
| } {1 {foreign key mismatch}} |
| do_test e_fkey-60.5 { |
| execsql { DROP TABLE c1 } |
| catchsql { DELETE FROM p } |
| } {1 {foreign key mismatch}} |
| do_test e_fkey-60.6 { |
| execsql { DROP TABLE c2 } |
| execsql { DELETE FROM p } |
| } {} |
| |
| #------------------------------------------------------------------------- |
| # Test that the special behaviours of ALTER and DROP TABLE are only |
| # activated when foreign keys are enabled. Special behaviours are: |
| # |
| # 1. ADD COLUMN not allowing a REFERENCES clause with a non-NULL |
| # default value. |
| # 2. Modifying foreign key definitions when a parent table is RENAMEd. |
| # 3. Running an implicit DELETE FROM command as part of DROP TABLE. |
| # |
| # EVIDENCE-OF: R-54142-41346 The properties of the DROP TABLE and ALTER |
| # TABLE commands described above only apply if foreign keys are enabled. |
| # |
| do_test e_fkey-61.1.1 { |
| drop_all_tables |
| execsql { CREATE TABLE t1(a, b) } |
| catchsql { ALTER TABLE t1 ADD COLUMN c DEFAULT 'xxx' REFERENCES t2 } |
| } {1 {Cannot add a REFERENCES column with non-NULL default value}} |
| do_test e_fkey-61.1.2 { |
| execsql { PRAGMA foreign_keys = OFF } |
| execsql { ALTER TABLE t1 ADD COLUMN c DEFAULT 'xxx' REFERENCES t2 } |
| execsql { SELECT sql FROM sqlite_master WHERE name = 't1' } |
| } {{CREATE TABLE t1(a, b, c DEFAULT 'xxx' REFERENCES t2)}} |
| do_test e_fkey-61.1.3 { |
| execsql { PRAGMA foreign_keys = ON } |
| } {} |
| |
| do_test e_fkey-61.2.1 { |
| drop_all_tables |
| execsql { |
| CREATE TABLE p(a UNIQUE); |
| CREATE TABLE c(b REFERENCES p(a)); |
| BEGIN; |
| ALTER TABLE p RENAME TO parent; |
| SELECT sql FROM sqlite_master WHERE name = 'c'; |
| ROLLBACK; |
| } |
| } {{CREATE TABLE c(b REFERENCES "parent"(a))}} |
| do_test e_fkey-61.2.2 { |
| execsql { |
| PRAGMA foreign_keys = OFF; |
| ALTER TABLE p RENAME TO parent; |
| SELECT sql FROM sqlite_master WHERE name = 'c'; |
| } |
| } {{CREATE TABLE c(b REFERENCES p(a))}} |
| do_test e_fkey-61.2.3 { |
| execsql { PRAGMA foreign_keys = ON } |
| } {} |
| |
| do_test e_fkey-61.3.1 { |
| drop_all_tables |
| execsql { |
| CREATE TABLE p(a UNIQUE); |
| CREATE TABLE c(b REFERENCES p(a) ON DELETE SET NULL); |
| INSERT INTO p VALUES('x'); |
| INSERT INTO c VALUES('x'); |
| BEGIN; |
| DROP TABLE p; |
| SELECT * FROM c; |
| ROLLBACK; |
| } |
| } {{}} |
| do_test e_fkey-61.3.2 { |
| execsql { |
| PRAGMA foreign_keys = OFF; |
| DROP TABLE p; |
| SELECT * FROM c; |
| } |
| } {x} |
| do_test e_fkey-61.3.3 { |
| execsql { PRAGMA foreign_keys = ON } |
| } {} |
| |
| ########################################################################### |
| ### SECTION 6: Limits and Unsupported Features |
| ########################################################################### |
| |
| #------------------------------------------------------------------------- |
| # Test that MATCH clauses are parsed, but SQLite treats every foreign key |
| # constraint as if it were "MATCH SIMPLE". |
| # |
| # EVIDENCE-OF: R-24728-13230 SQLite parses MATCH clauses (i.e. does not |
| # report a syntax error if you specify one), but does not enforce them. |
| # |
| # EVIDENCE-OF: R-24450-46174 All foreign key constraints in SQLite are |
| # handled as if MATCH SIMPLE were specified. |
| # |
| foreach zMatch [list SIMPLE PARTIAL FULL Simple parTIAL FuLL ] { |
| drop_all_tables |
| do_test e_fkey-62.$zMatch.1 { |
| execsql " |
| CREATE TABLE p(a, b, c, PRIMARY KEY(b, c)); |
| CREATE TABLE c(d, e, f, FOREIGN KEY(e, f) REFERENCES p MATCH $zMatch); |
| " |
| } {} |
| do_test e_fkey-62.$zMatch.2 { |
| execsql { INSERT INTO p VALUES(1, 2, 3) } |
| |
| # MATCH SIMPLE behaviour: Allow any child key that contains one or more |
| # NULL value to be inserted. Non-NULL values do not have to map to any |
| # parent key values, so long as at least one field of the child key is |
| # NULL. |
| execsql { INSERT INTO c VALUES('w', 2, 3) } |
| execsql { INSERT INTO c VALUES('x', 'x', NULL) } |
| execsql { INSERT INTO c VALUES('y', NULL, 'x') } |
| execsql { INSERT INTO c VALUES('z', NULL, NULL) } |
| |
| # Check that the FK is enforced properly if there are no NULL values |
| # in the child key columns. |
| catchsql { INSERT INTO c VALUES('a', 2, 4) } |
| } {1 {foreign key constraint failed}} |
| } |
| |
| #------------------------------------------------------------------------- |
| # Test that SQLite does not support the SET CONSTRAINT statement. And |
| # that it is possible to create both immediate and deferred constraints. |
| # |
| # EVIDENCE-OF: R-21599-16038 In SQLite, a foreign key constraint is |
| # permanently marked as deferred or immediate when it is created. |
| # |
| drop_all_tables |
| do_test e_fkey-62.1 { |
| catchsql { SET CONSTRAINTS ALL IMMEDIATE } |
| } {1 {near "SET": syntax error}} |
| do_test e_fkey-62.2 { |
| catchsql { SET CONSTRAINTS ALL DEFERRED } |
| } {1 {near "SET": syntax error}} |
| |
| do_test e_fkey-62.3 { |
| execsql { |
| CREATE TABLE p(a, b, PRIMARY KEY(a, b)); |
| CREATE TABLE cd(c, d, |
| FOREIGN KEY(c, d) REFERENCES p DEFERRABLE INITIALLY DEFERRED); |
| CREATE TABLE ci(c, d, |
| FOREIGN KEY(c, d) REFERENCES p DEFERRABLE INITIALLY IMMEDIATE); |
| BEGIN; |
| } |
| } {} |
| do_test e_fkey-62.4 { |
| catchsql { INSERT INTO ci VALUES('x', 'y') } |
| } {1 {foreign key constraint failed}} |
| do_test e_fkey-62.5 { |
| catchsql { INSERT INTO cd VALUES('x', 'y') } |
| } {0 {}} |
| do_test e_fkey-62.6 { |
| catchsql { COMMIT } |
| } {1 {foreign key constraint failed}} |
| do_test e_fkey-62.7 { |
| execsql { |
| DELETE FROM cd; |
| COMMIT; |
| } |
| } {} |
| |
| #------------------------------------------------------------------------- |
| # Test that the maximum recursion depth of foreign key action programs is |
| # governed by the SQLITE_MAX_TRIGGER_DEPTH and SQLITE_LIMIT_TRIGGER_DEPTH |
| # settings. |
| # |
| # EVIDENCE-OF: R-42264-30503 The SQLITE_MAX_TRIGGER_DEPTH and |
| # SQLITE_LIMIT_TRIGGER_DEPTH settings determine the maximum allowable |
| # depth of trigger program recursion. For the purposes of these limits, |
| # foreign key actions are considered trigger programs. |
| # |
| proc test_on_delete_recursion {limit} { |
| drop_all_tables |
| execsql { |
| BEGIN; |
| CREATE TABLE t0(a PRIMARY KEY, b); |
| INSERT INTO t0 VALUES('x0', NULL); |
| } |
| for {set i 1} {$i <= $limit} {incr i} { |
| execsql " |
| CREATE TABLE t$i ( |
| a PRIMARY KEY, b REFERENCES t[expr $i-1] ON DELETE CASCADE |
| ); |
| INSERT INTO t$i VALUES('x$i', 'x[expr $i-1]'); |
| " |
| } |
| execsql COMMIT |
| catchsql " |
| DELETE FROM t0; |
| SELECT count(*) FROM t$limit; |
| " |
| } |
| proc test_on_update_recursion {limit} { |
| drop_all_tables |
| execsql { |
| BEGIN; |
| CREATE TABLE t0(a PRIMARY KEY); |
| INSERT INTO t0 VALUES('xxx'); |
| } |
| for {set i 1} {$i <= $limit} {incr i} { |
| set j [expr $i-1] |
| |
| execsql " |
| CREATE TABLE t$i (a PRIMARY KEY REFERENCES t$j ON UPDATE CASCADE); |
| INSERT INTO t$i VALUES('xxx'); |
| " |
| } |
| execsql COMMIT |
| catchsql " |
| UPDATE t0 SET a = 'yyy'; |
| SELECT NOT (a='yyy') FROM t$limit; |
| " |
| } |
| |
| do_test e_fkey-63.1.1 { |
| test_on_delete_recursion $SQLITE_MAX_TRIGGER_DEPTH |
| } {0 0} |
| do_test e_fkey-63.1.2 { |
| test_on_delete_recursion [expr $SQLITE_MAX_TRIGGER_DEPTH+1] |
| } {1 {too many levels of trigger recursion}} |
| do_test e_fkey-63.1.3 { |
| sqlite3_limit db SQLITE_LIMIT_TRIGGER_DEPTH 5 |
| test_on_delete_recursion 5 |
| } {0 0} |
| do_test e_fkey-63.1.4 { |
| test_on_delete_recursion 6 |
| } {1 {too many levels of trigger recursion}} |
| do_test e_fkey-63.1.5 { |
| sqlite3_limit db SQLITE_LIMIT_TRIGGER_DEPTH 1000000 |
| } {5} |
| do_test e_fkey-63.2.1 { |
| test_on_update_recursion $SQLITE_MAX_TRIGGER_DEPTH |
| } {0 0} |
| do_test e_fkey-63.2.2 { |
| test_on_update_recursion [expr $SQLITE_MAX_TRIGGER_DEPTH+1] |
| } {1 {too many levels of trigger recursion}} |
| do_test e_fkey-63.2.3 { |
| sqlite3_limit db SQLITE_LIMIT_TRIGGER_DEPTH 5 |
| test_on_update_recursion 5 |
| } {0 0} |
| do_test e_fkey-63.2.4 { |
| test_on_update_recursion 6 |
| } {1 {too many levels of trigger recursion}} |
| do_test e_fkey-63.2.5 { |
| sqlite3_limit db SQLITE_LIMIT_TRIGGER_DEPTH 1000000 |
| } {5} |
| |
| #------------------------------------------------------------------------- |
| # The setting of the recursive_triggers pragma does not affect foreign |
| # key actions. |
| # |
| # EVIDENCE-OF: R-51769-32730 The PRAGMA recursive_triggers setting does |
| # not not affect the operation of foreign key actions. |
| # |
| foreach recursive_triggers_setting [list 0 1 ON OFF] { |
| drop_all_tables |
| execsql "PRAGMA recursive_triggers = $recursive_triggers_setting" |
| |
| do_test e_fkey-64.$recursive_triggers_setting.1 { |
| execsql { |
| CREATE TABLE t1(a PRIMARY KEY, b REFERENCES t1 ON DELETE CASCADE); |
| INSERT INTO t1 VALUES(1, NULL); |
| INSERT INTO t1 VALUES(2, 1); |
| INSERT INTO t1 VALUES(3, 2); |
| INSERT INTO t1 VALUES(4, 3); |
| INSERT INTO t1 VALUES(5, 4); |
| SELECT count(*) FROM t1; |
| } |
| } {5} |
| do_test e_fkey-64.$recursive_triggers_setting.2 { |
| execsql { SELECT count(*) FROM t1 WHERE a = 1 } |
| } {1} |
| do_test e_fkey-64.$recursive_triggers_setting.3 { |
| execsql { |
| DELETE FROM t1 WHERE a = 1; |
| SELECT count(*) FROM t1; |
| } |
| } {0} |
| } |
| |
| finish_test |